Citation: Zhi Dou,  Huiyu Duan,  Yixi Lin,  Yinghui Xia,  Mingbo Zheng,  Zhenming Xu. High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230503. doi: 10.3866/PKU.WHXB202305039 shu

High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer

  • Corresponding author: Mingbo Zheng,  Zhenming Xu, 
  • Received Date: 22 May 2023
    Revised Date: 23 June 2023
    Accepted Date: 10 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22209074), the Fundamental Research Funds for the Central Universities (NS2022059, NS2021039) and the Open Research Fund of CNMGE Platform & NSCC-TJ (CNMGE202312).

  • Solid electrolyte interphase (SEI) layers derived from the side reactions between Li metal anode and electrolyte, have great impacts on the electrochemical performance of lithium batteries. In solid-state batteries, SEI layers are also required as the electrical insulators but an ionic conductors, and the mechanical reinforcements for withstanding volume change and suppressing dendritic growth in Li metal anode. Introducing LiF substrates into SEI layers can significantly reduce the electron tunneling ability from Li anode to SEI layer, meanwhile providing the excellent interfacial mechanical strength. However, LiF has a very high energy barrier for ion diffusion, hindering the rapid lithium ion diffusion from SEI layer to lithium anode. Therefore, it is necessary to introduce lithium alloy phases with higher ionic conductivity into the LiF matrix to provide sufficient ion diffusion channels. By the data mining technology, high-throughput first-principle calculation and ab-initio molecular dynamics simulations, this work performed phase diagram and ion diffusion energy barrier calculations to evaluate the thermodynamic stabilities and lithium diffusion abilities of several lithium alloys. 27 lithium alloys that can be used as Li-ion conducting phases in the LiF-based artificial SEI layers are screened. Meanwhile, the structure-function relationship analysis of lithium alloys uncovers that the crystal structure type of lithium alloys has more significant impacts on lithium ion diffusion than alloy elements, that is, lithium alloy structures with the space group of I43d and Fm3m have very excellent lithium ion transport performance, while the diffusion channels of lithium alloy structures with the space group of Pm3m and F43m are narrow, leading to the poor lithium ion transport performance. In addition, this work uncovers a physical image of lithium ion transport in artificial SEI interface, that is, lithium ion diffusion in LiF crystal bulk is quite difficult, while the diffusion resistance at LiF grain boundaries and LiF/LiM alloy interfaces is small.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      (7) Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Joule 2018, 2 (10), 1991. doi:10.1016/j.joule.2018.07.009

    8. [8]

      (8) Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Npj Comput. Mater. 2018, 4 (1), 15. doi:10.1038/s41524-018-0064-0

    9. [9]

      (9) Xiao, Y.; Wang, Y.; Bo, S.-H.; Kim, J. C.; Miara, L. J.; Ceder, G. Nat. Rev. Mater. 2020, 5 (2), 105. doi:10.1038/s41578-019-0157-5

    10. [10]

    11. [11]

      (11) Wang, J.; Chen, L.; Li, H.; Wu, F. Energy Environ. Mater. 2023, e12613. doi:10.1002/eem2.12613

    12. [12]

      (12) Wang, Z.; Li, X.; Chen, Y.; Pei, K.; Mai, Y.-W.; Zhang, S.; Li, J. Chem 2020, 6 (11), 2878. doi:10.1016/j.chempr.2020.09.005

    13. [13]

      (13) Hu, A.; Chen, W.; Du, X.; Hu, Y.; Lei, T.; Wang, H.; Xue, L.; Li, Y.; Sun, H.; Yan, Y. Energy Environ. Sci. 2021, 14 (7), 4115. doi:10.1039/D1EE00508A

    14. [14]

      (14) Luo, L.; Zheng, F.; Gao, H.; Lan, C.; Sun, Z.; Huang, W.; Han, X.; Zhang, Z.; Su, P.; Wang, P. Nano Res. 2023, 16 (1), 1634. doi:10.1007/s12274-022-5136-2

    15. [15]

      (15) Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953. doi:10.1103/PhysRevB.50.17953

    16. [16]

      (16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi:10.1103/PhysRevLett.77.3865

    17. [17]

      (17) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133. doi:10.1103/PhysRev.140.A1133

    18. [18]

      (18) Wisesa, P.; McGill, K. A.; Mueller, T. Phys. Rev. B 2016, 93 (15), 155109. doi:10.1103/PhysRevB.93.155109

    19. [19]

      (19) Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113 (22), 9978. doi:10.1063/1.1323224

    20. [20]

      (20) Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Comput. Mater. Sci. 2013, 68, 314. doi:10.1016/j.commatsci.2012.10.028

    21. [21]

      (21) Hoover, W. G. Phys. Rev. A 1985, 31 (3), 1695. doi:10.1103/PhysRevA.31.1695

    22. [22]

      (22) He, X.; Zhu, Y.; Epstein, A.; Mo, Y. Npj Comput. Mater. 2018, 4 (1), 18. doi:10.1038/s41524-018-0074-y

    23. [23]

      (23) Pan, Y. Ceram. Int. 2019, 45 (15), 18315. doi:10.1016/j.ceramint.2019.06.044

    24. [24]

      (24) Gertsman, V. Acta Crystallogr. Sect. A:Found. Crystallogr. 2001, 57 (6), 649. doi:10.1107/S0108767301009102

    25. [25]

    26. [26]

      (26) Chang, D.; Oh, K.; Kim, S. J.; Kang, K. Chem. Mater. 2018, 30 (24), 8764. doi:10.1021/acs.chemmater.8b03000

    27. [27]

      (27) Oh, K.; Chang, D.; Lee, B.; Kim, D.-H.; Yoon, G.; Park, I.; Kim, B.; Kang, K. Chem. Mater. 2018, 30 (15), 4995. doi:10.1021/acs.chemmater.8b01163

    28. [28]

      (28) Dobhal, G.; Walsh, T. R.; Tawfik, S. A. ACS Appl. Mater. Interfaces 2022, 14 (50), 55471. doi:10.1021/acsami.2c12192

    29. [29]

      (29) Yildirim, H.; Kinaci, A.; Chan, M. K.; Greeley, J. P. ACS Appl. Mater. Interfaces 2015, 7 (34), 18985. doi:10.1021/acsami.5b02904

    30. [30]

      (30) Modak, P.; Modak, B. Comput. Mater. Sci. 2022, 202, 110977. doi:10.1016/j.commatsci.2021.110977

    31. [31]

      (31) Krauskopf, T.; Muy, S.; Culver, S. P.; Ohno, S.; Delaire, O.; Shao-Horn, Y.; Zeier, W. G. J. Am. Chem. Soc. 2018, 140 (43), 14464. doi:10.1021/jacs.8b09340

    32. [32]

      (32) Uematsu, M. Self-Diffusion and Dopant Diffusion in Germanium (Ge) and Silicon-Germanium (SiGe) Alloys. In Silicon-Germanium (SiGe) Nanostructures; Woodhead:Cambridge, UK, 2011; pp. 299-337.

    33. [33]

      (33) Chen, Y.; Ouyang, C.; Song, L.; Sun, Z. J. Phys. Chem. C 2011, 115 (14), 7044. doi:10.1021/jp112202s

    34. [34]

      (34) Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000, 408 (6815), 946. doi:10.1038/35050047

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    4. [4]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    5. [5]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    6. [6]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    7. [7]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    13. [13]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    14. [14]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    17. [17]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    18. [18]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    19. [19]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(6)
  • Abstract views(713)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return