Citation: Hao Chen, Dongyue Yang, Gang Huang, Xinbo Zhang. Progress on Liquid Organic Electrolytes of Li-O2 Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230505. doi: 10.3866/PKU.WHXB202305059
-
Li-O2 batteries have garnered significant attention due to their ultrahigh theoretical energy density, comparable to that of gasoline. However, despite this promise, several challenges have hindered the commercial application of Li-O2 batteries. These challenges include poor reversibility, unsatisfactory cycling duration, and high overpotential during battery operation. The key factor behind the poor reversibility of current Li-O2 batteries is the occurrence of side reactions between various battery components and discharge products or intermediates. The electrolyte, an essential component in Li-O2 batteries, plays a crucial role in charge transport and mass transfer within the battery. Among the available electrolytes used in Li-O2 batteries, liquid organic electrolytes have been predominantly investigated as potential options. However, they suffer from insufficient chemical and electrochemical stability, which contributes to the overall poor reversibility. Substantial progress has been made in understanding the factors that lead to the degradation of liquid organic electrolytes and in enhancing their stability. However, there is still a need for more significant improvements to achieve practical performance. This review comprehensively introduces the development of liquid organic electrolytes for Li-O2 batteries, focusing on solvents, lithium salts, and additives. It outlines the specific requirements of electrolytes for Li-O2 batteries and highlights the importance of reducing charge overpotentials as a critical strategy to mitigate both electrochemical and chemical degradation. The review proceeds to detail the composition of liquid organic electrolytes, beginning with solvents. Carbonates, ethers, amides, and ionic liquids are discussed, along with their respective advantages, disadvantages, and strategies to overcome limitations. The role of lithium salts is then examined, with an emphasis on the relationship between the properties of lithium salts, such as donor number and anion polarity, and electrolyte performance. Some lithium salts are highlighted for their additional functions, such as forming stable solid electrolyte interfaces (SEI) on the anode side and reducing overpotential during charging. Additives in liquid organic electrolytes are also discussed. Redox mediators and singlet oxygen quenchers are discussed as representative additives, showcasing their significance in Li-O2 batteries. Redox mediators can influence the reaction mechanism, leading to lower overpotentials in both discharge and charge processes and increased capacity. Notably, classical redox mediators like LiI are introduced, and criteria for selecting appropriate redox mediators are outlined. On the other hand, singlet oxygen quenchers convert aggressive singlet oxygen into harmless triplet oxygen, thereby suppressing unwanted side reactions in Li-O2 batteries. The mechanism behind singlet oxygen generation is also addressed. In summary, this review aims to provide a comprehensive overview of the progress in liquid organic electrolytes for Li-O2 batteries. It highlights the need for better electrolyte design by addressing various aspects such as solvents, lithium salts, and additives. This comprehensive understanding will guide future research efforts towards developing more stable and efficient electrolytes for Li-O2 batteries, thereby advancing their practical applicability.
-
Keywords:
- Li-O2 battery,
- Liquid organic electrolyte,
- Solvent,
- Li salt,
- Additive
-
-
[1]
(1) Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. doi:10.1039/c7cs00863e
-
[2]
(2) Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi:10.1021/cr500062v
-
[3]
(3) Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Chem. Rev. 2014, 114, 5611. doi:10.1021/cr400573b
-
[4]
(4) Chen, K.; Yang, D. Y.; Huang, G.; Zhang, X. B. Acc. Chem. Res. 2021, 54, 632. doi:10.1021/acs.accounts.0c00772
-
[5]
(5) Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A.; et al. Chem. Rev. 2020, 120, 6626. doi:10.1021/acs.chemrev.9b00609
-
[6]
(6) Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G. Angew. Chem. Int. Ed. 2011, 50, 8609. doi:10.1002/anie.201102357
-
[7]
(7) Liu, T.; Leskes, M.; Yu, W.; Moore, A. J.; Zhou, L.; Bayley, P. M.; Kim, G.; Grey, C. P. Science 2015, 350, 530. doi:10.1126/science.aac7730
-
[8]
(8) Lu, J.; Lee, Y. J.; Luo, X.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J.; Zhai, D.; Chen, Z.; et al. Nature 2016, 529, 377. doi:10.1038/nature16484
-
[9]
(9) Xia, C.; Kwok, C. Y.; Nazar, L. F. Science 2018, 361, 777. doi:10.1126/science.aas9343
-
[10]
(10) Chen, Y.; Xu, J.; He, P.; Qiao, Y.; Guo, S.; Yang, H.; Zhou, H. Sci. Bull. 2022, 67, 2449. doi:10.1016/j.scib.2022.11.027
-
[11]
(11) Luntz, A. C.; McCloskey, B. D. Nat. Energy 2017, 2, 17056. doi:10.1038/nenergy.2017.56
-
[12]
(12) Zhang, P.; Ding, M.; Li, X.; Li, C.; Li, Z.; Yin, L. Adv. Energy Mater. 2020, 10, 2001789. doi:10.1002/aenm.202001789
-
[13]
(13) Li, Y.; Wang, X.; Dong, S.; Chen, X.; Cui, G. Adv. Energy Mater. 2016, 6, 1600751. doi:10.1002/aenm.201600751
-
[14]
(14) Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. Nature 2021, 592, 551. doi:10.1038/s41586-021-03410-9
-
[15]
(15) Wu, X.; Li, Z.; Song, C.; Chen, L.; Dai, P.; Zhang, P.; Qiao, Y.; Huang, L.; Sun, S.-G. ACS Mater. Lett. 2022, 4, 682. doi:10.1021/acsmaterialslett.1c00756
-
[16]
(16) Liang, Z. J.; Wang, W. W.; Lu, Y.-C. Joule 2022, 6, 2458. doi:10.1016/j.joule.2022.10.008
-
[17]
(17) Yao, X.; Dong, Q.; Cheng, Q.; Wang, D. Angew. Chem. Int. Ed. 2016, 55, 11344. doi:10.1002/anie.201601783
-
[18]
(18) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. doi:10.1038/nchem.1646
-
[19]
(19) Sun, Z.; Lin, X.; Wang, C.; Hu, A.; Hou, Q.; Tan, Y.; Dou, W.; Yuan, R.; Zheng, M.; Dong, Q. Angew. Chem. Int. Ed. 2022, 61, e202207570. doi:10.1002/anie.202207570
-
[20]
(20) Guo, H.; Luo, W.; Chen, J.; Chou, S.; Liu, H.; Wang, J. Adv. Sustain. Syst. 2018, 2, 1700183 doi:10.1002/adsu.201700183
-
[21]
(21) McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Mori, T.; Scheffler, R.; Speidel, A.; Sherwood, M.; Luntz, A. C. J. Phys. Chem. Lett. 2012, 3, 3043. doi:10.1021/jz301359t
-
[22]
(22) Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R. A. Angew. Chem. Int. Ed. 2016, 55, 6892. doi:10.1002/anie.201602142
-
[23]
(23) Petit, Y. K.; Mourad, E.; Prehal, C.; Leypold, C.; Windischbacher, A.; Mijailovic, D.; Slugovc, C.; Borisov, S. M.; Zojer, E.; Brutti, S.; et al. Nat. Chem. 2021, 13, 465. doi:10.1038/s41557-021-00643-z
-
[24]
(24) Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; et al. Nat. Energy 2017, 2, 17036. doi:10.1038/nenergy.2017.36
-
[25]
(25) McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. Lett. 2011, 2, 1161. doi:10.1021/jz200352v
-
[26]
(26) Xu, K. Chem. Rev. 2004, 104, 4303. doi:10.1021/cr030203g
-
[27]
(27) Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390. doi:10.1021/ja056811q
-
[28]
(28) Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. Electrochemistry 2010, 78, 403. doi:10.5796/electrochemistry.78.403
-
[29]
(29) Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Barde, F.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133, 8040. doi:10.1021/ja2021747
-
[30]
(30) Veith, G. M.; Dudney, N. J.; Howe, J.; Nanda, J. J. Phys. Chem. C 2011, 115, 14325. doi:10.1021/jp2043015
-
[31]
(31) Chen, K.; Du, J. Y.; Wang, J.; Yang, D. Y.; Chu, J. W.; Chen, H.; Zhang, H. R.; Huang, G.; Zhang, X. B. Chin. J. Chem. 2022, 41, 314. doi:10.1002/cjoc.202200498
-
[32]
(32) Peng, Z.; Freunberger, S. A.; Chen, Y.; Bruce, P. G. Science 2012, 337, 563. doi:10.1126/science.1223985
-
[33]
(33) Xu, D.; Wang, Z. L.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Chem. Commun. 2012, 48, 6948. doi:10.1039/c2cc32844e
-
[34]
(34) Mozhzhukhina, N.; Méndez De Leo, L. P.; Calvo, E. J. J. Phys. Chem. C 2013, 117, 18375. doi:10.1021/jp407221c
-
[35]
(35) Feng, S.; Huang, M.; Lamb, J. R.; Zhang, W.; Tatara, R.; Zhang, Y.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Chem 2019, 5, 2630. doi:10.1016/j.chempr.2019.07.003
-
[36]
(36) Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater. 2022, 5, 4404. doi:10.1021/acsaem.1c03999
-
[37]
(37) Lee, H.; Lee, D. J.; Lee, J.-N.; Song, J.; Lee, Y.; Ryou, M.-H.; Park, J.-K.; Lee, Y. M. Electrochim. Acta 2014, 123, 419. doi:10.1016/j.electacta.2014.01.042
-
[38]
(38) Lai, J.; Xing, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Angew. Chem. Int. Ed. 2020, 59, 2974. doi:10.1002/anie.201903459
-
[39]
(39) Wu, Z.; Tian, Y.; Chen, H.; Wang, L.; Qian, S.; Wu, T.; Zhang, S.; Lu, J. Chem. Soc. Rev. 2022, 51, 8045. doi:10.1039/d2cs00003b
-
[40]
(40) Read, J. J. Electrochem. Soc. 2006, 153, A96. doi:10.1149/1.2131827
-
[41]
(41) Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. Nat. Chem. 2012, 4, 579. doi:10.1038/nchem.1376
-
[42]
(42) Qiao, L.; Judez, X.; Rojo, T.; Armand, M.; Zhang, H. J. Electrochem. Soc. 2020, 167, 070534. doi:10.1149/1945-7111/ab7aa0
-
[43]
(43) Sharon, D.; Hirshberg, D.; Afri, M.; Frimer, A. A.; Aurbach, D. Chem. Commun. 2017, 53, 3269. doi:10.1039/c6cc09086a
-
[44]
(44) Bryantsev, V. S.; Faglioni, F. J. Phys. Chem. A 2012, 116, 7128. doi:10.1021/jp301537w
-
[45]
(45) Adams, B. D.; Black, R.; Williams, Z.; Fernandes, R.; Cuisinier, M.; Berg, E. J.; Novak, P.; Murphy, G. K.; Nazar, L. F. Adv. Energy Mater. 2015, 5, 1400867. doi:10.1002/aenm.201400867
-
[46]
(46) Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 882. doi:10.1038/nmat4629
-
[47]
(47) Lai, J.; Liu, H.; Xing, Y.; Zhao, L.; Shang, Y.; Huang, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Adv. Funct. Mater. 2021, 31, 2101831. doi:10.1002/adfm.202101831
-
[48]
(48) Bryantsev, V. S.; Giordani, V.; Walker, W.; Blanco, M.; Zecevic, S.; Sasaki, K.; Uddin, J.; Addison, D.; Chase, G. V. J. Phys. Chem. A 2011, 115, 12399. doi:10.1021/jp2073914
-
[49]
(49) Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. J. Am. Chem. Soc. 2013, 135, 2076. doi:10.1021/ja311518s
-
[50]
(50) Yu, Y.; Huang, G.; Du, J.-Y.; Wang, J.-Z.; Wang, Y.; Wu, Z.-J.; Zhang, X.-B. Energy Environ. Sci. 2020, 13, 3075. doi:10.1039/d0ee01897j
-
[51]
(51) Kuboki, T.; Okuyama, T.; Ohsaki, T.; Takami, N. J. Power Sources 2005, 146, 766. doi:10.1016/j.jpowsour.2005.03.082
-
[52]
(52) Elia, G. A.; Hassoun, J.; Kwak, W. J.; Sun, Y. K.; Scrosati, B.; Mueller, F.; Bresser, D.; Passerini, S.; Oberhumer, P.; Tsiouvaras, N.; et al. Nano Lett. 2014, 14, 6572. doi:10.1021/nl5031985
-
[53]
(53) Xie, J.; Dong, Q.; Madden, I.; Yao, X.; Cheng, Q.; Dornath, P.; Fan, W.; Wang, D. Nano Lett. 2015, 15, 8371. doi:10.1021/acs.nanolett.5b04097
-
[54]
(54) Cai, Y.; Hou, Y.; Lu, Y.; Zhang, Q.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2023, e202218014. doi:10.1002/anie.202218014
-
[55]
(55) Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Chem. Rev. 2021, 121, 1232. doi:10.1021/acs.chemrev.0c00385
-
[56]
(56) Geng, L.; Wang, X.; Han, K.; Hu, P.; Zhou, L.; Zhao, Y.; Luo, W.; Mai, L. ACS Energy Lett. 2021, 7, 247. doi:10.1021/acsenergylett.1c02088
-
[57]
(57) Li, C. L.; Huang, G.; Yu, Y.; Xiong, Q.; Yan, J. M.; Zhang, X. B. J. Am. Chem. Soc. 2022, 144, 5827. doi:10.1021/jacs.1c11711
-
[58]
(58) Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178. doi:10.1021/jp102019y
-
[59]
(59) Xu, D.; Wang, Z. L.; Xu, J. J.; Zhang, L. L.; Wang, L. M.; Zhang, X. B. Chem. Commun. 2012, 48, 11674. doi:10.1039/c2cc36815c
-
[60]
(60) Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M. Phys. Chem. Chem. Phys. 2013, 15, 20054. doi:10.1039/c3cp53406e
-
[61]
(61) Sharon, D.; Hirsberg, D.; Salama, M.; Afri, M.; Frimer, A. A.; Noked, M.; Kwak, W.; Sun, Y. K.; Aurbach, D. ACS Appl. Mater. Interfaces 2016, 8, 5300. doi:10.1021/acsami.5b11483
-
[62]
(62) Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 9293. doi:10.1073/pnas.1505728112
-
[63]
(63) Oswald, S.; Mikhailova, D.; Scheiba, F.; Reichel, P.; Fiedler, A.; Ehrenberg, H. Anal. Bioanal. Chem. 2011, 400, 691. doi:10.1007/s00216-010-4646-z
-
[64]
(64) Sharon, D.; Hirsberg, D.; Afri, M.; Chesneau, F.; Lavi, R.; Frimer, A. A.; Sun, Y. K.; Aurbach, D. ACS Appl. Mater. Interfaces 2015, 7, 16590. doi:10.1021/acsami.5b04145
-
[65]
(65) Rosy; Akabayov, S.; Leskes, M.; Noked, M. ACS Appl. Mater. Interfaces 2018, 10, 29622. doi:10.1021/acsami.8b10054
-
[66]
(66) Tong, B.; Huang, J.; Zhou, Z.; Peng, Z. Adv. Mater. 2018, 30, 1704841. doi:10.1002/adma.201704841
-
[67]
(67) Xiong, Q.; Huang, G.; Yu, Y.; Li, C. L.; Li, J. C.; Yan, J. M.; Zhang, X. B. Angew. Chem. Int. Ed. 2022, 61, e202116635. doi:10.1002/anie.202116635
-
[68]
(68) Dou, Y.; Xie, Z.; Wei, Y.; Peng, Z.; Zhou, Z. Natl. Sci. Rev. 2022, 9, nwac040. doi:10.1093/nsr/nwac040
-
[69]
(69) Bergner, B. J.; Schurmann, A.; Peppler, K.; Garsuch, A.; Janek, J. J. Am. Chem. Soc. 2014, 136, 15054. doi:10.1021/ja508400m
-
[70]
(70) Gao, X.; Chen, Y.; Johnson, L. R.; Jovanov, Z. P.; Bruce, P. G. Nat. Energy 2017, 2, 17118. doi:10.1038/nenergy.2017.118
-
[71]
(71) Zhang, C.; Dandu, N.; Rastegar, S.; Misal, S. N.; Hemmat, Z.; Ngo, A. T.; Curtiss, L. A.; Salehi-Khojin, A. Adv. Energy Mater. 2020, 10, 2000201. doi:10.1002/aenm.202000201
-
[72]
(72) Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; et al. Angew. Chem. Int. Ed. 2014, 53, 3926. doi:10.1002/anie.201400711
-
[73]
(73) Kwak, W. J.; Hirshberg, D.; Sharon, D.; Shin, H. J.; Afri, M.; Park, J. B.; Garsuch, A.; Chesneau, F. F.; Frimer, A. A.; Aurbach, D.; et al. J. Mater. Chem. A 2015, 3, 8855. doi:10.1039/c5ta01399b
-
[74]
(74) Burke, C. M.; Black, R.; Kochetkov, I. R.; Giordani, V.; Addison, D.; Nazar, L. F.; McCloskey, B. D. ACS Energy Lett. 2016, 1, 747. doi:10.1021/acsenergylett.6b00328
-
[75]
(75) Tułodziecki, M.; Leverick, G. M.; Amanchukwu, C. V.; Katayama, Y.; Kwabi, D. G.; Bardé, F.; Hammond, P. T.; Shao-Horn, Y. Energy Environ. Sci. 2017, 10, 1828. doi:10.1039/c7ee00954b
-
[76]
(76) Liu, T.; Kim, G.; Jónsson, E.; Castillo-Martinez, E.; Temprano, I.; Shao, Y.; Carretero-González, J.; Kerber, R. N.; Grey, C. P. ACS Catal. 2018, 9, 66. doi:10.1021/acscatal.8b02783
-
[77]
(77) Wang, A.; Wu, X.; Zou, Z.; Qiao, Y.; Wang, D.; Xing, L.; Chen, Y.; Lin, Y.; Avdeev, M.; Shi, S. Angew. Chem. Int. Ed. 2023, e202217354. doi:10.1002/anie.202217354
-
[78]
(78) Kwak, W. J.; Kim, H.; Petit, Y. K.; Leypold, C.; Nguyen, T. T.; Mahne, N.; Redfern, P.; Curtiss, L. A.; Jung, H. G.; Borisov, S. M.; et al. Nat. Commun. 2019, 10, 1380. doi:10.1038/s41467-019-09399-0
-
[79]
(79) Kwak, W.-J.; Freunberger, S. A.; Kim, H.; Park, J.; Nguyen, T. T.; Jung, H.-G.; Byon, H. R.; Sun, Y.-K. ACS Catal. 2019, 9, 9914. doi:10.1021/acscatal.9b01337
-
[80]
(80) Chen, Y.; Gao, X.; Johnson, L. R.; Bruce, P. G. Nat. Commun. 2018, 9, 767. doi:10.1038/s41467-018-03204-0
-
[81]
(81) Cao, D.; Shen, X.; Wang, A.; Yu, F.; Wu, Y.; Shi, S.; Freunberger, S. A.; Chen, Y. Nat. Catal. 2022, 5, 193. doi:10.1038/s41929-022-00752-z
-
[82]
(82) Ahn, S.; Zor, C.; Yang, S.; Lagnoni, M.; Dewar, D.; Nimmo, T.; Chau, C.; Jenkins, M.; Kibler, A. J.; Pateman, A.; et al. Nat. Chem. 2023, 15, 1022. doi:10.1038/s41557-023-01203-3
-
[83]
(83) Schurmann, A.; Luerssen, B.; Mollenhauer, D.; Janek, J.; Schroder, D. Chem. Rev. 2021, 121, 12445. doi:10.1021/acs.chemrev.1c00139
-
[84]
(84) Hassoun, J.; Croce, F.; Armand, M.; Scrosati, B. Angew. Chem. 2011, 123, 3055. doi:10.1002/ange.201006264
-
[85]
(85) Mahne, N.; Renfrew, S. E.; McCloskey, B. D.; Freunberger, S. A. Angew. Chem. Int. Ed. 2018, 57, 5529. doi:10.1002/anie.201802277
-
[86]
(86) Mourad, E.; Petit, Y. K.; Spezia, R.; Samojlov, A.; Summa, F. F.; Prehal, C.; Leypold, C.; Mahne, N.; Slugovc, C.; Fontaine, O.; et al. Energy Environ. Sci. 2019, 12, 2559. doi:10.1039/c9ee01453e
-
[87]
(87) Dong, S.; Yang, S.; Chen, Y.; Kuss, C.; Cui, G.; Johnson, L. R.; Gao, X.; Bruce, P. G. Joule 2022, 6, 185. doi:10.1016/j.joule.2021.12.012
-
[88]
(88) Petit, Y. K.; Leypold, C.; Mahne, N.; Mourad, E.; Schafzahl, L.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Angew. Chem. Int. Ed. 2019, 58, 6535. doi:10.1002/anie.201901869
-
[89]
(89) Liang, Z.; Zou, Q.; Xie, J.; Lu, Y.-C. Energy Environ. Sci. 2020, 13, 2870. doi:10.1039/d0ee01114b
-
[90]
(90) Jiang, Z.; Huang, Y.; Zhu, Z.; Gao, S.; Lv, Q.; Li, F. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2202835119. doi:10.1073/pnas.2202835119
-
[91]
-
[92]
(92) Kwak, W.-J.; Chae, S.; Feng, R.; Gao, P.; Read, J.; Engelhard, M. H.; Zhong, L.; Xu, W.; Zhang, J.-G. ACS Energy Lett. 2020, 5, 2182. doi:10.1021/acsenergylett.0c00809
-
[1]
-
-
[1]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[2]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[3]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[4]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[5]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[6]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[7]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[8]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[9]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[10]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[11]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[12]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[13]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[14]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[15]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[16]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[17]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[18]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[19]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[20]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(86)
- HTML views(1)