Citation: Zhi Dou, Huiyu Duan, Yixi Lin, Yinghui Xia, Mingbo Zheng, Zhenming Xu. High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230503. doi: 10.3866/PKU.WHXB202305039
-
Solid electrolyte interphase (SEI) layers derived from the side reactions between Li metal anode and electrolyte, have great impacts on the electrochemical performance of lithium batteries. In solid-state batteries, SEI layers are also required as the electrical insulators but an ionic conductors, and the mechanical reinforcements for withstanding volume change and suppressing dendritic growth in Li metal anode. Introducing LiF substrates into SEI layers can significantly reduce the electron tunneling ability from Li anode to SEI layer, meanwhile providing the excellent interfacial mechanical strength. However, LiF has a very high energy barrier for ion diffusion, hindering the rapid lithium ion diffusion from SEI layer to lithium anode. Therefore, it is necessary to introduce lithium alloy phases with higher ionic conductivity into the LiF matrix to provide sufficient ion diffusion channels. By the data mining technology, high-throughput first-principle calculation and ab-initio molecular dynamics simulations, this work performed phase diagram and ion diffusion energy barrier calculations to evaluate the thermodynamic stabilities and lithium diffusion abilities of several lithium alloys. 27 lithium alloys that can be used as Li-ion conducting phases in the LiF-based artificial SEI layers are screened. Meanwhile, the structure-function relationship analysis of lithium alloys uncovers that the crystal structure type of lithium alloys has more significant impacts on lithium ion diffusion than alloy elements, that is, lithium alloy structures with the space group of I43d and Fm3m have very excellent lithium ion transport performance, while the diffusion channels of lithium alloy structures with the space group of Pm3m and F43m are narrow, leading to the poor lithium ion transport performance. In addition, this work uncovers a physical image of lithium ion transport in artificial SEI interface, that is, lithium ion diffusion in LiF crystal bulk is quite difficult, while the diffusion resistance at LiF grain boundaries and LiF/LiM alloy interfaces is small.
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
(7) Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Joule 2018, 2 (10), 1991. doi:10.1016/j.joule.2018.07.009
-
[8]
(8) Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Npj Comput. Mater. 2018, 4 (1), 15. doi:10.1038/s41524-018-0064-0
-
[9]
(9) Xiao, Y.; Wang, Y.; Bo, S.-H.; Kim, J. C.; Miara, L. J.; Ceder, G. Nat. Rev. Mater. 2020, 5 (2), 105. doi:10.1038/s41578-019-0157-5
-
[10]
-
[11]
(11) Wang, J.; Chen, L.; Li, H.; Wu, F. Energy Environ. Mater. 2023, e12613. doi:10.1002/eem2.12613
-
[12]
(12) Wang, Z.; Li, X.; Chen, Y.; Pei, K.; Mai, Y.-W.; Zhang, S.; Li, J. Chem 2020, 6 (11), 2878. doi:10.1016/j.chempr.2020.09.005
-
[13]
(13) Hu, A.; Chen, W.; Du, X.; Hu, Y.; Lei, T.; Wang, H.; Xue, L.; Li, Y.; Sun, H.; Yan, Y. Energy Environ. Sci. 2021, 14 (7), 4115. doi:10.1039/D1EE00508A
-
[14]
(14) Luo, L.; Zheng, F.; Gao, H.; Lan, C.; Sun, Z.; Huang, W.; Han, X.; Zhang, Z.; Su, P.; Wang, P. Nano Res. 2023, 16 (1), 1634. doi:10.1007/s12274-022-5136-2
-
[15]
(15) Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953. doi:10.1103/PhysRevB.50.17953
-
[16]
(16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi:10.1103/PhysRevLett.77.3865
-
[17]
(17) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133. doi:10.1103/PhysRev.140.A1133
-
[18]
(18) Wisesa, P.; McGill, K. A.; Mueller, T. Phys. Rev. B 2016, 93 (15), 155109. doi:10.1103/PhysRevB.93.155109
-
[19]
(19) Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113 (22), 9978. doi:10.1063/1.1323224
-
[20]
(20) Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Comput. Mater. Sci. 2013, 68, 314. doi:10.1016/j.commatsci.2012.10.028
-
[21]
(21) Hoover, W. G. Phys. Rev. A 1985, 31 (3), 1695. doi:10.1103/PhysRevA.31.1695
-
[22]
(22) He, X.; Zhu, Y.; Epstein, A.; Mo, Y. Npj Comput. Mater. 2018, 4 (1), 18. doi:10.1038/s41524-018-0074-y
-
[23]
(23) Pan, Y. Ceram. Int. 2019, 45 (15), 18315. doi:10.1016/j.ceramint.2019.06.044
-
[24]
(24) Gertsman, V. Acta Crystallogr. Sect. A:Found. Crystallogr. 2001, 57 (6), 649. doi:10.1107/S0108767301009102
-
[25]
-
[26]
(26) Chang, D.; Oh, K.; Kim, S. J.; Kang, K. Chem. Mater. 2018, 30 (24), 8764. doi:10.1021/acs.chemmater.8b03000
-
[27]
(27) Oh, K.; Chang, D.; Lee, B.; Kim, D.-H.; Yoon, G.; Park, I.; Kim, B.; Kang, K. Chem. Mater. 2018, 30 (15), 4995. doi:10.1021/acs.chemmater.8b01163
-
[28]
(28) Dobhal, G.; Walsh, T. R.; Tawfik, S. A. ACS Appl. Mater. Interfaces 2022, 14 (50), 55471. doi:10.1021/acsami.2c12192
-
[29]
(29) Yildirim, H.; Kinaci, A.; Chan, M. K.; Greeley, J. P. ACS Appl. Mater. Interfaces 2015, 7 (34), 18985. doi:10.1021/acsami.5b02904
-
[30]
(30) Modak, P.; Modak, B. Comput. Mater. Sci. 2022, 202, 110977. doi:10.1016/j.commatsci.2021.110977
-
[31]
(31) Krauskopf, T.; Muy, S.; Culver, S. P.; Ohno, S.; Delaire, O.; Shao-Horn, Y.; Zeier, W. G. J. Am. Chem. Soc. 2018, 140 (43), 14464. doi:10.1021/jacs.8b09340
-
[32]
(32) Uematsu, M. Self-Diffusion and Dopant Diffusion in Germanium (Ge) and Silicon-Germanium (SiGe) Alloys. In Silicon-Germanium (SiGe) Nanostructures; Woodhead:Cambridge, UK, 2011; pp. 299-337.
-
[33]
(33) Chen, Y.; Ouyang, C.; Song, L.; Sun, Z. J. Phys. Chem. C 2011, 115 (14), 7044. doi:10.1021/jp112202s
-
[34]
(34) Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000, 408 (6815), 946. doi:10.1038/35050047
-
[1]
-
-
[1]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[2]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[3]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[4]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[5]
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
-
[6]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[7]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[10]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[11]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[12]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[13]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[14]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[15]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[16]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[17]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[18]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[19]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[20]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(366)
- HTML views(41)