Citation: Yajie Li,  Bin Chen,  Yiping Wang,  Hui Xing,  Wei Zhao,  Geng Zhang,  Siqi Shi. Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230505. doi: 10.3866/PKU.WHXB202305053 shu

Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study

  • Corresponding author: Hui Xing,  Geng Zhang,  Siqi Shi, 
  • Received Date: 29 May 2023
    Revised Date: 14 July 2023
    Accepted Date: 14 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52102280, U2030206), the National Key Research and Development Program of China (2021YFB3802104), the Shanghai Municipal Science and Technology Commission (19DZ2252600), the Shanghai Pujiang Program (2019PJD016), and the Scientific Research Project of Zhejiang Laboratory (2021PE0AC02).

  • Lithium metal is a promising anode candidate for high-energy-density secondary batteries due to its high theoretical capacity and low electrochemical potential, while the uncontrolled dendrite growth causing poor cycling performance and safety concerns poses serious challenges for the practical application of lithium metal batteries. During the electrodeposition process, the lithium-ion (Li+) diffusion process is directly related to the electrode/electrolyte interfacial Li+ concentration gradient as well as the dendritic morphology. Regulating the anisotropic Li+ diffusion property is a convenient way to reshape its transfer behavior without introducing any external fields (e.g., temperature field, magnetic field, acoustic field, etc.) or increasing the weight of batteries. Despite the large amount of experimental and theoretical work on the effect of the anisotropic Li+ diffusion behavior on the dendritic morphology, some open questions remain to be deliberated, e.g., correlating the dynamic evolution of dendrite growth with the anisotropic Li+ diffusion induced by the electrolyte property, electric potential, and separator structure. In this paper, an electrochemical phase-field model is applied to explore the influences of electrolyte inherent anisotropic Li+ diffusion, electric potential-induced anisotropic Li+ diffusion, and separator-structure-induced anisotropic Li+ migration on dendrite growth via a homemade MATLAB code. Instead of a fixed numerical value, the modified Li+ diffusivity in the electrolyte (DL) is expressed as a second-order tensor by decomposing into two components along the x (Dxx) and y (Dyy) directions, which is not only able to explore the electrolyte inherent anisotropic Li+ diffusion but also easy to describe the electric potential-induced fluctuations of DL and the corresponding Li+ concentration distribution. Predicted results indicate that with the increase of Dyy: Dxx, the interfacial Li+concentration gradient is alleviated due to the accelerated longitudinal Li+ replenishment and decelerated transversal “entrainment” phenomenon, thus decreasing the driving force of dendrite growth. Besides, the electric potential-induced interfacial Li+ fast diffusion layer can also reduce the electric potential gradients surrounding the dendrite tips and then uniform the dendrite morphologies. Surprisingly, separators with higher matrix tilt angles are demonstrated to achieve effective anisotropic Li+ diffusion in electrolyte, which can not only reduce the dendrite-growth velocity, but also extend the dendrite-growth pathway and prolong the battery short circuit time. Following this, electrolyte with the Dyy: Dxx = 10: 1 and separator with the matrix tilt angle of arctan (0.5) are evaluated as promising materials for lithium metal batteries. This study provides a rational guidance for designing electrolytes or separators with dendrite-inhibiting capability.
  • 加载中
    1. [1]

      (1) Bai, P.; Guo, J.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Joule 2018, 2 (11), 2434. doi:10.1016/j.joule.2018.08.018

    2. [2]

      (2) Armand, M.; Tarascon, J.-M. Nature 2008, 451 (7179), 652. doi:10.1038/451652a

    3. [3]

      (3) Tarascon, J.-M.; Armand, M. Nature 2001, 414 (6861), 359. doi:10.1038/35104644

    4. [4]

    5. [5]

      (5) Chen, X.; Yao, Y.; Yan, C.; Zhang, R.; Cheng, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59 (20), 7743. doi:10.1002/anie.202000375

    6. [6]

      (6) Zhang, R.; Chen, X.-R.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Yan, C.; Zhang, Q. Angew. Chem. 2017, 129 (27), 7872. doi:10.1002/ange.201702099

    7. [7]

      (7) Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M. J. Electroanal. Chem. 2011, 661 (1), 84. doi:10.1016/j.jelechem.2011.06.035

    8. [8]

      (8) Tan, J.; Tartakovsky, A. M.; Ferris, K.; Ryan, E. M. J. Electrochem. Soc. 2016, 163 (2), A318. doi:10.1149/2.0951602jes

    9. [9]

      (9) Gopalakrishnan, D.; Alkatie, S.; Cannon, A.; Rajendran, S.; Thangavel, N. K.; Bhagirath, N.; Ryan, E. M.; Arava, L. M. R. Sustain. Energy Fuels 2021, 5 (5), 1488. doi:10.1039/D0SE01547D

    10. [10]

      (10) Li, Y.; Sha, L.; Zhang, G.; Chen, B.; Zhao, W.; Wang, Y.; Shi, S. Chin. Chem. Lett. 2023, 34 (2), 107993. doi:10.1016/j.cclet.2022.107993

    11. [11]

      (11) Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4 (5), 1012. doi:10.1021/acsenergylett.9b00433

    12. [12]

      (12) Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359 (6383), 1513. doi:10.1126/science.aap8787

    13. [13]

      (13) Martin, W.; Tian, Y.; Xiao, J. J. Electrochem. Soc. 2021, 168 (6), 060513. doi:10.1149/1945-7111/ac0647

    14. [14]

      (14) Cogswell, D. A. Phys. Rev. E 2015, 92 (1), 011301. doi:10.1103/PhysRevE.92.011301

    15. [15]

      (15) Wang, K.; Xiao, Y.; Pei, P.; Liu, X.; Wang, Y. J. Electrochem. Soc. 2019, 166 (10), D389. doi:10.1149/2.0541910jes

    16. [16]

      (16) Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4 (1), 1481. doi:10.1038/ncomms2513

    17. [17]

      (17) Yu, S.-H.; Huang, X.; Brock, J. D.; Abruña, H. D. J. Am. Chem. Soc. 2019, 141 (21), 8441. doi:10.1021/jacs.8b13297

    18. [18]

      (18) Dong, J.; Dai, H.; Wang, C.; Lai, C. Solid State Ion. 2019, 341, 115033. doi:10.1016/j.ssi.2019.115033

    19. [19]

      (19) Chen, Y.; Dou, X.; Wang, K.; Han, Y. Green Energy Environ. 2022, 7 (5), 965. doi:10.1016/j.gee.2020.12.014

    20. [20]

      (20) Huang, Y.; Wu, X.; Nie, L.; Chen, S.; Sun, Z.; He, Y.; Liu, W. Solid State Ion. 2020, 345, 115171. doi:10.1016/j.ssi.2019.115171

    21. [21]

      (21) Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng, G.; et al. Adv. Energy Mater. 2019, 9 (20), 1900260. doi:10.1002/aenm.201900260

    22. [22]

      (22) Liang, P.; Li, Q.; Chen, L.; Tang, Z.; Li, Z.; Wang, Y.; Tang, Y.; Han, C.; Lan, Z.; Zhi, C.; et al. J. Mater. Chem. A 2022, 10 (22), 11971. doi:10.1039/D2TA02077G

    23. [23]

      (23) Huang, A.; Liu, H.; Manor, O.; Liu, P.; Friend, J. Adv. Mater. 2020, 32 (14), 1907516. doi:10.1002/adma.201907516

    24. [24]

      (24) Zhang, J.; Zhou, Z.; Wang, Y.; Chen, Q.; Hou, G.; Tang, Y. Nano Energy 2022, 102, 107655. doi:10.1016/j.nanoen.2022.107655

    25. [25]

      (25) Li, Q.; Tan, S.; Li, L.; Lu, Y.; He, Y. Sci. Adv. 2017, 3 (7), e1701246. doi:10.1126/sciadv.1701246

    26. [26]

    27. [27]

      (27) Zhao, N.; Liu, Y.; Zhao, X.; Song, H. Nanoscale 2016, 8 (3), 1545. doi:10.1039/C5NR06888F

    28. [28]

      (28) Timachova, K.; Villaluenga, I.; Cirrincione, L.; Gobet, M.; Bhattacharya, R.; Jiang, X.; Newman, J.; Madsen, L. A.; Greenbaum, S. G.; Balsara, N. P. J. Phys. Chem. B 2018, 122 (4), 1537. doi:10.1021/acs.jpcb.7b11371

    29. [29]

      (29) Li, W.; Tchelepi, H. A.; Ju, Y.; Tartakovsky, D. M. J. Electrochem. Soc. 2022, 169 (6), 060536. doi:10.1149/1945-7111/ac7978

    30. [30]

      (30) Chen, L.; Zhang, H. W.; Liang, L. Y.; Liu, Z.; Qi, Y.; Lu, P.; Chen, J.; Chen, L.-Q. J. Power Sources 2015, 300, 376. doi:10.1016/j.jpowsour.2015.09.055

    31. [31]

      (31) Liang, L.; Chen, L.-Q. Appl. Phys. Lett. 2014, 105 (26), 263903. doi:10.1063/1.4905341

    32. [32]

      (32) Yurkiv, V.; Foroozan, T.; Ramasubramanian, A.; Shahbazian-Yassar, R.; Mashayek, F. Electrochim. Acta 2018, 265, 609. doi:10.1016/j.electacta.2018.01.212

    33. [33]

      (33) Ahmad, Z.; Hong, Z.; Viswanathan, V. Proc. Natl. Acad. Sci. 2020, 117 (43), 26672. doi:10.1073/pnas.2008841117

    34. [34]

      (34) Shen, X.; Zhang, R.; Shi, P.; Chen, X.; Zhang, Q. Adv. Energy Mater. 2021, 11 (10), 2003416. doi:10.1002/aenm.202003416

    35. [35]

      (35) Gao, L. T.; Huang, P.; Guo, Z.-S. ACS Appl. Mater. Interfaces 2022, 14 (37), 41957. doi:10.1021/acsami.2c09551

    36. [36]

    37. [37]

      (37) Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Adv. Mater. 2004, 16 (11), 865. doi:10.1002/adma.200306196

    38. [38]

      (38) Shklyarevskiy, I. O.; Jonkheijm, P.; Stutzmann, N.; Wasserberg, D.; Wondergem, H. J.; Christianen, P. C. M.; Schenning, A. P. H. J.; De Leeuw, D. M.; Tomović, Ž.; Wu, J.; et al. J. Am. Chem. Soc. 2005, 127 (46), 16233. doi:10.1021/ja054694t

    39. [39]

      (39) Hong, Z.; Viswanathan, V. ACS Energy Lett. 2018, 3 (7), 1737. doi:10.1021/acsenergylett.8b01009

    40. [40]

      (40) Ren, Y.; Zhou, Y.; Cao, Y. J. Phys. Chem. C 2020, 124 (23), 12195. doi:10.1021/acs.jpcc.0c01116

    41. [41]

      (41) Li, Y.; Zhang, G.; Chen, B.; Zhao, W.; Sha, L.; Wang, D.; Yu, J.; Shi, S. Chin. Chem. Lett. 2022, 33 (6), 3287. doi:10.1016/j.cclet.2022.03.065

    42. [42]

      (42) Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1 (3), 16010. doi:10.1038/nenergy.2016.10

    43. [43]

    44. [44]

      (44) Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135 (11), 4450. doi:10.1021/ja312241y

    45. [45]

      (45) Ravikumar, B.; Mynam, M.; Rai, B. J. Mol. Liq. 2020, 300, 112252. doi:10.1016/j.molliq.2019.112252

    46. [46]

      (46) Liu, M.; Chimtali, P. J.; Huang, X.; Zhang, R. Phys. Chem. Chem. Phys. 2019, 21 (24), 13186. doi:10.1039/C9CP00561G

    47. [47]

      (47) Sakuda, J.; Hosono, E.; Yoshio, M.; Ichikawa, T.; Matsumoto, T.; Ohno, H.; Zhou, H.; Kato, T. Adv. Funct. Mater. 2015, 25 (8), 1206. doi:10.1002/adfm.201402509

    48. [48]

      (48) Sasi, R.; Jinesh, K. B.; Devaki, S. J. ChemistrySelect 2017, 2 (1), 315. doi:10.1002/slct.201601715

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    5. [5]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    19. [19]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

Metrics
  • PDF Downloads(2)
  • Abstract views(445)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return