Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution
- Corresponding author: Yongsheng Fu, fuyongsheng@njust.edu.cn
Citation: Wuxin Bai, Qianqian Zhou, Zhenjie Lu, Ye Song, Yongsheng Fu. Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230504. doi: 10.3866/PKU.WHXB202305041
(1) Zhou, Z.; Pei, Z.; Wei, L.; Zhao, S.; Jian, X.; Chen, Y. Energy Environ. Sci. 2020, 13, 3185. doi:10.1039/D0EE01856B
(2) Jia, Y.; Yao, X. Chem 2020, 6, 548. doi:10.1016/j.chempr.2020.02.011
(3) Sun, Y.; Wu, W.; Yu, L.; Xu, S.; Zhang, Y.; Yu, L.; Xia, B.; Ding, S.; Li, M.; Jiang, L.; et al. Angew. Chem. Int. Ed. 2023, 5, e263. doi:10.1002/cey2.263
(4) Arafat, Y.; Azhar, M. R.; Zhong, Y.; Abid, H. R.; Tadé, M. O.; Shao, Z. Adv. Energy Mater. 2021, 11, 2100514. doi:10.1002/aenm.202100514
(5) Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi:10.1016/j.ccr.2021.214340
(6) Lu, Z.; Yao, S.; Dong, Y.; Wu, D.; Pan, H.; Huang, X.; Wang, T.; Sun, Z.; Chen, X. J. Energy Chem. 2021, 56, 87. doi:10.1016/j.jechem.2020.07.040
(7) Zeng, F.; Mebrahtu, C.; Liao, L.; Beine, A. K.; Palkovits, R. J. Energy Chem. 2022, 69, 301. doi:10.1016/j.jechem.2022.01.025
(8) Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2018, 57, 172. doi:10.1002/anie.201710877
(9) Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Science 2016, 352, 73. doi:10.1126/science.aad8892
(10) Zhang, X.; Truong-Phuoc, L.; Liao, X.; Tuci, G.; Fonda, E.; Papaefthymiou, V.; Zafeiratos, S.; Giambastiani, G.; Pronkin, S.; Pham-Huu, C. ACS Catal. 2021, 11, 8915. doi:10.1021/acscatal.1c01638
(11) Yang, W.; Vogler, B.; Lei, Y.; Wu, T. Environ. Sci. Water Res. Technol. 2017, 3, 1143. doi:10.1039/C7EW00273D
(12) van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi:10.1038/s41929-019-0364-x
(13) Zhong, H.; Wang, J.; Meng, F.; Zhang, X. Angew. Chem. Int. Ed. 2016, 55, 9937. doi:10.1002/anie.201604040
(14) Sun, Y.; Ding, S.; Xu, S.; Duan, J.; Chen, S. J. Power Sources 2021, 494, 229733. doi:10.1016/j.jpowsour.2021.229733
(15) Chen, Y.; Qiao, S.; Tang, Y.; Du, Y.; Zhang, D.; Wang, W.; Zhang, H.; Sun, X.; Liu, C. ACS Nano 2022, 16, 15273. doi:10.1021/acsnano.2c06700
(16) Huo, M.; Wang, B.; Zhang, C.; Ding, S.; Yuan, H.; Liang, Z.; Qi, J.; Chen, M.; Xu, Y.; Zhang, W.; et al. Chem. Eur. J. 2019, 25, 12780. doi:10.1002/chem.201902389
(17) Li, Z.; Zhang, X.; Kang, Y.; Yu, C. C.; Wen, Y.; Hu, M.; Meng, D.; Song, W.; Yang, Y. Adv. Sci. 2021, 8, 2002631. doi:10.1002/advs.202002631
(18) Lei, Z.; Jin, X.; Li, J.; Liu, Y.; Liu, J.; Jiao, S.; Cao, R. J. Energy Chem. 2022, 65, 505. doi:10.1016/j.jechem.2021.06.019
(19) Qu, C.; Zhao, B.; Jiao, Y.; Chen, D.; Dai, S.; deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R.; Liu, M. ACS Energy Lett. 2017, 2, 1263. doi:10.1021/acsenergylett.7b00265
(20) Jin, W.; Lu, Z.; Wang, Q.; Zhu, Y.; Pan, H.; Yao, S.; Fang, Z.; Huang, X.; Chen, X. J. Phys Mater. 2021, 4, 024006. doi:10.1088/2515-7639/abebe8
(21) Chen, C.; Deng, X.; Deng, Y.; An, L.; Deng, Y.; Zheng, Y.; Dang, D.; Yang, X. Int. J. Hydrogen Energy 2022, 47, 14896. doi:10.1016/j.ijhydene.2022.03.017
(22) Li, Y.; Wang, Z.; Hu, J.; Li, S.; Du, Y.; Han, X.; Xu, P. Adv. Funct. Mater. 2020, 30, 1910498. doi:10.1002/adfm.201910498
(23) Choi, W. H.; Kim, K.-H.; Lee, H.; Choi, J. W.; Park, D. G.; Kim, G. H.; Choi, K. M.; Kang, J. K. Adv. Sci. 2021, 8, 2100044. doi:10.1002/advs.202100044
(24) Lu, Z.; Luo, W.; Huang, X.; Yu, H.; Li, Z.; Liu, G.; Liu, J.; Chen, X. J. Colloid Interface Sci. 2022, 611, 599. doi:10.1016/j.jcis.2021.12.132
(25) Yuan, W.; Zhao, M.; Yuan, J.; Li, C. M. J. Power Sources 2016, 319, 159. doi:10.1016/j.jpowsour.2016.04.044
(26) Liu, H.; Huang, X.; Lu, Z.; Wang, T.; Zhu, Y.; Cheng, J.; Wang, Y.; Wu, D.; Sun, Z.; Robertson, A. W.; et al. Nanoscale 2020, 12, 9628. doi:10.1039/C9NR10800A
(27) Zhang, J.; Lian, J.; Jiang, Q.; Wang, G. Chem. Eng. J. 2022, 439, 135634. doi:10.1016/j.cej.2022.135634
(28) Yang, L.; Wu, D.; Wang, T.; Jia, D. ACS Appl. Mater. Interfaces 2020, 12, 18692. doi:10.1021/acsami.0c01655
(29) Guo, C.; Zhang, W.; Liu, Y.; He, J.; Yang, S.; Liu, M.; Wang, Q.; Guo, Z. Adv. Funct. Mater. 2019, 29, 1901925. doi:10.1002/adfm.201901925
(30) Zhao, J.-Y.; Wang, R.; Wang, S.; Lv, Y.-R.; Xu, H.; Zang, S.-Q. J. Mater. Chem. A 2019, 7, 7389. doi:10.1039/C8TA12116H
(31) Yi, P.; Zhang, X.; Jin, L.; Chen, P.; Tao, J.; Zhou, J.; Yao, Z. Chem. Eng. J. 2022, 430, 132879. doi:10.1016/j.cej.2021.132879
(32) de Sánchez, N. A.; Carrasco, C.; Prieto, P. Physica B 2003, 337, 318. doi:10.1016/S0921-4526(03)00423-X
(33) Zhao, Y.; Zhan, X.; Sun, Y.; Wang, H.; Chen, L.; Liu, J.; Shi, H. Chemosphere 2023, 310, 136937. doi:10.1016/j.chemosphere.2022.136937
(34) Wang, Z.; Yang, J.; Tang, Y.; Chen, Z.; Lu, Q.; Shen, G.; Wen, Y.; Liu, X.; Liu, F.; Chen, R.; et al. Sustain. Energy Fuels 2021, 5, 2985. doi:10.1039/D1SE00459J
(35) Hong, W.; Kitta, M.; Xu, Q. Small Methods 2018, 2, 1800214. doi:10.1002/smtd.201800214
(36) Li, Y.; Li, H.; Cao, K.; Jin, T.; Wang, X.; Sun, H.; Ning, J.; Wang, Y.; Jiao, L. Energy Storage Mater. 2018, 12, 44. doi:10.1016/j.ensm.2017.11.006
(37) Wang, X.-T.; Ouyang, T.; Wang, L.; Zhong, J.-H.; Ma, T.; Liu, Z.-Q. Angew. Chem. Int. Ed. 2019, 58, 13291. doi:10.1002/anie.201907595
(38) Cai, Z.; Yamada, I.; Yagi, S. ACS Appl. Mater. Interfaces 2020, 12, 5847. doi:10.1021/acsami.9b19268
(39) Mansour, A. N. Surf. Sci. Spectra 1994, 3, 231. doi:10.1116/1.1247751
(40) Chen, Y.; Li, Z.; Zhu, Y.; Sun, D.; Liu, X.; Xu, L.; Tang, Y. Adv. Mater. 2019, 31, 1806312. doi:10.1002/adma.201806312
(41) Chen, M.; Kitiphatpiboon, N.; Feng, C.; Abudula, A.; Ma, Y.; Guan, G. eScience 2023, 3, 100111. doi:10.1016/j.esci.2023.100111
(42) Tang, W.; Liu, X.; Li, Y.; Pu, Y.; Lu, Y.; Song, Z.; Wang, Q.; Yu, R.; Shui, J. Nano Res. 2020, 13, 447. doi:10.1007/s12274-020-2627-x
(43) Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Nano Res. 2022, 15, 3082. doi:10.1007/s12274-021-3966-y
(44) Zhang, F.; Chen, L.; Yang, H.; Zhang, Y.; Peng, Y.; Luo, X.; Ahmad, A.; Ramzan, N.; Xu, Y.; Shi, Y. Chem. Eng. J. 2022, 431, 133734. doi:10.1016/j.cej.2021.133734
(45) Hong, Q.; Wang, Y.; Wang, R.; Chen, Z.; Yang, H.; Yu, K.; Liu, Y.; Huang, H.; Kang, Z.; Menezes, P. W. Small 2023, 2206723. doi:10.1002/smll.202206723
(46) Zhou, Z.; Zaman, W. Q.; Sun, W.; Cao, L.-m.; Tariq, M.; Yang, J. Chem. Commun. 2018, 54, 4959. doi:10.1039/C8CC02008F
(47) Jović, B. M.; Lačnjevac, U. Č.; Jović, V. D.; Krstajić, N. V. J. Electroanal. Chem. 2015, 754, 100. doi:10.1016/j.jelechem.2015.07.013
(48) Chen, S.; Luo, T.; Chen, K.; Lin, Y.; Fu, J.; Liu, K.; Cai, C.; Wang, Q.; Li, H.; Li, X.; et al. Angew. Chem. Int. Ed. 2021, 60, 16607. doi:10.1002/anie.202104480
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Zhi Wang , Lingpeng Yan , Yelin Hao , Jingxia Zheng , Yongzhen Yang , Xuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430
Xuexia Lin , Yihui Zhou , Jiafu Hong , Xiaofeng Wei , Bin Liu , Chong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835
Jin Yan , Chengxia Tong , Yajie Li , Yue Gu , Xuejian Qu , Shigang Wei , Wanchun Zhu , Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Xin Zhang , Junyu Chen , Xiang Pei , Linxin Yang , Liang Wang , Luona Chen , Guangmei Yang , Xibo Pei , Qianbing Wan , Jian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889
Shunliu Deng , Haifeng Su , Yaxian Zhu , Yuzhi Wang , Yuhua Weng , Zhaobin Chen , Shunü Peng , Yinyun Lü , Xinyi Hong , Yiru Wang , Xiaozhen Huang , Zhimin Lin , Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105