Citation: Zeyu Liu,  Wenze Huang,  Yang Xiao,  Jundong Zhang,  Weijin Kong,  Peng Wu,  Chenzi Zhao,  Aibing Chen,  Qiang Zhang. Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230504. doi: 10.3866/PKU.WHXB202305040 shu

Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries

  • Corresponding author: Chenzi Zhao,  Qiang Zhang, 
  • Received Date: 22 May 2023
    Revised Date: 24 June 2023
    Accepted Date: 27 June 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2021YFB2500300), the National Natural Science Foundation of China (22108151), the S&T Program of Hebei Province (22344402D), and the International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program YJ20210125).

  • The anode-free solid-state lithium battery (AFSSLB) is a type of lithium battery that utilizes an initial charging process to generate lithium metal as the anode. With a 1: 1 anode-to-cathode capacity ratio, it enables any lithiated cathode system to achieve a maximal energy density. Furthermore, the incorporation of inorganic solid electrolytes in the AFSSLB greatly enhances its intrinsic safety. However, the AFSSLB faces challenges related to interfacial issues between the electrolyte and collector. During the cycling process, uneven lithium-ion flux can result in contact loss and dendrite growth, ultimately leading to rapid battery failure. Addressing these interfacial problems is crucial for the successful implementation and performance of AFSSLBs. The absence of initial lithium metal material prevents the battery system from accommodating additional lithium through a modified anode. Instead, it relies on high Coulomb efficiency during cycling. Consequently, ensuring continuous and uniform contact at the anode interface is crucial for maintaining the reversibility of lithium deposition. Herein, a nanocomposite current collector is introduced to enhance the interface between the collector and electrolyte in AFSSLB. In this approach, silver nanoparticles are dispersed within the carbon materials to construct a composite current collector. The incorporation of the silver-carbon nanocomposite layer results in a low interfacial impedance of 10 Ω·cm-2, indicating that the electrolyte-collector interface maintains contact throughout the charging and discharging processes. The focused ion beam (FIB) technology and electron microscopy were employed to analyze the battery cross sections, revealing that lithium metal could be deposited in a thickness of more than 25 μm without short-circuiting using this silver-carbon nanocomposite current collector. The solid-state batteries equipped with nanocomposite current collectors exhibited an enhanced dissolution of silver in the lithium metal, leading to the formation of abundant lithiophilic sites. The nanocomposites facilitate the rapid transfer of Li atoms within the anodes, thus achieving uniform lithium metal deposition. Theoretical analysis using the nucleation equation demonstrates that using nano-silver as a current collector can reduce the nucleation work required for deposition by at least four orders of magnitude. The smaller nucleation force contributes to the uniform and stable deposition of lithium metal during continuous cycling. The solid-state batteries demonstrated improved interfacial contact, resulting in the uniform and stable lithium metal deposition of over 7.0 mAh·cm-2 for more than 200 cycles at 0.25 mA·cm-2. The cycling performances of all-solid-state batteries can be significantly improved through the design of nanocomposite collectors. This presents an effective strategy for advancing the practical implementation of all-solid-state lithium metal batteries, particularly those utilizing an anode-free configuration.
  • 加载中
    1. [1]

      (1) Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chem 2019, 5, 74. doi:10.1016/j.chempr.2018.12.002

    2. [2]

      (2) Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q.; et al. InfoMat 2019, 1, 533. doi:10.1002/inf2.12056

    3. [3]

      (3) Shen, X.; Cheng, X.; Shi, P.; Huang, J.; Zhang, X.; Yan, C.; Li, T.; Zhang, Q. J. Energy Chem. 2019, 37, 29. doi:10.1016/j.jechem.2018.11.016

    4. [4]

      (4) Chen, J. X.; Zhang, X. Q.; Li, B. Q.; Wang, X. M.; Shi, P.; Zhu, W.; Chen, A.; Jin, Z.; Xiang, R.; Huang, J. Q. J. Energy Chem. 2020, 47, 128. doi:10.1016/j.jechem.2019.11.024

    5. [5]

      (5) Ding, J.; Xu, R.; Yan, C.; Xiao, Y.; Liang, Y.; Yuan, H.; Huang, J. Chin. Chem. Lett. 2020, 31, 2339. doi:10.1016/j.cclet.2020.03.015

    6. [6]

      (6) Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Adv. Energy Mater. 2017, 7, 1700260. doi:10.1002/aenm.201700260

    7. [7]

      (7) Yan, C.; Yuan, H.; Park, H. S.; Huang, J. Q. J. Energy Chem. 2020, 47, 217. doi:10.1016/j.jechem.2019.09.034

    8. [8]

    9. [9]

      (9) Zhang, X. Q.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Engineering 2018, 4, 831. doi:10.1016/j.eng.2018.10.008

    10. [10]

      (10) Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Sci. China Chem. 2019, 62, 1286. doi:10.1007/s11426-019-9519-9

    11. [11]

      (11) Ates, T.; Keller, M.; Kulisch, J.; Adermann, T.; Passerini, S. Energy Storage Mater. 2019, 17, 204. doi:10.1016/j.ensm.2018.11.011

    12. [12]

      (12) Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Nat. Chem. 2016, 8, 426. doi:10.1038/nchem.2470

    13. [13]

      (13) Yu, Q.; Jiang, K.; Yu, C.; Chen, X.; Zhang, C.; Yao, Y.; Jiang, B.; Long, H. Chin. Chem. Lett. 2021, 32, 2659. doi:10.1016/j.cclet.2021.03.032

    14. [14]

      (14) Shen, Y. Q.; Zeng, F. L.; Zhou, X. Y.; Wang, A. B.; Wang, W. K.; Yuan, N. Y.; Ding, J. N. J. Energy Chem. 2020, 48, 267. doi:10.1016/j.jechem.2020.01.016

    15. [15]

      (15) Wu, J. Y.; Ling, S. G.; Yang, Q.; Li, H.; Xu, X. X.; Chen, L. Q. Chin. Phys. B 2016, 25, 078204. doi:10.1088/1674-1056/25/7/078204

    16. [16]

    17. [17]

    18. [18]

    19. [19]

      (19) Huang, W.-Z.; Zhao, C.-Z.; Wu, P.; Yuan, H.; Feng, W.-E.; Liu, Z.-Y.; Lu, Y.; Sun, S.; Fu, Z.-H.; Hu, J.-K.; et al. Adv. Energy Mater. 2022, 12, 2201044. doi:10.1002/aenm.202201044

    20. [20]

      (20) Suzuki, N.; Yashiro, N.; Fujiki, S.; Omoda, R.; Shiratsuchi, T.; Watanabe, T.; Aihara, Y. Adv. Energy Sustain. Res. 2021, 2, 2100066. doi:10.1002/aesr.202100066

    21. [21]

      (21) Neudecker, B. J.; Dudney, N. J.; Bates, J. B. J. Electrochem. Soc. 2000, 147, 517. doi:10.1149/1.1393226

    22. [22]

      (22) Huang, W.-Z.; Liu, Z.-Y.; Xu, P.; Kong, W.-J.; Huang, X.-Y.; Shi, P.; Wu, P.; Zhao, C.-Z.; Yuan, H.; Huang, J.-Q.; et al. J. Mater. Chem. A 2023. 11,12713. doi:10.1039/D3TA00121K

    23. [23]

      (23) Ikhe, A. B.; Park, W. B.; Han, S. C.; Seo, J. Y.; Han, S.; Sohn, K.-S.; Pyo, M. J. Mater. Chem. A 2022, 10, 21456. doi:10.1039/D2TA06379D

    24. [24]

      (24) Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O. Adv. Funct. Mater. 2021, 31, 2106608. doi:10.1002/adfm.202106608

    25. [25]

      (25) Lin, Y.; Chen, J.; Zhang, H.; Wang, J. J. Energy Chem. 2023, 80, 207. doi:10.1016/j.jechem.2023.02.005

    26. [26]

      (26) Shen, X.; Zhang, R.; Shi, P.; Chen, X.; Zhang, Q. Adv. Energy Mater. 2021, 11, 2003416. doi:10.1002/aenm.202003416

    27. [27]

      (27) Jiang, F.-N.; Yang, S.-J.; Liu, H.; Cheng, X.-B.; Liu, L.; Xiang, R.; Zhang, Q.; Kaskel, S.; Huang, J.-Q. SusMat 2021, 1, 506. doi:10.1002/sus2.37

    28. [28]

      (28) Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Nat. Mater. 2019, 18, 1105. doi:10.1038/s41563-019-0438-

    29. [29]

      (29) Zhang, X.; Huang, L.; Xie, B.; Zhang, S.; Jiang, Z.; Xu, G.; Li, J.; Cui, G. Adv. Energy Mater. 2023, 13, 2203648. doi:10.1002/aenm.202203648

    30. [30]

      (30) Jo, C.-H.; Sohn, K.-S.; Myung, S.-T. Energy Storage Mater. 2023, 57, 471. doi:10.1016/j.ensm.2023.02.040

    31. [31]

      (31) Raj, V.; Venturi, V.; Kankanallu, V. R.; Kuiri, B.; Viswanathan, V.; Aetukuri, N. P. B. Nat. Mater. 2022, 21, 1050. doi:10.1038/s41563-022-01264-8

    32. [32]

      (32) Fang, C.; Lu, B.; Pawar, G.; Zhang, M.; Cheng, D.; Chen, S.; Ceja, M.; Doux, J.-M.; Musrock, H.; Cai, M.; et al. Nat. Energy 2021, 6, 987. doi:10.1038/s41560-021-00917-3

    33. [33]

      (33) Lin, L.; Qin, K.; Li, M.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Suo, L. Energy Storage Mater. 2022, 45, 821. doi:10.1016/j.ensm.2021.12.036

    34. [34]

      (34) Shin, W.; Manthiram, A. Angew. Chem. Int. Ed. 2022, 61, e202115909. doi:10.1002/anie.202115909

    35. [35]

      (35) Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. Nat. Energy 2020, 5, 299. doi:10.1038/s41560-020-0575-z

    36. [36]

      (36) Liang, P.; Sun, H.; Huang, C. L.; Zhu, G.; Tai, H. C.; Li, J.; Wang, F.; Wang, Y.; Huang, C. J.; Jiang, S. K.; et al. Adv. Mater. 2022, 34, 2207361. doi:10.1002/adma.202207361

    37. [37]

      (37) Lin, L.; Qin, K.; Zhang, Q.; Gu, L.; Suo, L.; Hu, Y. S.; Li, H.; Huang, X.; Chen, L. Angew. Chem. Int. Ed. 2021, 60, 8289. doi:10.1002/anie.202017063

    38. [38]

      (38) Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi:10.1038/nenergy.2016.10

    39. [39]

      (39) Garcia-Calvo, O.; Gutiérrez-Pardo, A.; Combarro, I.; Orue, A.; Lopez-Aranguren, P.; Urdampilleta, I.; Kvasha, A. Front. Chem. 2022, 10, 934365. doi:10.3389/fchem.2022.934365

    40. [40]

      (40) Chen, X.-R.; Chen, X.; Yan, C.; Zhang, X.-Q.; Zhang, Q.; Huang, J.-Q. Energy Fuels 2021, 35, 12746. doi:10.1021/acs.energyfuels.1c01602

    41. [41]

      (41) Lu, Y.; Zhao, C.-Z.; Hu, J.-K.; Sun, S.; Yuan, H.; Fu, Z.-H. Sci. Adv. 2022, 8, eadd0510. doi:10.1126/sciadv.add0510

    42. [42]

      (42) Lewis, J. A.; Cavallaro, K. A.; Liu, Y.; McDowell, M. T. Joule 2022, 6, 1418. doi:10.1016/j.joule.2022.05.016

    43. [43]

      (43) Han, S. Y.; Lee, C.; Lewis, J. A.; Yeh, D.; Liu, Y.; Lee, H.-W.; McDowell, M. T. Joule 2021, 5, 2450. doi:10.1016/j.joule.2021.07.002

    44. [44]

      (44) Zhang, R.; Chen, X.; Shen, X.; Zhang, X.-Q.; Chen, X.-R.; Cheng, X.-B.; Yan, C.; Zhao, C.-Z.; Zhang, Q. Joule 2018, 2, 764. doi:10.1016/j.joule.2018.02.001

    45. [45]

      (45) Wang, C.; Wang, H.; Tao, L.; Wang, X.; Cao, P.; Lin, F. ACS Energy Lett. 2023, 8, 1929. doi:10.1021/acsenergylett.3c00180

    46. [46]

      (46) Zhang, W.-J. J. Power Sources 2011, 196, 877. doi:10.1016/j.jpowsour.2010.08.114

    47. [47]

      (47) Jin, S.; Ye, Y.; Niu, Y.; Xu, Y.; Jin, H.; Wang, J.; Sun, Z.; Cao, A.; Wu, X.; Luo, Y.; et al. J. Am. Chem. Soc. 2020, 142, 8818. doi:10.1021/jacs.0c01811

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    3. [3]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    8. [8]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    12. [12]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    13. [13]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    20. [20]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

Metrics
  • PDF Downloads(18)
  • Abstract views(631)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return