Citation: Zhi Dou,  Huiyu Duan,  Yixi Lin,  Yinghui Xia,  Mingbo Zheng,  Zhenming Xu. High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230503. doi: 10.3866/PKU.WHXB202305039 shu

High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer

  • Corresponding author: Mingbo Zheng,  Zhenming Xu, 
  • Received Date: 22 May 2023
    Revised Date: 23 June 2023
    Accepted Date: 10 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22209074), the Fundamental Research Funds for the Central Universities (NS2022059, NS2021039) and the Open Research Fund of CNMGE Platform & NSCC-TJ (CNMGE202312).

  • Solid electrolyte interphase (SEI) layers derived from the side reactions between Li metal anode and electrolyte, have great impacts on the electrochemical performance of lithium batteries. In solid-state batteries, SEI layers are also required as the electrical insulators but an ionic conductors, and the mechanical reinforcements for withstanding volume change and suppressing dendritic growth in Li metal anode. Introducing LiF substrates into SEI layers can significantly reduce the electron tunneling ability from Li anode to SEI layer, meanwhile providing the excellent interfacial mechanical strength. However, LiF has a very high energy barrier for ion diffusion, hindering the rapid lithium ion diffusion from SEI layer to lithium anode. Therefore, it is necessary to introduce lithium alloy phases with higher ionic conductivity into the LiF matrix to provide sufficient ion diffusion channels. By the data mining technology, high-throughput first-principle calculation and ab-initio molecular dynamics simulations, this work performed phase diagram and ion diffusion energy barrier calculations to evaluate the thermodynamic stabilities and lithium diffusion abilities of several lithium alloys. 27 lithium alloys that can be used as Li-ion conducting phases in the LiF-based artificial SEI layers are screened. Meanwhile, the structure-function relationship analysis of lithium alloys uncovers that the crystal structure type of lithium alloys has more significant impacts on lithium ion diffusion than alloy elements, that is, lithium alloy structures with the space group of I43d and Fm3m have very excellent lithium ion transport performance, while the diffusion channels of lithium alloy structures with the space group of Pm3m and F43m are narrow, leading to the poor lithium ion transport performance. In addition, this work uncovers a physical image of lithium ion transport in artificial SEI interface, that is, lithium ion diffusion in LiF crystal bulk is quite difficult, while the diffusion resistance at LiF grain boundaries and LiF/LiM alloy interfaces is small.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      (7) Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Joule 2018, 2 (10), 1991. doi:10.1016/j.joule.2018.07.009

    8. [8]

      (8) Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Npj Comput. Mater. 2018, 4 (1), 15. doi:10.1038/s41524-018-0064-0

    9. [9]

      (9) Xiao, Y.; Wang, Y.; Bo, S.-H.; Kim, J. C.; Miara, L. J.; Ceder, G. Nat. Rev. Mater. 2020, 5 (2), 105. doi:10.1038/s41578-019-0157-5

    10. [10]

    11. [11]

      (11) Wang, J.; Chen, L.; Li, H.; Wu, F. Energy Environ. Mater. 2023, e12613. doi:10.1002/eem2.12613

    12. [12]

      (12) Wang, Z.; Li, X.; Chen, Y.; Pei, K.; Mai, Y.-W.; Zhang, S.; Li, J. Chem 2020, 6 (11), 2878. doi:10.1016/j.chempr.2020.09.005

    13. [13]

      (13) Hu, A.; Chen, W.; Du, X.; Hu, Y.; Lei, T.; Wang, H.; Xue, L.; Li, Y.; Sun, H.; Yan, Y. Energy Environ. Sci. 2021, 14 (7), 4115. doi:10.1039/D1EE00508A

    14. [14]

      (14) Luo, L.; Zheng, F.; Gao, H.; Lan, C.; Sun, Z.; Huang, W.; Han, X.; Zhang, Z.; Su, P.; Wang, P. Nano Res. 2023, 16 (1), 1634. doi:10.1007/s12274-022-5136-2

    15. [15]

      (15) Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953. doi:10.1103/PhysRevB.50.17953

    16. [16]

      (16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi:10.1103/PhysRevLett.77.3865

    17. [17]

      (17) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133. doi:10.1103/PhysRev.140.A1133

    18. [18]

      (18) Wisesa, P.; McGill, K. A.; Mueller, T. Phys. Rev. B 2016, 93 (15), 155109. doi:10.1103/PhysRevB.93.155109

    19. [19]

      (19) Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113 (22), 9978. doi:10.1063/1.1323224

    20. [20]

      (20) Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Comput. Mater. Sci. 2013, 68, 314. doi:10.1016/j.commatsci.2012.10.028

    21. [21]

      (21) Hoover, W. G. Phys. Rev. A 1985, 31 (3), 1695. doi:10.1103/PhysRevA.31.1695

    22. [22]

      (22) He, X.; Zhu, Y.; Epstein, A.; Mo, Y. Npj Comput. Mater. 2018, 4 (1), 18. doi:10.1038/s41524-018-0074-y

    23. [23]

      (23) Pan, Y. Ceram. Int. 2019, 45 (15), 18315. doi:10.1016/j.ceramint.2019.06.044

    24. [24]

      (24) Gertsman, V. Acta Crystallogr. Sect. A:Found. Crystallogr. 2001, 57 (6), 649. doi:10.1107/S0108767301009102

    25. [25]

    26. [26]

      (26) Chang, D.; Oh, K.; Kim, S. J.; Kang, K. Chem. Mater. 2018, 30 (24), 8764. doi:10.1021/acs.chemmater.8b03000

    27. [27]

      (27) Oh, K.; Chang, D.; Lee, B.; Kim, D.-H.; Yoon, G.; Park, I.; Kim, B.; Kang, K. Chem. Mater. 2018, 30 (15), 4995. doi:10.1021/acs.chemmater.8b01163

    28. [28]

      (28) Dobhal, G.; Walsh, T. R.; Tawfik, S. A. ACS Appl. Mater. Interfaces 2022, 14 (50), 55471. doi:10.1021/acsami.2c12192

    29. [29]

      (29) Yildirim, H.; Kinaci, A.; Chan, M. K.; Greeley, J. P. ACS Appl. Mater. Interfaces 2015, 7 (34), 18985. doi:10.1021/acsami.5b02904

    30. [30]

      (30) Modak, P.; Modak, B. Comput. Mater. Sci. 2022, 202, 110977. doi:10.1016/j.commatsci.2021.110977

    31. [31]

      (31) Krauskopf, T.; Muy, S.; Culver, S. P.; Ohno, S.; Delaire, O.; Shao-Horn, Y.; Zeier, W. G. J. Am. Chem. Soc. 2018, 140 (43), 14464. doi:10.1021/jacs.8b09340

    32. [32]

      (32) Uematsu, M. Self-Diffusion and Dopant Diffusion in Germanium (Ge) and Silicon-Germanium (SiGe) Alloys. In Silicon-Germanium (SiGe) Nanostructures; Woodhead:Cambridge, UK, 2011; pp. 299-337.

    33. [33]

      (33) Chen, Y.; Ouyang, C.; Song, L.; Sun, Z. J. Phys. Chem. C 2011, 115 (14), 7044. doi:10.1021/jp112202s

    34. [34]

      (34) Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000, 408 (6815), 946. doi:10.1038/35050047

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    5. [5]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    17. [17]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

Metrics
  • PDF Downloads(1)
  • Abstract views(367)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return