Citation: Jiawei Hu,  Kai Xia,  Ao Yang,  Zhihao Zhang,  Wen Xiao,  Chao Liu,  Qinfang Zhang. 超薄2D/2D NiPS3/C3N5异质结的界面工程促进光催化产氢[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230504. doi: 10.3866/PKU.WHXB202305043 shu

超薄2D/2D NiPS3/C3N5异质结的界面工程促进光催化产氢

  • Received Date: 22 May 2023
    Revised Date: 12 July 2023
    Accepted Date: 12 July 2023

    Fund Project: This work was supported by the National Natural Science Foundation of China (51902282, 12274361), Qinglan Project of Jiangsu of China, Natural Science Foundation of Jiangsu Province, China (BK20211361), College Natural Science Research Project of Jiangsu Province, China (20KJA430004) and Open Project of Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, China.

  • 探索高效水分解光催化剂具有获得氢能源的巨大潜力。调控异质结界面可以有效地促进电荷载流子的分离和太阳能的利用,从而提高光催化活性。本工作使用了一种机械混合辅助自组装方法来构建NiPS3(NPS)纳米片(NSs)/C3N5 (CN) NSs (NPS/CN)异质结,即在二维(2D) CN NSs表面紧密沉积2D NPS NSs以形成2D/2D异质结构。在可见光下,通过在去离子水和海水中分解水生成氢气来评价样品的光催化性能。与CN NSs和NPS NSs相比,NPS/CN复合材料显示出较高的光催化产氢(PHE)活性,这是由于光捕获能力增加和异质结形成的协同作用所致。然而,过量的NPS NSs沉积在CN NSs表面会降低NPS/CN中CN NSs组分的光吸收,从而降低NPS/CN复合材料的PHE活性。这表明,NPS/CN复合材料要获得良好的光催化活性,需要两个组分之间适当的质量比。优化后的光催化剂(3-NPS/CN)具有良好的结构稳定性,在可见光下PHE效率最高,为47.71 μmol·h-1,是CN NSs的2385.50倍。此外,3-NPS/CN在海水中也表现出良好的PHE活性,反应速率为8.99 μmol·h-1。采用光电化学、稳态光致发光(PL)、时间分辨光致发光(TR-PL)、稳态表面光电压(SPV)和时间分辨表面光电压(TPV)技术研究了不同光催化剂上的电荷分离和迁移。根据表征结果提出了一种可能的PHE机理。在NPS/CN光催化剂中,由于CN NSs和NPS NSs之间的电位差和强的界面电子耦合,光生电子从CN NSs的导带迅速迁移到NPS NSs的导带。然后,聚积在NPS NSs组份导带上的光生电子可以有效地还原质子生成氢气分子。同时,在三乙醇胺(TEOA)分子存在下,CN NSs和NPS NSs的价带上的光生空穴被消耗。本研究提供了一种简单的2D/2D异质结构光催化剂制备方法,该方法对于构建高效二维异质结光催化剂在能源领域中的应用具有重要价值。
  • 加载中
    1. [1]

      (1) Gao, Y.; Xu, B.; Cherif, M.; Yu, H.; Zhang, Q.; Vidal, F.; Wang, X.; Ding, F.; Sun, Y.; Ma, D.; et al. Appl. Catal. B: Environ. 2020, 279, 119403. doi: 10.1016/j.apcatb.2020.119403

    2. [2]

      (2) Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167. doi: 10.1016/j.jmst.2022.08.030

    3. [3]

      (3) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    4. [4]

      (4) Tong, Z.; Yang, D.; Xiao, T.; Tian, Y.; Jiang, Z. Chem. Eng. J. 2015, 260, 117. doi: 10.1016/j.cej.2014.08.072

    5. [5]

      (5) Fu, C.; Wu, T.; Sun, G.; Yin, G.; Wang, C.; Ran, G.; Song, Q. Appl. Catal. B: Environ. 2023, 323, 122196. doi: 10.1016/j.apcatb.2022.122196

    6. [6]

      (6) Liu, C.; Zhang, Y.; Wu, J.; Dai, H.; Ma, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2022, 114, 81. doi: 10.1016/j.jmst.2021.12.003

    7. [7]

      (7) Gao, Z.; Chen, K.; Wang, L.; Bai, B.; Liu, H.; Wang, Q. Appl. Catal. B: Environ. 2020, 268, 118462. doi: 10.1016/j.apcatb.2019.118462

    8. [8]

      (8) Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Appl. Catal. B: Environ. 2020, 277, 119254. doi: 10.1016/j.apcatb.2020.119254

    9. [9]

      (9) Lin, B.; Li, H.; An, H.; Hao, W.; Wei, J.; Dai, Y.; Ma, C.; Yang, G. Appl. Catal. B: Environ. 2018, 220, 542. doi: 10.1016/j.apcatb.2017.08.071

    10. [10]

      (10) Yin, H.; Yuan, C.; Lv, H.; Zhang, K.; Chen, X.; Zhang, Y.; Zhang, Y. Powder Technol. 2023, 413, 118083. doi: 10.1016/j.powtec.2022.118083

    11. [11]

      (11) Wang, H.; Li, M.; Lu, Q.; Cen, Y.; Zhang, Y.; Yao, S. ACS Sustain. Chem. Eng. 2019, 7, 625. doi: 10.1021/acssuschemeng.8b04182

    12. [12]

      (12) Huang, L.; Liu, Z.; Chen, W.; Cao, D.; Zheng, A. J. Mater. Chem. A 2018, 6, 7168. doi: 10.1039/c8ta01458b

    13. [13]

      (13) Teng, M.; Shi, J.; Qi, H.; Shi, C.; Wang, W.; Kang, F.; Eqi, M.; Huang, Z. J. Colloid Interface Sci. 2022, 609, 592. doi: 10.1016/j.jcis.2021.11.060

    14. [14]

      (14) Sun, D.; Zhang, X.; Shi, A.; Quan, C.; Xiao, S.; Ji, S.; Zhou, Z.; Li, X.; Chi, F.; Niu, X. Appl. Surf. Sci. 2022, 601, 154186. doi: 10.1016/j.apsusc.2022.154186

    15. [15]

      (15) Li, K.; Cai, W.; Zhang, Z.; Xie, H.; Zhong, Q.; Qu, H. Chem. Eng. J. 2022, 435, 135017. doi: 10.1016/j.cej.2022.135017

    16. [16]

      (16) Meng, Q.; Yang, X.; Wu, L.; Chen, T.; Li, Y.; He, R.; Zhu, W.; Zhu, L.; Duan, T. J. Hazard. Mater. 2022, 422, 126912. doi: 10.1016/j.jhazmat.2021.126912

    17. [17]

      (17) Wang, R.; Zhang, K.; Zhong, X.; Jiang, F. RSC Adv. 2022, 12, 24026. doi: 10.1039/d2ra03874a

    18. [18]

      (18) Wu, B.; Sun, T.; Liu, N.; Lu, L.; Zhang, R.; Shi, W.; Cheng, P. ACS Appl. Mater. Interfaces 2022, 14, 26742. doi: 10.1021/acsami.2c04729

    19. [19]

      (19) Liu, D.; Yao, J.; Chen, S.; Zhang, J.; Li, R.; Peng, T. Appl. Catal. B: Environ. 2022, 318, 121822. doi: 10.1016/j.apcatb.2022.121822

    20. [20]

      (20) Shi, J.; Wang, W.; Teng, M.; Kang, F.; E’qi, M.; Huang, Z. J. Colloid Interface Sci. 2022, 608, 954. doi: 10.1016/j.jcis.2021.10.027

    21. [21]

      (21) Xiong, Z.; Liang, Y.; Yang, J.; Yang, G.; Jia, J.; Sa, K.; Zhang, X.; Zeng, Z. Sep. Purif. Technol. 2023, 306, 122522. doi: 10.1016/j.seppur.2022.122522

    22. [22]

      (22) Zhang, X.; Zhao, X.; Wu, D.; Jing, Y.; Zhou, Z. Adv. Sci. 2016, 3, 1600062. doi: 10.1002/advs.201600062

    23. [23]

      (23) Wang, J.; Li, X.; Wei, B.; Sun, R.; Yu, W.; Hoh, H. Y.; Xu, H.; Li, J.; Ge, X.; Chen, Z.; et al. Adv. Funct. Mater. 2020, 30, 1908708. doi: 10.1002/adfm.201908708

    24. [24]

      (24) Wang, F.; Shifa, T. A.; He, P.; Cheng, Z.; Chu, J.; Liu, Y.; Wang, Z.; Wang, F.; Wen, Y.; Liang, L.; et al. Nano Energy 2017, 40, 673. doi: 10.1016/j.nanoen.2017.09.017

    25. [25]

      (25) Shifa, T. A.; Wang, F.; Cheng, Z.; He, P.; Liu, Y.; Jiang, C.; Wang, Z.; He, J. Adv. Funct. Mater. 2018, 28, 1800548. doi: 10.1002/adfm.201800548

    26. [26]

      (26) Gusmao, R.; Sofer, Z.; Sedmidubsky, D.; Huber, S.; Pumera, M. ACS Catal. 2017, 7, 8159. doi: 10.1021/acscatal.7b02134

    27. [27]

      (27) Cheng, Z.; Shifa, T. A.; Wang, F.; Gao, Y.; He, P.; Zhang, K.; Jiang, C.; Liu, Q.; He, J. Adv. Mater. 2018, 30, 1707433. doi: 10.1002/adma.201707433

    28. [28]

      (28) Barua, M.; Ayyub, M. M.; Vishnoi, P.; Pramoda, K.; Rao, C. N. R. J. Mater. Chem. A 2019, 7, 22500. doi: 10.1039/c9ta06044h

    29. [29]

      (29) Jenjeti, R. N.; Kumar, R.; Austeria, M. P.; Sampath, S. Sci. Rep. 2018, 8, 8586. doi: 10.1038/s41598-018-26522-1

    30. [30]

      (30) Chittari, B. L.; Park, Y.; Lee, D.; Han, M.; MacDonald, A. H.; Hwang, E.; Jung, J. Phys. Rev. B 2016, 94, 184428. doi: 10.1103/PhysRevB.94.184428

    31. [31]

      (31) Chu, J.; Wang, F.; Yin, L.; Lei, L.; Yan, C.; Wang, F.; Wen, Y.; Wang, Z.; Jiang, C.; Feng, L.; et al. Adv. Funct. Mater. 2017, 27, 1701342. doi: 10.1002/adfm.201701342

    32. [32]

      (32) Fang, L.; Xie, Y.; Guo, P.; Zhu, J.; Xiao, S.; Sun, S.; Zi, W.; Zhao, H. Sustain. Energy Fuels 2021, 5, 2537. doi: 10.1039/d1se00110h

    33. [33]

      (33) Ran, J.; Zhang, H.; Fu, S.; Jaroniec, M.; Shan, J.; Xia, B.; Qu, Y.; Qu, J.; Chen, S.; Song, L.; et al. Nat. Commun. 2022, 13, 4600. doi: 10.1038/s41467-022-32256-6

    34. [34]

      (34) Li, S.; Cai, M.; Liu, Y.; Zhang, J.; Wang, C.; Zang, S.; Li, Y.; Zhang, P.; Li, X. Org. Chem. Front. 2022, 9, 2479. doi: 10.1039/D2QI00317A

    35. [35]

      (35) Zhang, Q.; Gu, H.; Wang, X.; Li, L.; Zhang, J.; Zhang, H.; Li, Y.-F.; Dai, W.-L. Appl. Catal. B: Environ. 2021, 298, 120632. doi: 10.1016/j.apcatb.2021.120632

    36. [36]

      (36) Liu, C.; Xiao, W.; Yu, G.; Wang, Q.; Hu, J.; Xu, C.; Du, X.; Xu, J.; Zhang, Q.; Zou, Z. J. Colloid Interface Sci. 2023, 640, 851. doi: 10.1016/j.jcis.2023.02.137

    37. [37]

      (37) Han, L.; Peng, C.; Huang, J.; Wang, S.; Zhang, X.; Chen, H.; Yang, Y. Rsc Adv. 2021, 11, 36166. doi: 10.1039/d1ra07275g

    38. [38]

      (38) Zhang, J.; Jing, B.; Tang, Z.; Ao, Z.; Xia, D.; Zhu, M.; Wang, S. Appl. Catal. B: Environ. 2021, 289, 120023. doi: 10.1016/j.apcatb.2021.120023

    39. [39]

      (39) Kumar, P.; Vahidzadeh, E.; Thakur, U. K.; Kar, P.; Alam, K. M.; Goswami, A.; Mahdi, N.; Cui, K.; Bernard, G. M.; Michaelis, V. K.; et al. J. Am. Chem. Soc. 2019, 141, 5415. doi: 10.1021/jacs.9b00144

    40. [40]

    41. [41]

      (41) Wang, J.; Wang, T.; Shi, X.; Wu, J.; Xu, Y.; Ding, X.; Yu, Q.; Zhang, K.; Zhou, P.; Jiang, Z. J. Mater. Chem. C 2019, 7, 14625. doi: 10.1039/c9tc04722k

    42. [42]

      (42) Zhang, J.; Tao, H.; Wu, S.; Yang, J.; Zhu, M. Appl. Catal. B: Environ. 2021, 296, 120372. doi: 10.1016/j.apcatb.2021.120372

    43. [43]

      (43) Li, S.; Wang, C.; Cai, M.; Liu, Y.; Dong, K.; Zhang, J. J. Colloid Interface Sci. 2022, 624, 219. doi: 10.1016/j.jcis.2022.05.151

    44. [44]

      (44) Zhang, G.; Wang, Z.; He, T.; Wu, J.; Zhang, J.; Wu, J. Chem. Eng. J. 2022, 442, 136309. doi: 10.1016/j.cej.2022.136309

    45. [45]

      (45) Liu, C.; Han, Z.; Feng, Y.; Dai, H.; Zhao, Y.; Han, N.; Zhang, Q.; Zou, Z. J. Colloid Interface Sci. 2021, 583, 58. doi: 10.1016/j.jcis.2020.09.018

    46. [46]

    47. [47]

      (47) Che, H.; Wang, J.; Gao, X.; Chen, J.; Wang, P.; Liu, B.; Ao, Y. J. Colloid Interface Sci. 2022, 627, 739. doi: 10.1016/j.jcis.2022.07.080

    48. [48]

      (48) Zhan, X.; Zheng, Y.; Li, B.; Fang, Z.; Yang, H.; Zhang, H.; Xu, L.; Shao, G.; Hou, H.; Yang, W. Chem. Eng. J. 2022, 431, 134053. doi: 10.1016/j.cej.2021.134053

    49. [49]

      (49) Zhao, L.; Lei, S.; Tang, C.; Tu, Q.; Rao, L.; Liao, H.; Zeng, W.; Xiao, Y.; Cheng, B. J. Colloid Interface Sci. 2022, 616, 401. doi: 10.1016/j.jcis.2022.02.089

    50. [50]

      (50) Vedhanarayanan, B.; Chiu, C.-C.; Regner, J.; Sofer, Z.; Seetha Lakshmi, K. C.; Lin, J.-Y.; Lin, T.-W. Chem. Eng. J. 2022, 430, 132649. doi: 10.1016/j.cej.2021.132649

    51. [51]

      (51) Mane, G. P.; Talapaneni, S. N.; Lakhi, K. S.; Ilbeygi, H.; Ravon, U.; Al-Bahily, K.; Mori, T.; Park, D.-H.; Vinu, A. Angew. Chem. Int. Ed. 2017, 56, 8481. doi: 10.1002/anie.201702386

    52. [52]

      (52) Bai, J.; Chen, W.; Hao, L.; Shen, R.; Zhang, P.; Li, N.; Li, X. Chem. Eng. J. 2022, 447, 137488. doi: 10.1016/j.cej.2022.137488

    53. [53]

      (53) Sun, H.; Shi, Y.; Shi, W.; Guo, F. Appl. Surf. Sci. 2022, 593, 153281. doi: 10.1016/j.apsusc.2022.153281

    54. [54]

      (54) Chen, K.; Shi, Y.; Shu, P.; Luo, Z.; Shi, W.; Guo, F. Chem. Eng. J. 2023, 454, 140053. doi: 10.1016/j.cej.2022.140053

    55. [55]

      (55) Yu, G.; Zhang, Y.; Du, X.; Wu, J.; Liu, C.; Zou, Z. J. Colloid Interface Sci. 2022, 623, 205. doi: 10.1016/j.jcis.2022.05.040

    56. [56]

    57. [57]

    58. [58]

    59. [59]

      (59) Cai, M.; Liu, Y.; Wang, C.; Lin, W.; Li, S. Sep. Purif. Technol. 2023, 304, 122401. doi: 10.1016/j.seppur.2022.122401

    60. [60]

      (60) Liu, C.; Xu, Q.; Zhang, Q.; Zhu, Y.; Ji, M.; Tong, Z.; Hou, W.; Zhang, Y.; Xu, J. J. Mater. Sci. 2019, 54, 2458. doi: 10.1007/s10853-018-2990-0

    61. [61]

    62. [62]

      (62) Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123. doi: 10.1016/j.jmst.2023.04.007

    63. [63]

      (63) Liu, C.; Feng, Y.; Han, Z.; Sun, Y.; Wang, X.; Zhang, Q.; Zou, Z. Chin. J. Catal. 2021, 42, 164. doi: 10.1016/S1872-2067(20)63608-7

    64. [64]

      (64) Dang, X.; Xie, M.; Dai, F.; Guo, J.; Liu, J.; Lu, X. J. Mater. Chem. A 2021, 9, 14888. doi: 10.1039/D1TA02052H

    65. [65]

      (65) Zhang, X.; Hu, K.; Zhang, X.; Ali, W.; Li, Z.; Qu, Y.; Wang, H.; Zhang, Q.; Jing, L. Appl. Surf. Sci. 2019, 492, 125. doi: 10.1016/j.apsusc.2019.06.189

    66. [66]

      (66) Wang, J.; Qin, C.; Wang, H.; Chu, M.; Zada, A.; Zhang, X.; Li, J.; Raziq, F.; Qu, Y.; Jing, L. Appl. Catal. B: Environ. 2018, 221, 459. doi: 10.1016/j.apcatb.2017.09.042

    67. [67]

      (67) Li, L.; Zhang, R.; Lin, Y.; Wang, D.; Xie, T. Chem. Eng. J. 2023, 453, 139970. doi: 10.1016/j.cej.2022.139970

    68. [68]

    69. [69]

      (69) Guo, S.; Li, Y.; Xue, C.; Sun, Y.; Wu, C.; Shao, G.; Zhang, P. Chem. Eng. J. 2021, 419, 129213. doi: 10.1016/j.cej.2021.129213

    70. [70]

      (70) Cheng, C.; Zhang, J.; Zeng, R.; Xing, F.; Huang, C. Appl. Catal. B: Environ. 2022, 310, 121321. doi: 10.1016/j.apcatb.2022.121321

    71. [71]

      (71) Zheng, J.; Lei, Z. Appl. Catal. B: Environ.2018, 237, 1. doi: 10.1016/j.apcatb.2018.05.060

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(0)
  • Abstract views(84)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return