Citation: Wuxin Bai,  Qianqian Zhou,  Zhenjie Lu,  Ye Song,  Yongsheng Fu. Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230504. doi: 10.3866/PKU.WHXB202305041 shu

Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution

  • Corresponding author: Yongsheng Fu, fuyongsheng@njust.edu.cn
  • Received Date: 22 May 2023
    Revised Date: 27 June 2023
    Accepted Date: 10 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52173255).

  • In recent years, hydrogen production has driving a growing focus in the researches of clean energy, particularly the significance of the oxygen evolution reaction (OER) in water splitting. However, the most fascinating OER catalysts of noble metals are hindered by high cost, limited resources, and poor stability. Therefore, the development of low-cost, efficient, stable, and replaceable electrocatalysts is of utmost importance to accelerate the rate of OER in water splitting and realizing renewable, clean, and large-scale energy conversion technologies. Bimetallic and polymetallic electrocatalysts have shown enormous potential, as each metal component can independently or synergistically enhance the electrocatalytic activity. However, during the catalytic process, some metal ions may leach, leading to changes in the catalyst surface morphology and a significant reduction in activity and stability. Extensive research efforts are being devoted to effectively address the challenges associated with metal dissolution. In this study, we have developed a simple method for preparing bimetallic CoNi zeolitic imidazolate framework (CoNi-ZIF) by removing guest molecules through low-temperature pyrolysis and firmly loading CoNi-ZIF nanosheets onto carbon cloth (CoNi-ZIF-CC-200). The resulting free-standing electrodes have several advantages, including independence from adhesives and avoidance of ineffective surface area, thereby significantly improving the catalytic activity and mass transfer efficiency of the catalyst. The electrochemical test results indicate that the CoNi-ZIF-CC-200 free-standing electrode exhibits good electrochemical activity and stability during the OER process. Specifically, the CoNi-ZIF-CC-200 electrode demonstrates a low overpotential of 255 mV under a current density of 10 mA·cm-2 and maintains stable operation for over 10 h during potentiostatic measurements. Additionally, the water splitting system consisting of the CoNi-ZIF-CC-200 free-standing electrode as the anode and Pt/C as the cathode exhibits excellent stability. The research highlights the use of a low-temperature pyrolysis strategy for firmly loading bimetallic ZIF-L nanosheets onto carbon cloth. This approach results in well-arranged nanosheet arrays, which prevent ineffective surface area and improve mass transfer efficiency during the OER process. Moreover, the removal of guest molecules at low temperatures leads to the formation of Co/Ni oxides, which play a crucial role in catalyzing the OER. The prepared free-standing electrode based on bimetallic ZIF and oxide demonstrates excellent electrochemical activity and stability in both three-electrode and two-electrode water splitting systems using 1 mol·L-1 KOH as the electrolyte. It is strongly believed that CoNi-ZIF-CC-200 holds great promise for future applications in large-scale electrocatalytic hydrogen production systems.
  • 加载中
    1. [1]

      (1) Zhou, Z.; Pei, Z.; Wei, L.; Zhao, S.; Jian, X.; Chen, Y. Energy Environ. Sci. 2020, 13, 3185. doi:10.1039/D0EE01856B

    2. [2]

      (2) Jia, Y.; Yao, X. Chem 2020, 6, 548. doi:10.1016/j.chempr.2020.02.011

    3. [3]

      (3) Sun, Y.; Wu, W.; Yu, L.; Xu, S.; Zhang, Y.; Yu, L.; Xia, B.; Ding, S.; Li, M.; Jiang, L.; et al. Angew. Chem. Int. Ed. 2023, 5, e263. doi:10.1002/cey2.263

    4. [4]

      (4) Arafat, Y.; Azhar, M. R.; Zhong, Y.; Abid, H. R.; Tadé, M. O.; Shao, Z. Adv. Energy Mater. 2021, 11, 2100514. doi:10.1002/aenm.202100514

    5. [5]

      (5) Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi:10.1016/j.ccr.2021.214340

    6. [6]

      (6) Lu, Z.; Yao, S.; Dong, Y.; Wu, D.; Pan, H.; Huang, X.; Wang, T.; Sun, Z.; Chen, X. J. Energy Chem. 2021, 56, 87. doi:10.1016/j.jechem.2020.07.040

    7. [7]

      (7) Zeng, F.; Mebrahtu, C.; Liao, L.; Beine, A. K.; Palkovits, R. J. Energy Chem. 2022, 69, 301. doi:10.1016/j.jechem.2022.01.025

    8. [8]

      (8) Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2018, 57, 172. doi:10.1002/anie.201710877

    9. [9]

      (9) Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Science 2016, 352, 73. doi:10.1126/science.aad8892

    10. [10]

      (10) Zhang, X.; Truong-Phuoc, L.; Liao, X.; Tuci, G.; Fonda, E.; Papaefthymiou, V.; Zafeiratos, S.; Giambastiani, G.; Pronkin, S.; Pham-Huu, C. ACS Catal. 2021, 11, 8915. doi:10.1021/acscatal.1c01638

    11. [11]

      (11) Yang, W.; Vogler, B.; Lei, Y.; Wu, T. Environ. Sci. Water Res. Technol. 2017, 3, 1143. doi:10.1039/C7EW00273D

    12. [12]

      (12) van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi:10.1038/s41929-019-0364-x

    13. [13]

      (13) Zhong, H.; Wang, J.; Meng, F.; Zhang, X. Angew. Chem. Int. Ed. 2016, 55, 9937. doi:10.1002/anie.201604040

    14. [14]

      (14) Sun, Y.; Ding, S.; Xu, S.; Duan, J.; Chen, S. J. Power Sources 2021, 494, 229733. doi:10.1016/j.jpowsour.2021.229733

    15. [15]

      (15) Chen, Y.; Qiao, S.; Tang, Y.; Du, Y.; Zhang, D.; Wang, W.; Zhang, H.; Sun, X.; Liu, C. ACS Nano 2022, 16, 15273. doi:10.1021/acsnano.2c06700

    16. [16]

      (16) Huo, M.; Wang, B.; Zhang, C.; Ding, S.; Yuan, H.; Liang, Z.; Qi, J.; Chen, M.; Xu, Y.; Zhang, W.; et al. Chem. Eur. J. 2019, 25, 12780. doi:10.1002/chem.201902389

    17. [17]

      (17) Li, Z.; Zhang, X.; Kang, Y.; Yu, C. C.; Wen, Y.; Hu, M.; Meng, D.; Song, W.; Yang, Y. Adv. Sci. 2021, 8, 2002631. doi:10.1002/advs.202002631

    18. [18]

      (18) Lei, Z.; Jin, X.; Li, J.; Liu, Y.; Liu, J.; Jiao, S.; Cao, R. J. Energy Chem. 2022, 65, 505. doi:10.1016/j.jechem.2021.06.019

    19. [19]

      (19) Qu, C.; Zhao, B.; Jiao, Y.; Chen, D.; Dai, S.; deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R.; Liu, M. ACS Energy Lett. 2017, 2, 1263. doi:10.1021/acsenergylett.7b00265

    20. [20]

      (20) Jin, W.; Lu, Z.; Wang, Q.; Zhu, Y.; Pan, H.; Yao, S.; Fang, Z.; Huang, X.; Chen, X. J. Phys Mater. 2021, 4, 024006. doi:10.1088/2515-7639/abebe8

    21. [21]

      (21) Chen, C.; Deng, X.; Deng, Y.; An, L.; Deng, Y.; Zheng, Y.; Dang, D.; Yang, X. Int. J. Hydrogen Energy 2022, 47, 14896. doi:10.1016/j.ijhydene.2022.03.017

    22. [22]

      (22) Li, Y.; Wang, Z.; Hu, J.; Li, S.; Du, Y.; Han, X.; Xu, P. Adv. Funct. Mater. 2020, 30, 1910498. doi:10.1002/adfm.201910498

    23. [23]

      (23) Choi, W. H.; Kim, K.-H.; Lee, H.; Choi, J. W.; Park, D. G.; Kim, G. H.; Choi, K. M.; Kang, J. K. Adv. Sci. 2021, 8, 2100044. doi:10.1002/advs.202100044

    24. [24]

      (24) Lu, Z.; Luo, W.; Huang, X.; Yu, H.; Li, Z.; Liu, G.; Liu, J.; Chen, X. J. Colloid Interface Sci. 2022, 611, 599. doi:10.1016/j.jcis.2021.12.132

    25. [25]

      (25) Yuan, W.; Zhao, M.; Yuan, J.; Li, C. M. J. Power Sources 2016, 319, 159. doi:10.1016/j.jpowsour.2016.04.044

    26. [26]

      (26) Liu, H.; Huang, X.; Lu, Z.; Wang, T.; Zhu, Y.; Cheng, J.; Wang, Y.; Wu, D.; Sun, Z.; Robertson, A. W.; et al. Nanoscale 2020, 12, 9628. doi:10.1039/C9NR10800A

    27. [27]

      (27) Zhang, J.; Lian, J.; Jiang, Q.; Wang, G. Chem. Eng. J. 2022, 439, 135634. doi:10.1016/j.cej.2022.135634

    28. [28]

      (28) Yang, L.; Wu, D.; Wang, T.; Jia, D. ACS Appl. Mater. Interfaces 2020, 12, 18692. doi:10.1021/acsami.0c01655

    29. [29]

      (29) Guo, C.; Zhang, W.; Liu, Y.; He, J.; Yang, S.; Liu, M.; Wang, Q.; Guo, Z. Adv. Funct. Mater. 2019, 29, 1901925. doi:10.1002/adfm.201901925

    30. [30]

      (30) Zhao, J.-Y.; Wang, R.; Wang, S.; Lv, Y.-R.; Xu, H.; Zang, S.-Q. J. Mater. Chem. A 2019, 7, 7389. doi:10.1039/C8TA12116H

    31. [31]

      (31) Yi, P.; Zhang, X.; Jin, L.; Chen, P.; Tao, J.; Zhou, J.; Yao, Z. Chem. Eng. J. 2022, 430, 132879. doi:10.1016/j.cej.2021.132879

    32. [32]

      (32) de Sánchez, N. A.; Carrasco, C.; Prieto, P. Physica B 2003, 337, 318. doi:10.1016/S0921-4526(03)00423-X

    33. [33]

      (33) Zhao, Y.; Zhan, X.; Sun, Y.; Wang, H.; Chen, L.; Liu, J.; Shi, H. Chemosphere 2023, 310, 136937. doi:10.1016/j.chemosphere.2022.136937

    34. [34]

      (34) Wang, Z.; Yang, J.; Tang, Y.; Chen, Z.; Lu, Q.; Shen, G.; Wen, Y.; Liu, X.; Liu, F.; Chen, R.; et al. Sustain. Energy Fuels 2021, 5, 2985. doi:10.1039/D1SE00459J

    35. [35]

      (35) Hong, W.; Kitta, M.; Xu, Q. Small Methods 2018, 2, 1800214. doi:10.1002/smtd.201800214

    36. [36]

      (36) Li, Y.; Li, H.; Cao, K.; Jin, T.; Wang, X.; Sun, H.; Ning, J.; Wang, Y.; Jiao, L. Energy Storage Mater. 2018, 12, 44. doi:10.1016/j.ensm.2017.11.006

    37. [37]

      (37) Wang, X.-T.; Ouyang, T.; Wang, L.; Zhong, J.-H.; Ma, T.; Liu, Z.-Q. Angew. Chem. Int. Ed. 2019, 58, 13291. doi:10.1002/anie.201907595

    38. [38]

      (38) Cai, Z.; Yamada, I.; Yagi, S. ACS Appl. Mater. Interfaces 2020, 12, 5847. doi:10.1021/acsami.9b19268

    39. [39]

      (39) Mansour, A. N. Surf. Sci. Spectra 1994, 3, 231. doi:10.1116/1.1247751

    40. [40]

      (40) Chen, Y.; Li, Z.; Zhu, Y.; Sun, D.; Liu, X.; Xu, L.; Tang, Y. Adv. Mater. 2019, 31, 1806312. doi:10.1002/adma.201806312

    41. [41]

      (41) Chen, M.; Kitiphatpiboon, N.; Feng, C.; Abudula, A.; Ma, Y.; Guan, G. eScience 2023, 3, 100111. doi:10.1016/j.esci.2023.100111

    42. [42]

      (42) Tang, W.; Liu, X.; Li, Y.; Pu, Y.; Lu, Y.; Song, Z.; Wang, Q.; Yu, R.; Shui, J. Nano Res. 2020, 13, 447. doi:10.1007/s12274-020-2627-x

    43. [43]

      (43) Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Nano Res. 2022, 15, 3082. doi:10.1007/s12274-021-3966-y

    44. [44]

      (44) Zhang, F.; Chen, L.; Yang, H.; Zhang, Y.; Peng, Y.; Luo, X.; Ahmad, A.; Ramzan, N.; Xu, Y.; Shi, Y. Chem. Eng. J. 2022, 431, 133734. doi:10.1016/j.cej.2021.133734

    45. [45]

      (45) Hong, Q.; Wang, Y.; Wang, R.; Chen, Z.; Yang, H.; Yu, K.; Liu, Y.; Huang, H.; Kang, Z.; Menezes, P. W. Small 2023, 2206723. doi:10.1002/smll.202206723

    46. [46]

      (46) Zhou, Z.; Zaman, W. Q.; Sun, W.; Cao, L.-m.; Tariq, M.; Yang, J. Chem. Commun. 2018, 54, 4959. doi:10.1039/C8CC02008F

    47. [47]

      (47) Jović, B. M.; Lačnjevac, U. Č.; Jović, V. D.; Krstajić, N. V. J. Electroanal. Chem. 2015, 754, 100. doi:10.1016/j.jelechem.2015.07.013

    48. [48]

      (48) Chen, S.; Luo, T.; Chen, K.; Lin, Y.; Fu, J.; Liu, K.; Cai, C.; Wang, Q.; Li, H.; Li, X.; et al. Angew. Chem. Int. Ed. 2021, 60, 16607. doi:10.1002/anie.202104480

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    5. [5]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    14. [14]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    15. [15]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    19. [19]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    20. [20]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

Metrics
  • PDF Downloads(2)
  • Abstract views(457)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return