Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution
- Corresponding author: Yongsheng Fu, fuyongsheng@njust.edu.cn †These authors contributed equally to this work.
Citation:
Wuxin Bai, Qianqian Zhou, Zhenjie Lu, Ye Song, Yongsheng Fu. Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution[J]. Acta Physico-Chimica Sinica,
;2024, 40(3): 230504.
doi:
10.3866/PKU.WHXB202305041
Zhou, Z.; Pei, Z.; Wei, L.; Zhao, S.; Jian, X.; Chen, Y. Energy Environ. Sci. 2020, 13, 3185. doi: 10.1039/D0EE01856B
doi: 10.1039/D0EE01856B
Jia, Y.; Yao, X. Chem 2020, 6, 548. doi: 10.1016/j.chempr.2020.02.011
doi: 10.1016/j.chempr.2020.02.011
Sun, Y.; Wu, W.; Yu, L.; Xu, S.; Zhang, Y.; Yu, L.; Xia, B.; Ding, S.; Li, M.; Jiang, L.; et al. Angew. Chem. Int. Ed. 2023, 5, e263. doi: 10.1002/cey2.263
doi: 10.1002/cey2.263
Arafat, Y.; Azhar, M. R.; Zhong, Y.; Abid, H. R.; Tadé, M. O.; Shao, Z. Adv. Energy Mater. 2021, 11, 2100514. doi: 10.1002/aenm.202100514
doi: 10.1002/aenm.202100514
Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi: 10.1016/j.ccr.2021.214340
doi: 10.1016/j.ccr.2021.214340
Lu, Z.; Yao, S.; Dong, Y.; Wu, D.; Pan, H.; Huang, X.; Wang, T.; Sun, Z.; Chen, X. J. Energy Chem. 2021, 56, 87. doi: 10.1016/j.jechem.2020.07.040
doi: 10.1016/j.jechem.2020.07.040
Zeng, F.; Mebrahtu, C.; Liao, L.; Beine, A. K.; Palkovits, R. J. Energy Chem. 2022, 69, 301. doi: 10.1016/j.jechem.2022.01.025
doi: 10.1016/j.jechem.2022.01.025
Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2018, 57, 172. doi: 10.1002/anie.201710877
doi: 10.1002/anie.201710877
Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Science 2016, 352, 73. doi: 10.1126/science.aad8892
doi: 10.1126/science.aad8892
Zhang, X.; Truong-Phuoc, L.; Liao, X.; Tuci, G.; Fonda, E.; Papaefthymiou, V.; Zafeiratos, S.; Giambastiani, G.; Pronkin, S.; Pham-Huu, C. ACS Catal. 2021, 11, 8915. doi: 10.1021/acscatal.1c01638
doi: 10.1021/acscatal.1c01638
Yang, W.; Vogler, B.; Lei, Y.; Wu, T. Environ. Sci. Water Res. Technol. 2017, 3, 1143. doi: 10.1039/C7EW00273D
doi: 10.1039/C7EW00273D
van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi: 10.1038/s41929-019-0364-x
doi: 10.1038/s41929-019-0364-x
Zhong, H.; Wang, J.; Meng, F.; Zhang, X. Angew. Chem. Int. Ed. 2016, 55, 9937. doi: 10.1002/anie.201604040
doi: 10.1002/anie.201604040
Sun, Y.; Ding, S.; Xu, S.; Duan, J.; Chen, S. J. Power Sources 2021, 494, 229733. doi: 10.1016/j.jpowsour.2021.229733
doi: 10.1016/j.jpowsour.2021.229733
Chen, Y.; Qiao, S.; Tang, Y.; Du, Y.; Zhang, D.; Wang, W.; Zhang, H.; Sun, X.; Liu, C. ACS Nano 2022, 16, 15273. doi: 10.1021/acsnano.2c06700
doi: 10.1021/acsnano.2c06700
Huo, M.; Wang, B.; Zhang, C.; Ding, S.; Yuan, H.; Liang, Z.; Qi, J.; Chen, M.; Xu, Y.; Zhang, W.; et al. Chem. Eur. J. 2019, 25, 12780. doi: 10.1002/chem.201902389
doi: 10.1002/chem.201902389
Li, Z.; Zhang, X.; Kang, Y.; Yu, C. C.; Wen, Y.; Hu, M.; Meng, D.; Song, W.; Yang, Y. Adv. Sci. 2021, 8, 2002631. doi: 10.1002/advs.202002631
doi: 10.1002/advs.202002631
Lei, Z.; Jin, X.; Li, J.; Liu, Y.; Liu, J.; Jiao, S.; Cao, R. J. Energy Chem. 2022, 65, 505. doi: 10.1016/j.jechem.2021.06.019
doi: 10.1016/j.jechem.2021.06.019
Qu, C.; Zhao, B.; Jiao, Y.; Chen, D.; Dai, S.; deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R.; Liu, M. ACS Energy Lett. 2017, 2, 1263. doi: 10.1021/acsenergylett.7b00265
doi: 10.1021/acsenergylett.7b00265
Jin, W.; Lu, Z.; Wang, Q.; Zhu, Y.; Pan, H.; Yao, S.; Fang, Z.; Huang, X.; Chen, X. J. Phys Mater. 2021, 4, 024006. doi: 10.1088/2515-7639/abebe8
doi: 10.1088/2515-7639/abebe8
Chen, C.; Deng, X.; Deng, Y.; An, L.; Deng, Y.; Zheng, Y.; Dang, D.; Yang, X. Int. J. Hydrogen Energy 2022, 47, 14896. doi: 10.1016/j.ijhydene.2022.03.017
doi: 10.1016/j.ijhydene.2022.03.017
Li, Y.; Wang, Z.; Hu, J.; Li, S.; Du, Y.; Han, X.; Xu, P. Adv. Funct. Mater. 2020, 30, 1910498. doi: 10.1002/adfm.201910498
doi: 10.1002/adfm.201910498
Choi, W. H.; Kim, K.-H.; Lee, H.; Choi, J. W.; Park, D. G.; Kim, G. H.; Choi, K. M.; Kang, J. K. Adv. Sci. 2021, 8, 2100044. doi: 10.1002/advs.202100044
doi: 10.1002/advs.202100044
Lu, Z.; Luo, W.; Huang, X.; Yu, H.; Li, Z.; Liu, G.; Liu, J.; Chen, X. J. Colloid Interface Sci. 2022, 611, 599. doi: 10.1016/j.jcis.2021.12.132
doi: 10.1016/j.jcis.2021.12.132
Yuan, W.; Zhao, M.; Yuan, J.; Li, C. M. J. Power Sources 2016, 319, 159. doi: 10.1016/j.jpowsour.2016.04.044
doi: 10.1016/j.jpowsour.2016.04.044
Liu, H.; Huang, X.; Lu, Z.; Wang, T.; Zhu, Y.; Cheng, J.; Wang, Y.; Wu, D.; Sun, Z.; Robertson, A. W.; et al. Nanoscale 2020, 12, 9628. doi: 10.1039/C9NR10800A
doi: 10.1039/C9NR10800A
Zhang, J.; Lian, J.; Jiang, Q.; Wang, G. Chem. Eng. J. 2022, 439, 135634. doi: 10.1016/j.cej.2022.135634
doi: 10.1016/j.cej.2022.135634
Yang, L.; Wu, D.; Wang, T.; Jia, D. ACS Appl. Mater. Interfaces 2020, 12, 18692. doi: 10.1021/acsami.0c01655
doi: 10.1021/acsami.0c01655
Guo, C.; Zhang, W.; Liu, Y.; He, J.; Yang, S.; Liu, M.; Wang, Q.; Guo, Z. Adv. Funct. Mater. 2019, 29, 1901925. doi: 10.1002/adfm.201901925
doi: 10.1002/adfm.201901925
Zhao, J.-Y.; Wang, R.; Wang, S.; Lv, Y.-R.; Xu, H.; Zang, S.-Q. J. Mater. Chem. A 2019, 7, 7389. doi: 10.1039/C8TA12116H
doi: 10.1039/C8TA12116H
Yi, P.; Zhang, X.; Jin, L.; Chen, P.; Tao, J.; Zhou, J.; Yao, Z. Chem. Eng. J. 2022, 430, 132879. doi: 10.1016/j.cej.2021.132879
doi: 10.1016/j.cej.2021.132879
de Sánchez, N. A.; Carrasco, C.; Prieto, P. Phys. B 2003, 337, 318. doi: 10.1016/S0921-4526(03)00423-X
doi: 10.1016/S0921-4526(03)00423-X
Zhao, Y.; Zhan, X.; Sun, Y.; Wang, H.; Chen, L.; Liu, J.; Shi, H. Chemosphere 2023, 310, 136937. doi: 10.1016/j.chemosphere.2022.136937
doi: 10.1016/j.chemosphere.2022.136937
Wang, Z.; Yang, J.; Tang, Y.; Chen, Z.; Lu, Q.; Shen, G.; Wen, Y.; Liu, X.; Liu, F.; Chen, R.; et al. Sustain. Energy Fuels 2021, 5, 2985. doi: 10.1039/D1SE00459J
doi: 10.1039/D1SE00459J
Hong, W.; Kitta, M.; Xu, Q. Small Methods 2018, 2, 1800214. doi: 10.1002/smtd.201800214
doi: 10.1002/smtd.201800214
Li, Y.; Li, H.; Cao, K.; Jin, T.; Wang, X.; Sun, H.; Ning, J.; Wang, Y.; Jiao, L. Energy Storage Mater. 2018, 12, 44. doi: 10.1016/j.ensm.2017.11.006
doi: 10.1016/j.ensm.2017.11.006
Wang, X.-T.; Ouyang, T.; Wang, L.; Zhong, J.-H.; Ma, T.; Liu, Z.-Q. Angew. Chem. Int. Ed. 2019, 58, 13291. doi: 10.1002/anie.201907595
doi: 10.1002/anie.201907595
Cai, Z.; Yamada, I.; Yagi, S. ACS Appl. Mater. Interfaces 2020, 12, 5847. doi: 10.1021/acsami.9b19268
doi: 10.1021/acsami.9b19268
Mansour, A. N. Surf. Sci. Spectra 1994, 3, 231. doi: 10.1116/1.1247751
doi: 10.1116/1.1247751
Chen, Y.; Li, Z.; Zhu, Y.; Sun, D.; Liu, X.; Xu, L.; Tang, Y. Adv. Mater. 2019, 31, 1806312. doi: 10.1002/adma.201806312
doi: 10.1002/adma.201806312
Chen, M.; Kitiphatpiboon, N.; Feng, C.; Abudula, A.; Ma, Y.; Guan, G. eScience 2023, 3, 100111. doi: 10.1016/j.esci.2023.100111
doi: 10.1016/j.esci.2023.100111
Tang, W.; Liu, X.; Li, Y.; Pu, Y.; Lu, Y.; Song, Z.; Wang, Q.; Yu, R.; Shui, J. Nano Res. 2020, 13, 447. doi: 10.1007/s12274-020-2627-x
doi: 10.1007/s12274-020-2627-x
Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Nano Res. 2022, 15, 3082. doi: 10.1007/s12274-021-3966-y
doi: 10.1007/s12274-021-3966-y
Zhang, F.; Chen, L.; Yang, H.; Zhang, Y.; Peng, Y.; Luo, X.; Ahmad, A.; Ramzan, N.; Xu, Y.; Shi, Y. Chem. Eng. J. 2022, 431, 133734. doi: 10.1016/j.cej.2021.133734
doi: 10.1016/j.cej.2021.133734
Hong, Q.; Wang, Y.; Wang, R.; Chen, Z.; Yang, H.; Yu, K.; Liu, Y.; Huang, H.; Kang, Z.; Menezes, P. W. Small 2023, 2206723. doi: 10.1002/smll.202206723
doi: 10.1002/smll.202206723
Zhou, Z.; Zaman, W. Q.; Sun, W.; Cao, L.-m.; Tariq, M.; Yang, J. Chem. Commun. 2018, 54, 4959. doi: 10.1039/C8CC02008F
doi: 10.1039/C8CC02008F
Jović, B. M.; Lačnjevac, U. Č.; Jović, V. D.; Krstajić, N. V. J. Electroanal. Chem. 2015, 754, 100. doi: 10.1016/j.jelechem.2015.07.013
doi: 10.1016/j.jelechem.2015.07.013
Chen, S.; Luo, T.; Chen, K.; Lin, Y.; Fu, J.; Liu, K.; Cai, C.; Wang, Q.; Li, H.; Li, X.; et al. Angew. Chem. Int. Ed. 2021, 60, 16607. doi: 10.1002/anie.202104480
doi: 10.1002/anie.202104480
Jianqiao ZHANG , Yang LIU , Yan HE , Yaling ZHOU , Fan YANG , Shihui CHENG , Bin XIA , Zhong WANG , Shijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
Yun Chen , Daijie Deng , Li Xu , Xingwang Zhu , Henan Li , Chengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008