Citation: Yue Zhang, Bao Li, Lixin Wu. 氧化石墨烯辅助的超分子骨架膜用于水包油型纳米乳液的高效分离[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230503. doi: 10.3866/PKU.WHXB202305038
-
制备可以同时高效且高通量地处理纳米乳液的超浸润材料仍然具有挑战。为此,本文提出了一种通过在超分子骨架纳米片上修饰氧化石墨烯以增强亲水性的策略。通过将两种具有片状形态的材料连续抽滤于商业基质上,可制备得到氧化石墨烯辅助的超分子骨架复合膜,并用于分离具有纳米尺寸液滴的水包油乳液。骨架一方面通过均匀的纳米孔拦截乳液中分散的微小液滴,另一方面也通过带负电的表面提供静电相互作用来驱动破乳过程发生。具有良好亲水性的氧化石墨烯赋予膜材料改善的亲水能力和水合层。该复合膜具有纳米级的截留尺寸、带负电的表面和水下疏油性,并且还获得了高的水通量和耐油污染性。基于尺寸筛分和破乳效应,该复合膜可有效地去除分散在水包油乳液中由非离子、阴离子和阳离子表面活性剂稳定的纳米油滴。特别是对于离子型乳液,在分离后动态光散射未检测出残留液滴。滤液中总有机碳含量小于10 ppm,对应着大于99.9%的分离效率,优于许多国家和组织的标准。在各种乳液的分离过程中,复合膜表现出较高的分离渗透性,约为原始骨架膜的3.5倍。此外,具有防污效果的复合膜获得了较高的通量回收率,通过简单的水洗处理即可实现5次具有稳定分离性能的循环。该复合膜在重复使用过程中没有组分损失,在150 °C内具有热稳定性,并能抵抗腐蚀性化学环境。在本工作中,我们试图将具有不同结构特性和表面特性的两种组分结合,通过简单的方法制备复合膜,并在功能协同作用下实现水包油型纳米乳液的高性能分离。
-
-
[1]
(1) Peterson, C. H.; Rice, S. D.; Short, J. W.; Esler, D.; Bodkin, J. L.; Ballachey, B. E.; Irons, D. B. Science 2003, 302, 2082. doi: 10.1126/science.1084282
-
[2]
(2) Schrope, M. Nature 2010, 466, 304. doi: 10.1038/466304a
-
[3]
(3) Cai, Q.; Zhu, Z.; Chen, B.; Zhang, B. Water Res. 2019, 149, 292. doi: 10.1016/j.watres.2018.11.023
-
[4]
(4) Jiang, Y.; Xian, C.; Xu, X.; Zheng, W.; Zhu, T.; Cai, W.; Huang, J.; Lai, Y. J. Membr. Sci. 2023, 667, 121166. doi: 10.1016/j.memsci.2022.121166
-
[5]
(5) Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garciacelma, M. Curr. Opin. Colloid Interface Sci. 2005, 10, 102. doi: 10.1016/j.cocis.2005.06.004
-
[6]
(6) Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M. J. Phys. Condens. Matter. 2006, 18, 635. doi: 10.1088/0953-8984/18/41/r01
-
[7]
(7) Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Adv. Colloid Interface Sci. 2004, 108, 303. doi: 10.1016/j.cis.2003.10.023
-
[8]
(8) Zouboulis, A. I.; Avranas, A. Colloid. Surf. Physicochem. Eng. Asp. 2000, 172, 153. doi: 10.1016/S0927-7757(00)00561-6
-
[9]
(9) Rattanapan, C.; Sawain, A.; Suksaroj, T.; Suksaroj, C. Desalination 2011, 280, 370. doi: 10.1016/j.desal.2011.07.018
-
[10]
(10) Pitakpoolsil, W.; Hunsom, M. J. Taiwan Inst. Chem. Eng. 2013, 44, 963. doi: 10.1016/j.jtice.2013.02.009
-
[11]
-
[12]
(12) Zheng, W.; Huang, J.; Li, S.; Ge, M.; Teng, L.; Chen, Z.; Lai, Y. ACS Appl. Mater. Interfaces 2020, 13, 67. doi: 10.1021/acsami.0c18794
-
[13]
(13) Liang, Y.; Yang, E.; Kim, M.; Kim, S.; Kim, H.; Byun, J.; Yanar, N.; Choi, H. Chem. Eng. J. 2023, 452, 139710. doi: 10.1016/j.cej.2022.139710
-
[14]
(14) Gao, S. J.; Zhu, Y. Z.; Zhang, F.; Jin, J. J. Mater. Chem. A 2015, 3, 2895. doi: 10.1039/c4ta05624h
-
[15]
(15) Hu, M.-X.; Niu, H.-M.; Chen, X.-L.; Zhan, H.-B. Colloids Surf. A 2019, 564, 142. doi: 10.1016/j.colsurfa.2018.12.045
-
[16]
(16) Naik, N. S.; Padaki, M.; Déon, S.; Karunakaran, G.; Dizge, N.; Saxena, M. J. Water Process Eng. 2019, 32, 100959. doi: 10.1016/j.jwpe.2019.100959
-
[17]
(17) Zhu, Y.; Xie, W.; Zhang, F.; Xing, T.; Jin, J. ACS Appl. Mater. Interfaces 2017, 9, 9603. doi: 10.1021/acsami.6b15682
-
[18]
(18) Zhan, B.; Liu, Y.; Li, S.-Y.; Kaya, C.; Stegmaier, T.; Aliabadi, M.; Han, Z.-W.; Ren, L.-Q. Appl. Surf. Sci. 2019, 496, 143580. doi: 10.1016/j.apsusc.2019.143580
-
[19]
(19) Wang, J.; He, B.; Ding, Y.; Li, T.; Zhang, W.; Zhang, Y.; Liu, F.; Tang, C. Y. ACS Appl. Mater. Interfaces 2021, 13, 4731. doi: 10.1021/acsami.0c19561
-
[20]
(20) Zeng, X.; Qian, L.; Yuan, X.; Zhou, C.; Li, Z.; Cheng, J.; Xu, S.; Wang, S.; Pi, P.; Wen, X. ACS Nano 2017, 11, 760. doi: 10.1021/acsnano.6b07182
-
[21]
(21) Kwon, G.; Panchanathan, D.; Mahmoudi, S. R.; Gondal, M. A.; McKinley, G. H.; Varanasi, K. K. Nat. Commun. 2017, 8, 14968. doi: 10.1038/ncomms14968
-
[22]
(22) Zhu, X.; Zhang, J. Q.; Zhu, L.; Wang, R.; Gan, S.; Xue, J. W.; Liu, X.; Li, H.; Xue, Q. Z. Sep. Purif. Technol. 2022, 280, 119984. doi: 10.1016/j.seppur.2021.119984
-
[23]
(23) Zuo, J.; Liu, Z.; Zhou, C.; Zhou, Y.; Wen, X.; Xu, S.; Cheng, J.; Pi, P. J. Hazard. Mater. 2020, 403, 123620. doi: 10.1016/j.jhazmat.2020.123620
-
[24]
(24) Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L. C.; Elnashaie, S. S. E. H.; Pendashteh, A. Sep. Purif. Technol. 2016, 170, 377. doi: 10.1016/j.seppur.2016.06.026
-
[25]
(25) Liang, H.; Esmaeili, H. Environ. Technol. Innovation 2021, 22, 101498. doi: 10.1016/j.eti.2021.101498
-
[26]
(26) Xu, X.; Zhu, T.; Zheng, W.; Xian, C.; Huang, J.; Chen, Z.; Cai, W.; Zhang, W.; Lai, Y. Chem. Eng. J. 2023, 451, 137879. doi: 10.1016/j.cej.2022.137879
-
[27]
(27) Mao, X.; Zhao, Z.; Yang, D.; Qiao, C.; Tan, J.; Liu, Q.; Tang, T.; Zhang, H.; Zeng, H. Sep. Purif. Technol. 2022, 285, 120382. doi: 10.1016/j.seppur.2021.120382
-
[28]
(28) Hu, Y.-Q.; Li, H.-N.; Xu, Z.-K. J. Membr. Sci. 2022, 648, 120388. doi: 10.1016/j.memsci.2022.120388
-
[29]
(29) Zhang, K.-D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.-H.; Zhou, T.-Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z.-T. J. Am. Chem. Soc. 2013, 135, 17913. doi: 10.1021/ja4086935
-
[30]
-
[31]
(31) Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. Nat. Commun. 2016, 7, 10742. doi: 10.1038/ncomms10742
-
[32]
(32) Guan, W.; Wang, G.; Li, B.; Wu, L. Coord. Chem. Rev. 2023, 481, 215039. doi: 10.1016/j.ccr.2023.215039
-
[33]
(33) Zhou, Y.; Zhang, G.; Li, B.; Wu, L. ACS Appl. Mater. Interfaces 2020, 12, 30761. doi: 10.1021/acsami.0c05947
-
[34]
(34) Duan, F.; Liu, X.; Qu, D.; Li, B.; Wu, L. CCS Chem. 2021, 3, 2676. doi: 10.31635/ccschem.020.202000498
-
[35]
(35) Li, B.; Wu, L. Polyoxometalates 2023, 2, 9140016. doi: 10.26599/pom.2022.9140016
-
[36]
(36) Zhang, G.; Li, B.; Zhou, Y.; Chen, X.; Li, B.; Lu, Z.-Y.; Wu, L. Nat. Commun. 2020, 11, 425. doi: 10.1038/s41467-019-14227-6
-
[37]
(37) Zhang, Y.; Zhang, G.; Li, B.; Wu, L. Small Methods 2023, 7, 2201455. doi: 10.1002/smtd.202201455
-
[38]
(38) Zhang, G.; Li, X.; Chen, G.; Zhang, Y.; Wei, M.; Chen, X.; Li, B.; Wu, Y.; Wu, L. Nat. Commun. 2023, 14, 975. doi: 10.1038/s41467-023-36684-w
-
[39]
(39) Ma, S.-D.; Chen, Y.-L.; Feng, J.; Liu, J.-J.; Zuo, X.-W.; Chen, X.-G. Anal. Chem. 2016, 88, 10474. doi: 10.1021/acs.analchem.6b02448
-
[40]
(40) Gao, S.; Zhu, Y.; Wang, J.; Zhang, F.; Li, J.; Jin, J. Adv. Funct. Mater. 2018, 28, 1801944. doi: 10.1002/adfm.201801944
-
[41]
(41) An, Y. P.; Yang, J.; Yang, H. C.; Wu, M. B.; Xu, Z. K. ACS Appl. Mater. Interfaces 2018, 10, 9832. doi: 10.1021/acsami.7b19700
-
[42]
(42) Eda, G.; Chhowalla, M. Adv. Mater. 2010, 22, 2392. doi: 10.1002/adma.200903689
-
[43]
(43) Liu, M.; Wang, S.; Wei, Z.; Song, Y.; Jiang, L. Adv. Mater. 2009, 21, 665. doi: 10.1002/adma.200801782
-
[44]
(44) Feng, L.; Gao, Y.; Xu, Y.; Dan, H.; Qi, Y.; Wang, S.; Yin, F.; Yue, Q.; Gao, B. J. Hazard. Mater. 2021, 420, 126681. doi: 10.1016/j.jhazmat.2021.126681
-
[45]
(45) Kim, B.-S.; Harriott, P. J. Colloid Interface Sci. 1987, 115, 1. doi: 10.1016/0021-9797(87)90002-6
-
[46]
(46) Lu, T.; Deng, Y.; Cui, J.; Cao, W.; Qu, Q.; Wang, Y.; Xiong, R.; Ma, W.; Lei, J.; Huang, C. ACS Appl. Mater. Interfaces 2021, 13, 22874. doi: 10.1021/acsami.1c05667
-
[47]
(47) He, H.; Liu, Y.; Zhu, Y.; Zhang, T. C.; Yuan, S. Sep. Purif. Technol. 2022, 293, 121089. doi: 10.1016/j.seppur.2022.121089
-
[48]
(48) Zheng, Y.; Zhang, C.; Wang, L.; Long, X.; Zhang, J.; Zuo, Y.; Jiao, F. Sep. Purif. Technol. 2021, 272, 118893. doi: 10.1016/j.seppur.2021.118893
-
[49]
(49) Zhu, Y.; Wang, J.; Zhang, F.; Gao, S.; Wang, A.; Fang, W.; Jin, J. Adv. Funct. Mater. 2018, 28, 1804121. doi: 10.1002/adfm.201804121
-
[1]
-
-
[1]
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
-
[2]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[3]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[4]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[5]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[6]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[9]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[10]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[11]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[12]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[13]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[14]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[15]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[16]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[17]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[18]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[19]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(78)
- HTML views(1)