Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts
- Corresponding author: Yuqin Zou, yuqin_zou@hnu.edu.cn
Citation: Zhuoran Lu, Shengkai Li, Yuxuan Lu, Shuangyin Wang, Yuqin Zou. Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230600. doi: 10.3866/PKU.WHXB202306003
(1) Araji, N.; Madjinza, D. D.; Chatel, G.; Moores, A.; Jérôme, F.; Vigier, K. D. O. Green Chem. 2017, 19, 98. doi: 10.1039/C6GC02620F
(2) Li, K.; Sun, Y. Chem-Eur. J. 2018, 24, 18258. doi: 10.1002/chem.201803319
(3) Du, L.; Shao, Y.; Sun, J.; Yin, G.; Du, C.; Wang, Y. Catal. Sci. Technol. 2018, 8, 3216. doi: 10.1039/c8cy00533h
(4) Kim, H. J.; Kim, Y.; Lee, D.; Kim, J.-R.; Chae, H.-J.; Jeong, S.-Y.; Kim, B.-S.; Lee, J.; Huber, G. W.; Byun, J.; et al. ACS Sustain. Chem. Eng. 2017, 5, 6626. doi: 10.1021/acssuschemeng.7b00868
(5) Wang, H.; Thia, L.; Li, N.; Ge, X.; Liu, Z.; Wang, X. ACS Catal. 2015, 5, 3174. doi: 10.1021/acscatal.5b00183
(6) Dodekatos, G.; Schünemann, S.; Tüysüz, H. ACS Catal. 2018, 8, 6301. doi: 10.1021/acscatal.8b01317
(7) Si, D.; Xiong, B.; Chen, L.; Shi, J. Chem Catal. 2021, 1, 941. doi: 10.1016/j.checat.2021.08.001
(8) Li, Y.; Peng, Y.-K.; Hu, L.; Zheng, J.; Prabhakaran, D.; Wu, S.; Puchtler, T. J.; Li, M.; Wong, K.-Y.; Taylor, R. A. Nat. Commun. 2019, 10, 4421. doi: 10.1038/s41467-019-12385-1
(9) Bambagioni, V.; Bianchini, C.; Marchionni, A.; Filippi, J.; Vizza, F.; Teddy, J.; Serp, P.; Zhiani, M. J. Power Sources 2009, 190, 241. doi: 10.1016/j.jpowsour.2009.01.044
(10) Caliman, C. C.; Palma, L.; Ribeiro, J. J. Electrochem. Soc. 2013, 160, F853. doi: 10.1149/2.073308jes
(11) Habibi, B.; Ghaderi, S. Int. J. Hydrog. Energy 2015, 40, 5115. doi: 10.1016/j.ijhydene.2015.02.103
(12) Fernández, P. S.; Martins, C. A.; Martins, M. E.; Camara, G. A. Electrochim. Acta 2013, 112, 686. doi: 10.1016/j.electacta.2013.09.032
(13) Lopes, F. S.; Nogueira, T.; Do Lago, C. L.; Gutz, I. G. Electroanalysis 2011, 23, 2516. doi: 10.1002/elan.201100321
(14) Jeffery, D. Z.; Camara, G. A. Electrochem. Commun. 2010, 12, 1129. doi: 10.1016/j.elecom.2010.06.001
(15) Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M. T. M. ACS Catal. 2012, 2, 759. doi: 10.1021/cs200599g
(16) Kwon, Y.; Lai, S. C.; Rodriguez, P.; Koper, M. T. J. Am. Chem. Soc. 2011, 133, 6914. doi: 10.1021/ja200976j
(17) Simões, M.; Baranton, S.; Coutanceau. Appl. Catal. B. Environ. 2010, 93, 354. doi: 10.1016/j.apcatb.2009.10.008
(18) Yongprapat, S.; Therdthianwong, A.; Therdthianwong, S. J. Appl. Electrochem. 2012, 42, 483. doi: 10.1007/s10800-012-0423-3
(19) Yongprapat, S.; Therdthianwong, S.; Therdthianwong, A. Electrochim. Acta 2012, 83, 87. doi: 10.1016/j.electacta.2012.08.031
(20) Zhang, Z.; Xin, L.; Li, W. Int. J. Hydrog. Energy 2012, 37, 9393. doi: 10.1016/j.ijhydene.2012.03.019
(21) Zhou, H.; Li, Z.; Xu, S. M.; Lu, L.; Xu, M.; Ji, K.; Ge, R.; Yan, Y.; Ma, L.; Kong, X.; et al. Angew. Chem. Int. Ed. 2021, 60, 8976. doi: 10.1002/anie.202015431
(22) Dash, S.; Munichandraiah, N. J. Electrochem. Soc. 2013, 160, H197. doi: 10.1149/2.007304jes
(23) Renard, D.; Mccain, C.; Baidoun, B.; Bondy, A.; Bandyopadhyay, K. Colloids Surf. A 2014, 463, 44. doi: 10.1016/j.colsurfa.2014.09.027
(24) Zhiani, M.; Rostami, H.; Majidi, S.; Karami, K. Int. J. Hydrog. Energy 2013, 38, 5435. doi: 10.1016/j.ijhydene.2012.09.001
(25) Zalineeva, A.; Baranton, S.; Coutanceau, C. Electrochim. Acta 2015, 176, 705. doi: 10.1016/j.electacta.2015.07.073
(26) Dai, C.; Sun, L.; Liao, H.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. J. Catal. 2017, 356, 14. doi: 10.1016/j.jcat.2017.10.010
(27) Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K.-S. J. Am. Chem. Soc. 2020, 142, 21538. doi: 10.1021/jacs.0c10924
(28) Bender, M. T.; Warburton, R. E.; Hammes-Schiffer, S.; Choi, K.-S. ACS Catal. 2021, 11, 15110. doi: 10.1021/acscatal.1c04163
(29) Franceschini, F.; Taurino, I. J. P. I. M. Phys. Med. 2022, 100054. doi: 10.1016/j.phmed.2022.100054
(30) Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335. doi: 10.1038/s41467-019-13375-z
(31) Wu, J.; Liu, X.; Hao, Y.; Wang, S.; Wang, R.; Du, W.; Cha, S.; Ma, X. Y.; Yang, X.; Gong, M. Angew. Chem. Int. Ed. 2023, 62, e202216083. doi: 10.1002/anie.202216083
(32) Sun, S.; Sun, L.; Xi, S.; Du, Y.; Prathap, M. A.; Wang, Z.; Zhang, Q.; Fisher, A.; Xu, Z. J. Electrochim. Acta 2017, 228, 183. doi: 10.1016/j.electacta.2017.01.086
(33) Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.; Jin, S. ACS Catal. 2020, 10, 6741. doi: 10.1021/acscatal.0c01498
(34) Li, Y.; Wei, X.; Han, S.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 21464. doi: 10.1002/anie.202107510
(35) Kruyer, N. S.; Peralta-Yahya, P. Curr. Opin. Biotechnol. 2017, 45, 136. doi: 10.1016/j.copbio.2017.03.006
(36) Yan, W.; Zhang, G.; Wang, J.; Liu, M.; Sun, Y.; Zhou, Z.; Zhang, W.; Zhang, S.; Xu, X.; Shen, J.; et al. Front. Chem. 2020, 8, 185. doi: 10.3389/fchem.2020.00185
(37) Yang, J.; Liu, J.; Neumann, H.; Franke, R.; Jackstell, R.; Beller, M. Science 2019, 366, 1514. doi: 10.1126/science.aaz1293
(38) Rios, J.; Lebeau, J.; Yang, T.; Li, S.; Lynch, M. D. Green. Chem. 2021, 23, 3172. doi: 10.1039/d1gc00638j
(39) Schaub, T. Science 2019, 366, 1447. doi: 10.1126/science.aaz6459
(40) Van De Vyver, S.; Román-Leshkov, Y. Catal. Sci. Technol. 2013, 3, 1465. doi: 10.1039/c3cy20728e
(41) Skoog, E.; Shin, J. H.; Saez-Jimenez, V.; Mapelli, V.; Olsson, L. Biotechnol. Adv. 2018, 36, 2248. doi: 10.1016/j.biotechadv.2018.10.012
(42) Wang, R.; Kang, Y.; Wu, J.; Jiang, T.; Wang, Y.; Gu, L.; Li, Y.; Yang, X.; Liu, Z.; Gong, M. Angew. Chem. Int. Ed. 2022, 61, e202214977. doi: 10.1002/anie.202214977
(43) Chaenko, N.; Kornienko, G.; Sokolenko, V.; Kornienko, B. Russ. J. Appl. Chem. 2014, 87, 444. doi: 10.1134/s1070427214040089
(44) Rauen, A. L.; Weinelt, F.; Waldvogel, S. R. Green Chem. 2020, 22, 5956. doi: 10.1039/d0gc02210a
(45) Zhao, H.; Qu, X.; Qin, M.; Yang, W. J. Solid State Electrochem. 2016, 20, 2773. doi: 10.1007/s10008-016-3286-4
(46) Li, Z.; Li, X.; Zhou, H.; Xu, Y.; Xu, S. M.; Ren, Y.; Yan, Y.; Yang, J.; Ji, K.; Li, L.; et al. Nat. Commun. 2022, 13, 5009. doi: 10.1038/s41467-022-32769-0
(47) Lyalin, B.; Petrosyan, V. Russ. Chem. Bull. 2009, 58, 2426. doi: 10.1007/s11172-009-0339-1
(48) Hasanzadeh, M.; Karim-Nezhad, G.; Mahjani, M. G.; Jafarian, M.; Shadjou, N.; Khalilzadeh, B.; Saghatforoush, L. A. Catal. Commun. 2008, 10, 295. doi: 10.1016/j.catcom.2008.09.010
(49) Collinson, S.; Thielemans, W. Coord. Chem. Rev. 2010, 254, 1854. doi: 10.1016/j.ccr.2010.04.007
(50) Vennestrøm, P.; Osmundsen, C. M.; Christensen, C.; Taarning, E. Angew. Chem. Int. Ed. 2011, 50, 10502. doi: 10.1002/anie.201102117
(51) Shuai, L.; Amiri, M. T.; Questell-Santiago, Y. M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J. S. Science 2016, 354, 329. doi: 10.1126/science.aaf7810
(52) Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S. Nature 2014, 515, 249. doi: 10.1038/nature13867
(53) Jiang, L.; Sheng, L.; Fan, Z. Sci. China Mater. 2018, 61, 133. doi: 10.1007/s40843-017-9169-4
(54) Wong, S. S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Chem. Soc. Rev. 2020, 49, 5510. doi: 10.1039/d0cs00134a
(55) Tian, H.; Fu, X.; Zheng, M.; Wang, Y.; Li, Y.; Xiang, A.; Zhong, W.-H. Nano Res. 2018, 11, 4265. doi: 10.1007/s12274-018-2013-0
(56) Constant, S.; Wienk, H. L.; Frissen, A. E.; De Peinder, P.; Boelens, R.; Van Es, D. S.; Grisel, R. J.; Weckhuysen, B. M.; Huijgen, W. J.; Gosselink, R. J. Green Chem. 2016, 18, 2651. doi: 10.1039/C5GC03043A
(57) Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, B. Chem. Rev. 2018, 118, 614. doi: 10.1021/acs.chemrev.7b00588
(58) Bosque, I.; Magallanes, G.; Rigoulet, M.; KäRkäS, M. D.; Stephenson, C. R. ACS Cent. Sci. 2017, 3, 621. doi: 10.1021/acscentsci.7b00140
(59) Han, S.; Wang, C.; Wang, Y.; Yu, Y.; Zhang, B. Angew. Chem. Int. Ed. 2021, 133, 4524. doi: 10.1002/anie.202014017
(60) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, 57, 6018. doi: 10.1002/anie.201712732
(61) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309. doi: 10.1021/acs.accounts.9b00512
(62) Xu, C.; Arancon, R. a. D.; Labidi, J.; Luque, R. Chem. Soc. Rev. 2014, 43, 7485. doi: 10.1039/c4cs00235k
(63) Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2010, 132, 12554. doi: 10.1021/ja109016b
(64) Wu, A.; Patrick, B. O.; Chung, E.; James, B. R. Dalton Trans. 2012, 41, 11093. doi: 10.1039/C2DT31065A
(65) Norman, C. Science 2011, 332, 1263. doi: 10.1126/science.332.6035.1263-c
(66) Lahive, C. W.; Deuss, P. J.; Lancefield, C. S.; Sun, Z.; Cordes, D. B.; Young, C. M.; Tran, F.; Slawin, A. M.; De Vries, J. G.; Kamer, P. C.; et al. J. Am. Chem. Soc. 2016, 138, 8900. doi: 10.1021/jacs.6b04144
(67) Luo, N.; Wang, M.; Li, H.; Zhang, J.; Hou, T.; Chen, H.; Zhang, X.; Lu, J.; Wang, F. ACS Catal. 2017, 7, 4571. doi: 10.1021/acscatal.7b01043
(68) Luo, N.; Wang, M.; Li, H.; Zhang, J.; Liu, H.; Wang, F. ACS Catal. 2016, 6, 7716. doi: 10.1021/acscatal.6b02212
(69) Lancefield, C. S.; Ojo, O. S.; Tran, F.; Westwood, N. Angew. Chem. Int. Ed. 2015, 127, 260. doi: 10.1002/anie.201409408
(70) Sedai, B.; Baker, R. T. Adv. Synth. Catal. 2014, 356, 3563. doi: 10.1002/adsc.201400463
(71) Tran, F.; Lancefield, C.; Kamer, P.; Lebl, T.; Westwood, N. Green Chem. 2015, 17, 244. doi: 10.1039/c4gc01012d
(72) Hanson, S. K.; Wu, R.; Silks, L. A. P. Angew. Chem. Int. Ed. 2012, 124, 3466. doi: 10.1002/anie.201107020
(73) Cho, D. W.; Parthasarathi, R.; Pimentel, A. S.; Maestas, G. D.; Park, H. J.; Yoon, U. C.; Dunaway-Mariano, D.; Gnanakaran, S.; Langan, P.; Mariano, P. S. J. Org. Chem. 2010, 75, 6549. doi: 10.1021/jo1012509
(74) Lim, S. H.; Nahm, K.; Ra, C. S.; Cho, D. W.; Yoon, U. C.; Latham, J. A.; Dunaway-Mariano, D.; Mariano, P. S. J. Org. Chem. 2013, 78, 9431. doi: 10.1021/jo401680z
(75) Hanson, S. K.; Baker, R. T. Acc. Chem. Res. 2015, 48, 2037. doi: 10.1021/acs.accounts.5b00104
(76) Parthasarathi, R.; Romero, R. A.; Redondo, A.; Gnanakaran, S. J. Phys. Chem. Lett. 2011, 2, 2660. doi: 10.1021/jz201201q
(77) Kim, S.; Chmely, S. C.; Nimlos, M. R.; Bomble, Y. J.; Foust, T. D.; Paton, R. S.; Beckham, G. T. J. Phys. Chem. Lett. 2011, 2, 2846. doi: 10.1021/jz201182w
(78) Kleine, T.; Buendia, J.; Bolm, C. Green Chem. 2013, 15, 160. doi: 10.1039/c2gc36456e
(79) Cui, T.; Ma, L.; Wang, S.; Ye, C.; Liang, X.; Zhang, Z.; Meng, G.; Zheng, L.; Hu, H. S.; Zhang, J.; et al. J. Am. Chem. Soc. 2021, 143, 9429. doi: 10.1021/jacs.1c02328
(80) Yan, K.; Zhang, Y.; Tu, M.; Sun, Y. Energy Fuels 2020, 34, 12703. doi: 10.1021/acs.energyfuels.0c02284
(81) Lange, J. P.; Van Der Heide, E.; Van Buijtenen, J.; Price, R. ChemSusChem 2012, 5, 150. doi: 10.1002/cssc.201100648
(82) Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. L. Energy Environ. Sci. 2016, 9, 1144. doi: 10.1039/C5EE02666K
(83) Caes, B. R.; Teixeira, R. E.; Knapp, K. G.; Raines, R. T. ACS Sustain. Chem. Eng. 2015, 3, 2591. doi: 10.1021/acssuschemeng.5b00473
(84) Ye, W.; Yang, Y.; Fang, X.; Arif, M.; Chen, X.; Yan, D. ACS Sustain. Chem Eng. 2019, 7, 18085. doi: 10.1021/acssuschemeng.9b05126
(85) Li, X.; Ho, B.; Lim, D. S.; Zhang, Y. Green Chem. 2017, 19, 914. doi: 10.1039/C6GC03020C
(86) Wu, H.; Song, J.; Liu, H.; Xie, Z.; Xie, C.; Hu, Y.; Huang, X.; Hua, M.; Han, B. Chem. Sci. 2019, 10, 4692. doi: 10.1039/c9sc00322c
(87) Wojcieszak, R.; Santarelli, F.; Paul, S.; Dumeignil, F.; Cavani, F.; Gonçalves, R. V. Sustain. Chem. Proc. 2015, 3, 1. doi: 10.1186/s40508-015-0034-5/
(88) Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. Chem. Rev. 1988, 88, 55. doi: 10.1021/cr00083a003
(89) Li, X.; Ko, J.; Zhang, Y. ChemSusChem 2018, 11, 612. doi: 10.1002/cssc.201701866
(90) Murthy, M.; Rajamani, K. Chem. Eng. Sci. 1974, 29, 601. doi: 10.1016/0009-2509(74)80071-0
(91) Lan, J.; Chen, Z.; Lin, J.; Yin, G. Green Chem. 2014, 16, 4351. doi: 10.1039/C4GC00829D
(92) Guo, H.; Yin, G. J. Phys. Chem. C 2011, 115, 17516. doi: 10.1021/jp2054712
(93) Shi, S.; Guo, H.; Yin, G. Catal. Commun. 2011, 12, 731. doi: 10.1016/j.catcom.2010.12.033
(94) Li, X.; Lan, X.; Wang, T. Catal. Today 2016, 276, 97. doi: 10.1016/j.cattod.2015.11.036
(95) Román, A. M.; Hasse, J. C.; Medlin, J. W.; Holewinski, A. ACS Catal. 2019, 9, 10305. doi: 10.1021/acscatal.9b02656
(96) Kubota, S. R.; Choi, K.-S. ACS Sustain. Chem. Eng. 2018, 6, 9596. doi: 10.1021/acssuschemeng.8b02698
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005