Citation: Hao Chen,  Dongyue Yang,  Gang Huang,  Xinbo Zhang. Progress on Liquid Organic Electrolytes of Li-O2 Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230505. doi: 10.3866/PKU.WHXB202305059 shu

Progress on Liquid Organic Electrolytes of Li-O2 Batteries

  • Corresponding author: Gang Huang,  Xinbo Zhang, 
  • Received Date: 31 May 2023
    Revised Date: 17 August 2023
    Accepted Date: 26 August 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2020YFE0204500, 2021YFF0500600), the National Natural Science Foundation of China (52171194, 52271140), the CAS Project for Young Scientists in Basic Research (YSBR-058), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2020230, 2021223), and the Changchun Science and Technology Development Plan Funding Project (21ZY06).

  • Li-O2 batteries have garnered significant attention due to their ultrahigh theoretical energy density, comparable to that of gasoline. However, despite this promise, several challenges have hindered the commercial application of Li-O2 batteries. These challenges include poor reversibility, unsatisfactory cycling duration, and high overpotential during battery operation. The key factor behind the poor reversibility of current Li-O2 batteries is the occurrence of side reactions between various battery components and discharge products or intermediates. The electrolyte, an essential component in Li-O2 batteries, plays a crucial role in charge transport and mass transfer within the battery. Among the available electrolytes used in Li-O2 batteries, liquid organic electrolytes have been predominantly investigated as potential options. However, they suffer from insufficient chemical and electrochemical stability, which contributes to the overall poor reversibility. Substantial progress has been made in understanding the factors that lead to the degradation of liquid organic electrolytes and in enhancing their stability. However, there is still a need for more significant improvements to achieve practical performance. This review comprehensively introduces the development of liquid organic electrolytes for Li-O2 batteries, focusing on solvents, lithium salts, and additives. It outlines the specific requirements of electrolytes for Li-O2 batteries and highlights the importance of reducing charge overpotentials as a critical strategy to mitigate both electrochemical and chemical degradation. The review proceeds to detail the composition of liquid organic electrolytes, beginning with solvents. Carbonates, ethers, amides, and ionic liquids are discussed, along with their respective advantages, disadvantages, and strategies to overcome limitations. The role of lithium salts is then examined, with an emphasis on the relationship between the properties of lithium salts, such as donor number and anion polarity, and electrolyte performance. Some lithium salts are highlighted for their additional functions, such as forming stable solid electrolyte interfaces (SEI) on the anode side and reducing overpotential during charging. Additives in liquid organic electrolytes are also discussed. Redox mediators and singlet oxygen quenchers are discussed as representative additives, showcasing their significance in Li-O2 batteries. Redox mediators can influence the reaction mechanism, leading to lower overpotentials in both discharge and charge processes and increased capacity. Notably, classical redox mediators like LiI are introduced, and criteria for selecting appropriate redox mediators are outlined. On the other hand, singlet oxygen quenchers convert aggressive singlet oxygen into harmless triplet oxygen, thereby suppressing unwanted side reactions in Li-O2 batteries. The mechanism behind singlet oxygen generation is also addressed. In summary, this review aims to provide a comprehensive overview of the progress in liquid organic electrolytes for Li-O2 batteries. It highlights the need for better electrolyte design by addressing various aspects such as solvents, lithium salts, and additives. This comprehensive understanding will guide future research efforts towards developing more stable and efficient electrolytes for Li-O2 batteries, thereby advancing their practical applicability.
  • 加载中
    1. [1]

      (1) Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. doi:10.1039/c7cs00863e

    2. [2]

      (2) Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi:10.1021/cr500062v

    3. [3]

      (3) Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Chem. Rev. 2014, 114, 5611. doi:10.1021/cr400573b

    4. [4]

      (4) Chen, K.; Yang, D. Y.; Huang, G.; Zhang, X. B. Acc. Chem. Res. 2021, 54, 632. doi:10.1021/acs.accounts.0c00772

    5. [5]

      (5) Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A.; et al. Chem. Rev. 2020, 120, 6626. doi:10.1021/acs.chemrev.9b00609

    6. [6]

      (6) Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G. Angew. Chem. Int. Ed. 2011, 50, 8609. doi:10.1002/anie.201102357

    7. [7]

      (7) Liu, T.; Leskes, M.; Yu, W.; Moore, A. J.; Zhou, L.; Bayley, P. M.; Kim, G.; Grey, C. P. Science 2015, 350, 530. doi:10.1126/science.aac7730

    8. [8]

      (8) Lu, J.; Lee, Y. J.; Luo, X.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J.; Zhai, D.; Chen, Z.; et al. Nature 2016, 529, 377. doi:10.1038/nature16484

    9. [9]

      (9) Xia, C.; Kwok, C. Y.; Nazar, L. F. Science 2018, 361, 777. doi:10.1126/science.aas9343

    10. [10]

      (10) Chen, Y.; Xu, J.; He, P.; Qiao, Y.; Guo, S.; Yang, H.; Zhou, H. Sci. Bull. 2022, 67, 2449. doi:10.1016/j.scib.2022.11.027

    11. [11]

      (11) Luntz, A. C.; McCloskey, B. D. Nat. Energy 2017, 2, 17056. doi:10.1038/nenergy.2017.56

    12. [12]

      (12) Zhang, P.; Ding, M.; Li, X.; Li, C.; Li, Z.; Yin, L. Adv. Energy Mater. 2020, 10, 2001789. doi:10.1002/aenm.202001789

    13. [13]

      (13) Li, Y.; Wang, X.; Dong, S.; Chen, X.; Cui, G. Adv. Energy Mater. 2016, 6, 1600751. doi:10.1002/aenm.201600751

    14. [14]

      (14) Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. Nature 2021, 592, 551. doi:10.1038/s41586-021-03410-9

    15. [15]

      (15) Wu, X.; Li, Z.; Song, C.; Chen, L.; Dai, P.; Zhang, P.; Qiao, Y.; Huang, L.; Sun, S.-G. ACS Mater. Lett. 2022, 4, 682. doi:10.1021/acsmaterialslett.1c00756

    16. [16]

      (16) Liang, Z. J.; Wang, W. W.; Lu, Y.-C. Joule 2022, 6, 2458. doi:10.1016/j.joule.2022.10.008

    17. [17]

      (17) Yao, X.; Dong, Q.; Cheng, Q.; Wang, D. Angew. Chem. Int. Ed. 2016, 55, 11344. doi:10.1002/anie.201601783

    18. [18]

      (18) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. doi:10.1038/nchem.1646

    19. [19]

      (19) Sun, Z.; Lin, X.; Wang, C.; Hu, A.; Hou, Q.; Tan, Y.; Dou, W.; Yuan, R.; Zheng, M.; Dong, Q. Angew. Chem. Int. Ed. 2022, 61, e202207570. doi:10.1002/anie.202207570

    20. [20]

      (20) Guo, H.; Luo, W.; Chen, J.; Chou, S.; Liu, H.; Wang, J. Adv. Sustain. Syst. 2018, 2, 1700183 doi:10.1002/adsu.201700183

    21. [21]

      (21) McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Mori, T.; Scheffler, R.; Speidel, A.; Sherwood, M.; Luntz, A. C. J. Phys. Chem. Lett. 2012, 3, 3043. doi:10.1021/jz301359t

    22. [22]

      (22) Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R. A. Angew. Chem. Int. Ed. 2016, 55, 6892. doi:10.1002/anie.201602142

    23. [23]

      (23) Petit, Y. K.; Mourad, E.; Prehal, C.; Leypold, C.; Windischbacher, A.; Mijailovic, D.; Slugovc, C.; Borisov, S. M.; Zojer, E.; Brutti, S.; et al. Nat. Chem. 2021, 13, 465. doi:10.1038/s41557-021-00643-z

    24. [24]

      (24) Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; et al. Nat. Energy 2017, 2, 17036. doi:10.1038/nenergy.2017.36

    25. [25]

      (25) McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. Lett. 2011, 2, 1161. doi:10.1021/jz200352v

    26. [26]

      (26) Xu, K. Chem. Rev. 2004, 104, 4303. doi:10.1021/cr030203g

    27. [27]

      (27) Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390. doi:10.1021/ja056811q

    28. [28]

      (28) Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. Electrochemistry 2010, 78, 403. doi:10.5796/electrochemistry.78.403

    29. [29]

      (29) Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Barde, F.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133, 8040. doi:10.1021/ja2021747

    30. [30]

      (30) Veith, G. M.; Dudney, N. J.; Howe, J.; Nanda, J. J. Phys. Chem. C 2011, 115, 14325. doi:10.1021/jp2043015

    31. [31]

      (31) Chen, K.; Du, J. Y.; Wang, J.; Yang, D. Y.; Chu, J. W.; Chen, H.; Zhang, H. R.; Huang, G.; Zhang, X. B. Chin. J. Chem. 2022, 41, 314. doi:10.1002/cjoc.202200498

    32. [32]

      (32) Peng, Z.; Freunberger, S. A.; Chen, Y.; Bruce, P. G. Science 2012, 337, 563. doi:10.1126/science.1223985

    33. [33]

      (33) Xu, D.; Wang, Z. L.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Chem. Commun. 2012, 48, 6948. doi:10.1039/c2cc32844e

    34. [34]

      (34) Mozhzhukhina, N.; Méndez De Leo, L. P.; Calvo, E. J. J. Phys. Chem. C 2013, 117, 18375. doi:10.1021/jp407221c

    35. [35]

      (35) Feng, S.; Huang, M.; Lamb, J. R.; Zhang, W.; Tatara, R.; Zhang, Y.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Chem 2019, 5, 2630. doi:10.1016/j.chempr.2019.07.003

    36. [36]

      (36) Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater. 2022, 5, 4404. doi:10.1021/acsaem.1c03999

    37. [37]

      (37) Lee, H.; Lee, D. J.; Lee, J.-N.; Song, J.; Lee, Y.; Ryou, M.-H.; Park, J.-K.; Lee, Y. M. Electrochim. Acta 2014, 123, 419. doi:10.1016/j.electacta.2014.01.042

    38. [38]

      (38) Lai, J.; Xing, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Angew. Chem. Int. Ed. 2020, 59, 2974. doi:10.1002/anie.201903459

    39. [39]

      (39) Wu, Z.; Tian, Y.; Chen, H.; Wang, L.; Qian, S.; Wu, T.; Zhang, S.; Lu, J. Chem. Soc. Rev. 2022, 51, 8045. doi:10.1039/d2cs00003b

    40. [40]

      (40) Read, J. J. Electrochem. Soc. 2006, 153, A96. doi:10.1149/1.2131827

    41. [41]

      (41) Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. Nat. Chem. 2012, 4, 579. doi:10.1038/nchem.1376

    42. [42]

      (42) Qiao, L.; Judez, X.; Rojo, T.; Armand, M.; Zhang, H. J. Electrochem. Soc. 2020, 167, 070534. doi:10.1149/1945-7111/ab7aa0

    43. [43]

      (43) Sharon, D.; Hirshberg, D.; Afri, M.; Frimer, A. A.; Aurbach, D. Chem. Commun. 2017, 53, 3269. doi:10.1039/c6cc09086a

    44. [44]

      (44) Bryantsev, V. S.; Faglioni, F. J. Phys. Chem. A 2012, 116, 7128. doi:10.1021/jp301537w

    45. [45]

      (45) Adams, B. D.; Black, R.; Williams, Z.; Fernandes, R.; Cuisinier, M.; Berg, E. J.; Novak, P.; Murphy, G. K.; Nazar, L. F. Adv. Energy Mater. 2015, 5, 1400867. doi:10.1002/aenm.201400867

    46. [46]

      (46) Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 882. doi:10.1038/nmat4629

    47. [47]

      (47) Lai, J.; Liu, H.; Xing, Y.; Zhao, L.; Shang, Y.; Huang, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Adv. Funct. Mater. 2021, 31, 2101831. doi:10.1002/adfm.202101831

    48. [48]

      (48) Bryantsev, V. S.; Giordani, V.; Walker, W.; Blanco, M.; Zecevic, S.; Sasaki, K.; Uddin, J.; Addison, D.; Chase, G. V. J. Phys. Chem. A 2011, 115, 12399. doi:10.1021/jp2073914

    49. [49]

      (49) Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. J. Am. Chem. Soc. 2013, 135, 2076. doi:10.1021/ja311518s

    50. [50]

      (50) Yu, Y.; Huang, G.; Du, J.-Y.; Wang, J.-Z.; Wang, Y.; Wu, Z.-J.; Zhang, X.-B. Energy Environ. Sci. 2020, 13, 3075. doi:10.1039/d0ee01897j

    51. [51]

      (51) Kuboki, T.; Okuyama, T.; Ohsaki, T.; Takami, N. J. Power Sources 2005, 146, 766. doi:10.1016/j.jpowsour.2005.03.082

    52. [52]

      (52) Elia, G. A.; Hassoun, J.; Kwak, W. J.; Sun, Y. K.; Scrosati, B.; Mueller, F.; Bresser, D.; Passerini, S.; Oberhumer, P.; Tsiouvaras, N.; et al. Nano Lett. 2014, 14, 6572. doi:10.1021/nl5031985

    53. [53]

      (53) Xie, J.; Dong, Q.; Madden, I.; Yao, X.; Cheng, Q.; Dornath, P.; Fan, W.; Wang, D. Nano Lett. 2015, 15, 8371. doi:10.1021/acs.nanolett.5b04097

    54. [54]

      (54) Cai, Y.; Hou, Y.; Lu, Y.; Zhang, Q.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2023, e202218014. doi:10.1002/anie.202218014

    55. [55]

      (55) Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Chem. Rev. 2021, 121, 1232. doi:10.1021/acs.chemrev.0c00385

    56. [56]

      (56) Geng, L.; Wang, X.; Han, K.; Hu, P.; Zhou, L.; Zhao, Y.; Luo, W.; Mai, L. ACS Energy Lett. 2021, 7, 247. doi:10.1021/acsenergylett.1c02088

    57. [57]

      (57) Li, C. L.; Huang, G.; Yu, Y.; Xiong, Q.; Yan, J. M.; Zhang, X. B. J. Am. Chem. Soc. 2022, 144, 5827. doi:10.1021/jacs.1c11711

    58. [58]

      (58) Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178. doi:10.1021/jp102019y

    59. [59]

      (59) Xu, D.; Wang, Z. L.; Xu, J. J.; Zhang, L. L.; Wang, L. M.; Zhang, X. B. Chem. Commun. 2012, 48, 11674. doi:10.1039/c2cc36815c

    60. [60]

      (60) Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M. Phys. Chem. Chem. Phys. 2013, 15, 20054. doi:10.1039/c3cp53406e

    61. [61]

      (61) Sharon, D.; Hirsberg, D.; Salama, M.; Afri, M.; Frimer, A. A.; Noked, M.; Kwak, W.; Sun, Y. K.; Aurbach, D. ACS Appl. Mater. Interfaces 2016, 8, 5300. doi:10.1021/acsami.5b11483

    62. [62]

      (62) Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 9293. doi:10.1073/pnas.1505728112

    63. [63]

      (63) Oswald, S.; Mikhailova, D.; Scheiba, F.; Reichel, P.; Fiedler, A.; Ehrenberg, H. Anal. Bioanal. Chem. 2011, 400, 691. doi:10.1007/s00216-010-4646-z

    64. [64]

      (64) Sharon, D.; Hirsberg, D.; Afri, M.; Chesneau, F.; Lavi, R.; Frimer, A. A.; Sun, Y. K.; Aurbach, D. ACS Appl. Mater. Interfaces 2015, 7, 16590. doi:10.1021/acsami.5b04145

    65. [65]

      (65) Rosy; Akabayov, S.; Leskes, M.; Noked, M. ACS Appl. Mater. Interfaces 2018, 10, 29622. doi:10.1021/acsami.8b10054

    66. [66]

      (66) Tong, B.; Huang, J.; Zhou, Z.; Peng, Z. Adv. Mater. 2018, 30, 1704841. doi:10.1002/adma.201704841

    67. [67]

      (67) Xiong, Q.; Huang, G.; Yu, Y.; Li, C. L.; Li, J. C.; Yan, J. M.; Zhang, X. B. Angew. Chem. Int. Ed. 2022, 61, e202116635. doi:10.1002/anie.202116635

    68. [68]

      (68) Dou, Y.; Xie, Z.; Wei, Y.; Peng, Z.; Zhou, Z. Natl. Sci. Rev. 2022, 9, nwac040. doi:10.1093/nsr/nwac040

    69. [69]

      (69) Bergner, B. J.; Schurmann, A.; Peppler, K.; Garsuch, A.; Janek, J. J. Am. Chem. Soc. 2014, 136, 15054. doi:10.1021/ja508400m

    70. [70]

      (70) Gao, X.; Chen, Y.; Johnson, L. R.; Jovanov, Z. P.; Bruce, P. G. Nat. Energy 2017, 2, 17118. doi:10.1038/nenergy.2017.118

    71. [71]

      (71) Zhang, C.; Dandu, N.; Rastegar, S.; Misal, S. N.; Hemmat, Z.; Ngo, A. T.; Curtiss, L. A.; Salehi-Khojin, A. Adv. Energy Mater. 2020, 10, 2000201. doi:10.1002/aenm.202000201

    72. [72]

      (72) Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; et al. Angew. Chem. Int. Ed. 2014, 53, 3926. doi:10.1002/anie.201400711

    73. [73]

      (73) Kwak, W. J.; Hirshberg, D.; Sharon, D.; Shin, H. J.; Afri, M.; Park, J. B.; Garsuch, A.; Chesneau, F. F.; Frimer, A. A.; Aurbach, D.; et al. J. Mater. Chem. A 2015, 3, 8855. doi:10.1039/c5ta01399b

    74. [74]

      (74) Burke, C. M.; Black, R.; Kochetkov, I. R.; Giordani, V.; Addison, D.; Nazar, L. F.; McCloskey, B. D. ACS Energy Lett. 2016, 1, 747. doi:10.1021/acsenergylett.6b00328

    75. [75]

      (75) Tułodziecki, M.; Leverick, G. M.; Amanchukwu, C. V.; Katayama, Y.; Kwabi, D. G.; Bardé, F.; Hammond, P. T.; Shao-Horn, Y. Energy Environ. Sci. 2017, 10, 1828. doi:10.1039/c7ee00954b

    76. [76]

      (76) Liu, T.; Kim, G.; Jónsson, E.; Castillo-Martinez, E.; Temprano, I.; Shao, Y.; Carretero-González, J.; Kerber, R. N.; Grey, C. P. ACS Catal. 2018, 9, 66. doi:10.1021/acscatal.8b02783

    77. [77]

      (77) Wang, A.; Wu, X.; Zou, Z.; Qiao, Y.; Wang, D.; Xing, L.; Chen, Y.; Lin, Y.; Avdeev, M.; Shi, S. Angew. Chem. Int. Ed. 2023, e202217354. doi:10.1002/anie.202217354

    78. [78]

      (78) Kwak, W. J.; Kim, H.; Petit, Y. K.; Leypold, C.; Nguyen, T. T.; Mahne, N.; Redfern, P.; Curtiss, L. A.; Jung, H. G.; Borisov, S. M.; et al. Nat. Commun. 2019, 10, 1380. doi:10.1038/s41467-019-09399-0

    79. [79]

      (79) Kwak, W.-J.; Freunberger, S. A.; Kim, H.; Park, J.; Nguyen, T. T.; Jung, H.-G.; Byon, H. R.; Sun, Y.-K. ACS Catal. 2019, 9, 9914. doi:10.1021/acscatal.9b01337

    80. [80]

      (80) Chen, Y.; Gao, X.; Johnson, L. R.; Bruce, P. G. Nat. Commun. 2018, 9, 767. doi:10.1038/s41467-018-03204-0

    81. [81]

      (81) Cao, D.; Shen, X.; Wang, A.; Yu, F.; Wu, Y.; Shi, S.; Freunberger, S. A.; Chen, Y. Nat. Catal. 2022, 5, 193. doi:10.1038/s41929-022-00752-z

    82. [82]

      (82) Ahn, S.; Zor, C.; Yang, S.; Lagnoni, M.; Dewar, D.; Nimmo, T.; Chau, C.; Jenkins, M.; Kibler, A. J.; Pateman, A.; et al. Nat. Chem. 2023, 15, 1022. doi:10.1038/s41557-023-01203-3

    83. [83]

      (83) Schurmann, A.; Luerssen, B.; Mollenhauer, D.; Janek, J.; Schroder, D. Chem. Rev. 2021, 121, 12445. doi:10.1021/acs.chemrev.1c00139

    84. [84]

      (84) Hassoun, J.; Croce, F.; Armand, M.; Scrosati, B. Angew. Chem. 2011, 123, 3055. doi:10.1002/ange.201006264

    85. [85]

      (85) Mahne, N.; Renfrew, S. E.; McCloskey, B. D.; Freunberger, S. A. Angew. Chem. Int. Ed. 2018, 57, 5529. doi:10.1002/anie.201802277

    86. [86]

      (86) Mourad, E.; Petit, Y. K.; Spezia, R.; Samojlov, A.; Summa, F. F.; Prehal, C.; Leypold, C.; Mahne, N.; Slugovc, C.; Fontaine, O.; et al. Energy Environ. Sci. 2019, 12, 2559. doi:10.1039/c9ee01453e

    87. [87]

      (87) Dong, S.; Yang, S.; Chen, Y.; Kuss, C.; Cui, G.; Johnson, L. R.; Gao, X.; Bruce, P. G. Joule 2022, 6, 185. doi:10.1016/j.joule.2021.12.012

    88. [88]

      (88) Petit, Y. K.; Leypold, C.; Mahne, N.; Mourad, E.; Schafzahl, L.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Angew. Chem. Int. Ed. 2019, 58, 6535. doi:10.1002/anie.201901869

    89. [89]

      (89) Liang, Z.; Zou, Q.; Xie, J.; Lu, Y.-C. Energy Environ. Sci. 2020, 13, 2870. doi:10.1039/d0ee01114b

    90. [90]

      (90) Jiang, Z.; Huang, Y.; Zhu, Z.; Gao, S.; Lv, Q.; Li, F. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2202835119. doi:10.1073/pnas.2202835119

    91. [91]

    92. [92]

      (92) Kwak, W.-J.; Chae, S.; Feng, R.; Gao, P.; Read, J.; Engelhard, M. H.; Zhong, L.; Xu, W.; Zhang, J.-G. ACS Energy Lett. 2020, 5, 2182. doi:10.1021/acsenergylett.0c00809

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    4. [4]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(3)
  • Abstract views(87)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return