
Citation: Yajie Li, Bin Chen, Yiping Wang, Hui Xing, Wei Zhao, Geng Zhang, Siqi Shi. Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study[J]. Acta Physico-Chimica Sinica, 2024, 40(3): 230505. doi: 10.3866/PKU.WHXB202305053

定制电解液或隔膜实现锂离子各向异性输运从而抑制枝晶生长:相场模拟研究
English
Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study

-
Key words:
- Lithium dendrite
- / Phase-field simulation
- / Electrolyte
- / Separator
- / Lithium-ion diffusivity
-
-
[1]
Bai, P.; Guo, J.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Joule 2018, 2 (11), 2434. doi: 10.1016/j.joule.2018.08.018
-
[2]
Armand, M.; Tarascon, J.-M. Nature 2008, 451 (7179), 652. doi: 10.1038/451652a
-
[3]
Tarascon, J.-M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644
-
[4]
张世超, 沈泽宇, 陆盈盈. 物理化学学报, 2021, 37 (1), 2008065. doi: 10.3866/PKU.WHXB202008065Zhang, S. C.; Shen, Z. Y.; Lu, Y. Y. Acta Phys. -Chim. Sin. 2021, 37 (1), 2008065. doi: 10.3866/PKU.WHXB202008065
-
[5]
Chen, X.; Yao, Y.; Yan, C.; Zhang, R.; Cheng, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59 (20), 7743. doi: 10.1002/anie.202000375
-
[6]
Zhang, R.; Chen, X.-R.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Yan, C.; Zhang, Q. Angew. Chem. 2017, 129 (27), 7872. doi: 10.1002/ange.201702099
-
[7]
Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M. J. Electroanal. Chem. 2011, 661 (1), 84. doi: 10.1016/j.jelechem.2011.06.035
-
[8]
Tan, J.; Tartakovsky, A. M.; Ferris, K.; Ryan, E. M. J. Electrochem. Soc. 2016, 163 (2), A318. doi: 10.1149/2.0951602jes
-
[9]
Gopalakrishnan, D.; Alkatie, S.; Cannon, A.; Rajendran, S.; Thangavel, N. K.; Bhagirath, N.; Ryan, E. M.; Arava, L. M. R. Sustain. Energy Fuels 2021, 5 (5), 1488. doi: 10.1039/D0SE01547D
-
[10]
Li, Y.; Sha, L.; Zhang, G.; Chen, B.; Zhao, W.; Wang, Y.; Shi, S. Chin. Chem. Lett. 2023, 34 (2), 107993. doi: 10.1016/j.cclet.2022.107993
-
[11]
Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4 (5), 1012. doi: 10.1021/acsenergylett.9b00433
-
[12]
Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359 (6383), 1513. doi: 10.1126/science.aap8787
-
[13]
Martin, W.; Tian, Y.; Xiao, J. J. Electrochem. Soc. 2021, 168 (6), 060513. doi: 10.1149/1945-7111/ac0647
-
[14]
Cogswell, D. A. Phys. Rev. E 2015, 92 (1), 011301. doi: 10.1103/PhysRevE.92.011301
-
[15]
Wang, K.; Xiao, Y.; Pei, P.; Liu, X.; Wang, Y. J. Electrochem. Soc. 2019, 166 (10), D389. doi: 10.1149/2.0541910jes
-
[16]
Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4 (1), 1481. doi: 10.1038/ncomms2513
-
[17]
Yu, S.-H.; Huang, X.; Brock, J. D.; Abruña, H. D. J. Am. Chem. Soc. 2019, 141 (21), 8441. doi: 10.1021/jacs.8b13297
-
[18]
Dong, J.; Dai, H.; Wang, C.; Lai, C. Solid State Ion. 2019, 341, 115033. doi: 10.1016/j.ssi.2019.115033
-
[19]
Chen, Y.; Dou, X.; Wang, K.; Han, Y. Green Energy Environ. 2022, 7 (5), 965. doi: 10.1016/j.gee.2020.12.014
-
[20]
Huang, Y.; Wu, X.; Nie, L.; Chen, S.; Sun, Z.; He, Y.; Liu, W. Solid State Ion. 2020, 345, 115171. doi: 10.1016/j.ssi.2019.115171
-
[21]
Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng, G.; et al. Adv. Energy Mater. 2019, 9 (20), 1900260. doi: 10.1002/aenm.201900260
-
[22]
Liang, P.; Li, Q.; Chen, L.; Tang, Z.; Li, Z.; Wang, Y.; Tang, Y.; Han, C.; Lan, Z.; Zhi, C.; et al. J. Mater. Chem. A 2022, 10 (22), 11971. doi: 10.1039/D2TA02077G
-
[23]
Huang, A.; Liu, H.; Manor, O.; Liu, P.; Friend, J. Adv. Mater. 2020, 32 (14), 1907516. doi: 10.1002/adma.201907516
-
[24]
Zhang, J.; Zhou, Z.; Wang, Y.; Chen, Q.; Hou, G.; Tang, Y. Nano Energy 2022, 102, 107655. doi: 10.1016/j.nanoen.2022.107655
-
[25]
Li, Q.; Tan, S.; Li, L.; Lu, Y.; He, Y. Sci. Adv. 2017, 3 (7), e1701246. doi: 10.1126/sciadv.1701246
-
[26]
莫英, 肖逵逵, 吴剑芳, 刘辉, 胡爱平, 高鹏, 刘继磊. 物理化学学报, 2022, 38 (6), 2107030. doi: 10.3866/PKU.WHXB202107030Mo, Y.; Xiao, K. K.; Wu, J. F.; Liu, H.; Hu, A. P.; Gao, P.; Liu, J. L. Acta Phys. -Chim. Sin. 2022, 38, 2107030. doi: 10.3866/PKU.WHXB202107030
-
[27]
Zhao, N.; Liu, Y.; Zhao, X.; Song, H. Nanoscale 2016, 8 (3), 1545. doi: 10.1039/C5NR06888F
-
[28]
Timachova, K.; Villaluenga, I.; Cirrincione, L.; Gobet, M.; Bhattacharya, R.; Jiang, X.; Newman, J.; Madsen, L. A.; Greenbaum, S. G.; Balsara, N. P. J. Phys. Chem. B 2018, 122 (4), 1537. doi: 10.1021/acs.jpcb.7b11371
-
[29]
Li, W.; Tchelepi, H. A.; Ju, Y.; Tartakovsky, D. M. J. Electrochem. Soc. 2022, 169 (6), 060536. doi: 10.1149/1945-7111/ac7978
-
[30]
Chen, L.; Zhang, H. W.; Liang, L. Y.; Liu, Z.; Qi, Y.; Lu, P.; Chen, J.; Chen, L.-Q. J. Power Sources 2015, 300, 376. doi: 10.1016/j.jpowsour.2015.09.055
-
[31]
Liang, L.; Chen, L.-Q. Appl. Phys. Lett. 2014, 105 (26), 263903. doi: 10.1063/1.4905341
-
[32]
Yurkiv, V.; Foroozan, T.; Ramasubramanian, A.; Shahbazian-Yassar, R.; Mashayek, F. Electrochim. Acta 2018, 265, 609. doi: 10.1016/j.electacta.2018.01.212
-
[33]
Ahmad, Z.; Hong, Z.; Viswanathan, V. Proc. Natl. Acad. Sci. 2020, 117 (43), 26672. doi: 10.1073/pnas.2008841117
-
[34]
Shen, X.; Zhang, R.; Shi, P.; Chen, X.; Zhang, Q. Adv. Energy Mater. 2021, 11 (10), 2003416. doi: 10.1002/aenm.202003416
-
[35]
Gao, L. T.; Huang, P.; Guo, Z.-S. ACS Appl. Mater. Interfaces 2022, 14 (37), 41957. doi: 10.1021/acsami.2c09551
-
[36]
华广斌, 樊晏辰, 张千帆. 物理化学学报, 2021, 37 (2), 2008089. doi: 10.3866/PKU.WHXB202008089Hua, G. B.; Fan, Y. C.; Zhang, Q. F. Acta Phys. -Chim. Sin. 2021, 37 (2), 2008089. doi: 10.3866/PKU.WHXB202008089
-
[37]
Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Adv. Mater. 2004, 16 (11), 865. doi: 10.1002/adma.200306196
-
[38]
Shklyarevskiy, I. O.; Jonkheijm, P.; Stutzmann, N.; Wasserberg, D.; Wondergem, H. J.; Christianen, P. C. M.; Schenning, A. P. H. J.; De Leeuw, D. M.; Tomović, Ž.; Wu, J.; et al. J. Am. Chem. Soc. 2005, 127 (46), 16233. doi: 10.1021/ja054694t
-
[39]
Hong, Z.; Viswanathan, V. ACS Energy Lett. 2018, 3 (7), 1737. doi: 10.1021/acsenergylett.8b01009
-
[40]
Ren, Y.; Zhou, Y.; Cao, Y. J. Phys. Chem. C 2020, 124 (23), 12195. doi: 10.1021/acs.jpcc.0c01116
-
[41]
Li, Y.; Zhang, G.; Chen, B.; Zhao, W.; Sha, L.; Wang, D.; Yu, J.; Shi, S. Chin. Chem. Lett. 2022, 33 (6), 3287. doi: 10.1016/j.cclet.2022.03.065
-
[42]
Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1 (3), 16010. doi: 10.1038/nenergy.2016.10
-
[43]
邱晓光, 刘威, 刘九鼎, 李俊志, 张凯, 程方益. 物理化学学报, 2021, 37 (1) 2009012. doi: 10.3866/PKU.WHXB202009012Qiu, X. G.; Liu, W.; Liu, J. D.; Li, J. Z.; Zhang, K.; Cheng, F. Y. Acta Phys. -Chim. Sin. 2021, 37 (1), 2009012. doi: 10.3866/PKU.WHXB202009012
-
[44]
Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135 (11), 4450. doi: 10.1021/ja312241y
-
[45]
Ravikumar, B.; Mynam, M.; Rai, B. J. Mol. Liq. 2020, 300, 112252. doi: 10.1016/j.molliq.2019.112252
-
[46]
Liu, M.; Chimtali, P. J.; Huang, X.; Zhang, R. Phys. Chem. Chem. Phys. 2019, 21 (24), 13186. doi: 10.1039/C9CP00561G
-
[47]
Sakuda, J.; Hosono, E.; Yoshio, M.; Ichikawa, T.; Matsumoto, T.; Ohno, H.; Zhou, H.; Kato, T. Adv. Funct. Mater. 2015, 25 (8), 1206. doi: 10.1002/adfm.201402509
-
[48]
Sasi, R.; Jinesh, K. B.; Devaki, S. J. ChemistrySelect 2017, 2 (1), 315. doi: 10.1002/slct.201601715
-
[1]
-

计量
- PDF下载量: 3
- 文章访问数: 592
- HTML全文浏览量: 63