氧化石墨烯辅助的超分子骨架膜用于水包油型纳米乳液的高效分离

章玥 李豹 吴立新

引用本文: 章玥, 李豹, 吴立新. 氧化石墨烯辅助的超分子骨架膜用于水包油型纳米乳液的高效分离[J]. 物理化学学报, 2024, 40(5): 230503. doi: 10.3866/PKU.WHXB202305038 shu
Citation:  Yue Zhang, Bao Li, Lixin Wu. GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions[J]. Acta Physico-Chimica Sinica, 2024, 40(5): 230503. doi: 10.3866/PKU.WHXB202305038 shu

氧化石墨烯辅助的超分子骨架膜用于水包油型纳米乳液的高效分离

    通讯作者: 李豹, libao@jlu.edu.cn; 吴立新, wulx@jlu.edu.cn
  • 基金项目:

    国家自然科学基金 22271117

    国家自然科学基金 22172060

摘要: 制备可以同时高效且高通量地处理纳米乳液的超浸润材料仍然具有挑战。为此,本文提出了一种通过在超分子骨架纳米片上修饰氧化石墨烯以增强亲水性的策略。通过将两种具有片状形态的材料连续抽滤于商业基质上,可制备得到氧化石墨烯辅助的超分子骨架复合膜,并用于分离具有纳米尺寸液滴的水包油乳液。骨架一方面通过均匀的纳米孔拦截乳液中分散的微小液滴,另一方面也通过带负电的表面提供静电相互作用来驱动破乳过程发生。具有良好亲水性的氧化石墨烯赋予膜材料改善的亲水能力和水合层。该复合膜具有纳米级的截留尺寸、带负电的表面和水下疏油性,并且还获得了高的水通量和耐油污染性。基于尺寸筛分和破乳效应,该复合膜可有效地去除分散在水包油乳液中由非离子、阴离子和阳离子表面活性剂稳定的纳米油滴。特别是对于离子型乳液,在分离后动态光散射未检测出残留液滴。滤液中总有机碳含量小于10 ppm,对应着大于99.9%的分离效率,优于许多国家和组织的标准。在各种乳液的分离过程中,复合膜表现出较高的分离渗透性,约为原始骨架膜的3.5倍。此外,具有防污效果的复合膜获得了较高的通量回收率,通过简单的水洗处理即可实现5次具有稳定分离性能的循环。该复合膜在重复使用过程中没有组分损失,在150 ℃内具有热稳定性,并能抵抗腐蚀性化学环境。在本工作中,我们试图将具有不同结构特性和表面特性的两种组分结合,通过简单的方法制备复合膜,并在功能协同作用下实现水包油型纳米乳液的高性能分离。

English

    1. [1]

      Peterson, C. H.; Rice, S. D.; Short, J. W.; Esler, D.; Bodkin, J. L.; Ballachey, B. E.; Irons, D. B. Science 2003, 302, 2082. doi: 10.1126/science.1084282

    2. [2]

      Schrope, M. Nature 2010, 466, 304. doi: 10.1038/466304a

    3. [3]

      Cai, Q.; Zhu, Z.; Chen, B.; Zhang, B. Water Res. 2019, 149, 292. doi: 10.1016/j.watres.2018.11.023

    4. [4]

      Jiang, Y.; Xian, C.; Xu, X.; Zheng, W.; Zhu, T.; Cai, W.; Huang, J.; Lai, Y. J. Membr. Sci. 2023, 667, 121166. doi: 10.1016/j.memsci.2022.121166

    5. [5]

      Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garciacelma, M. Curr. Opin. Colloid Interface Sci. 2005, 10, 102. doi: 10.1016/j.cocis.2005.06.004

    6. [6]

      Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M. J. Phys. Condens. Matter. 2006, 18, 635. doi: 10.1088/0953-8984/18/41/r01

    7. [7]

      Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Adv. Colloid Interface Sci. 2004, 108, 303. doi: 10.1016/j.cis.2003.10.023

    8. [8]

      Zouboulis, A. I.; Avranas, A. Colloid. Surf. Physicochem. Eng. Asp. 2000, 172, 153. doi: 10.1016/S0927-7757(00)00561-6

    9. [9]

      Rattanapan, C.; Sawain, A.; Suksaroj, T.; Suksaroj, C. Desalination 2011, 280, 370. doi: 10.1016/j.desal.2011.07.018

    10. [10]

      Pitakpoolsil, W.; Hunsom, M. J. Taiwan Inst. Chem. Eng. 2013, 44, 963. doi: 10.1016/j.jtice.2013.02.009

    11. [11]

      李文涛, 雍佳乐, 杨青, 陈烽, 方瑶, 侯洵. 物理化学学报, 2018, 34, 456. doi: 10.3866/PKU.WHXB201709211Li, W.; Yong, J.; Yang, Q.; Chen, F.; Fang, Y.; Hou, X. Acta Phys.-Chim. Sin. 2018, 34, 456. doi: 10.3866/PKU.WHXB201709211

    12. [12]

      Zheng, W.; Huang, J.; Li, S.; Ge, M.; Teng, L.; Chen, Z.; Lai, Y. ACS Appl. Mater. Interfaces 2020, 13, 67. doi: 10.1021/acsami.0c18794

    13. [13]

      Liang, Y.; Yang, E.; Kim, M.; Kim, S.; Kim, H.; Byun, J.; Yanar, N.; Choi, H. Chem. Eng. J. 2023, 452, 139710. doi: 10.1016/j.cej.2022.139710

    14. [14]

      Gao, S. J.; Zhu, Y. Z.; Zhang, F.; Jin, J. J. Mater. Chem. A 2015, 3, 2895. doi: 10.1039/c4ta05624h

    15. [15]

      Hu, M.-X.; Niu, H.-M.; Chen, X.-L.; Zhan, H.-B. Colloids Surf. A 2019, 564, 142. doi: 10.1016/j.colsurfa.2018.12.045

    16. [16]

      Naik, N. S.; Padaki, M.; Déon, S.; Karunakaran, G.; Dizge, N.; Saxena, M. J. Water Process Eng. 2019, 32, 100959. doi: 10.1016/j.jwpe.2019.100959

    17. [17]

      Zhu, Y.; Xie, W.; Zhang, F.; Xing, T.; Jin, J. ACS Appl. Mater. Interfaces 2017, 9, 9603. doi: 10.1021/acsami.6b15682

    18. [18]

      Zhan, B.; Liu, Y.; Li, S.-Y.; Kaya, C.; Stegmaier, T.; Aliabadi, M.; Han, Z.-W.; Ren, L.-Q. Appl. Surf. Sci. 2019, 496, 143580. doi: 10.1016/j.apsusc.2019.143580

    19. [19]

      Wang, J.; He, B.; Ding, Y.; Li, T.; Zhang, W.; Zhang, Y.; Liu, F.; Tang, C. Y. ACS Appl. Mater. Interfaces 2021, 13, 4731. doi: 10.1021/acsami.0c19561

    20. [20]

      Zeng, X.; Qian, L.; Yuan, X.; Zhou, C.; Li, Z.; Cheng, J.; Xu, S.; Wang, S.; Pi, P.; Wen, X. ACS Nano 2017, 11, 760. doi: 10.1021/acsnano.6b07182

    21. [21]

      Kwon, G.; Panchanathan, D.; Mahmoudi, S. R.; Gondal, M. A.; McKinley, G. H.; Varanasi, K. K. Nat. Commun. 2017, 8, 14968. doi: 10.1038/ncomms14968

    22. [22]

      Zhu, X.; Zhang, J. Q.; Zhu, L.; Wang, R.; Gan, S.; Xue, J. W.; Liu, X.; Li, H.; Xue, Q. Z. Sep. Purif. Technol. 2022, 280, 119984. doi: 10.1016/j.seppur.2021.119984

    23. [23]

      Zuo, J.; Liu, Z.; Zhou, C.; Zhou, Y.; Wen, X.; Xu, S.; Cheng, J.; Pi, P. J. Hazard. Mater. 2020, 403, 123620. doi: 10.1016/j.jhazmat.2020.123620

    24. [24]

      Zolfaghari, R.; Fakhru'l-Razi, A.; Abdullah, L. C.; Elnashaie, S. S. E. H.; Pendashteh, A. Sep. Purif. Technol. 2016, 170, 377. doi: 10.1016/j.seppur.2016.06.026

    25. [25]

      Liang, H.; Esmaeili, H. Environ. Technol. Innovation 2021, 22, 101498. doi: 10.1016/j.eti.2021.101498

    26. [26]

      Xu, X.; Zhu, T.; Zheng, W.; Xian, C.; Huang, J.; Chen, Z.; Cai, W.; Zhang, W.; Lai, Y. Chem. Eng. J. 2023, 451, 137879. doi: 10.1016/j.cej.2022.137879

    27. [27]

      Mao, X.; Zhao, Z.; Yang, D.; Qiao, C.; Tan, J.; Liu, Q.; Tang, T.; Zhang, H.; Zeng, H. Sep. Purif. Technol. 2022, 285, 120382. doi: 10.1016/j.seppur.2021.120382

    28. [28]

      Hu, Y.-Q.; Li, H.-N.; Xu, Z.-K. J. Membr. Sci. 2022, 648, 120388. doi: 10.1016/j.memsci.2022.120388

    29. [29]

      Zhang, K.-D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.-H.; Zhou, T.-Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z.-T. J. Am. Chem. Soc. 2013, 135, 17913. doi: 10.1021/ja4086935

    30. [30]

      张希. 物理化学学报, 2020, 36, 2004004. doi: 10.3866/PKU.WHXB202004004Zhang, X. Acta Phys.-Chim. Sin. 2020, 36, 2004004. doi: 10.3866/PKU.WHXB202004004

    31. [31]

      Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. Nat. Commun. 2016, 7, 10742. doi: 10.1038/ncomms10742

    32. [32]

      Guan, W.; Wang, G.; Li, B.; Wu, L. Coord. Chem. Rev. 2023, 481, 215039. doi: 10.1016/j.ccr.2023.215039

    33. [33]

      Zhou, Y.; Zhang, G.; Li, B.; Wu, L. ACS Appl. Mater. Interfaces 2020, 12, 30761. doi: 10.1021/acsami.0c05947

    34. [34]

      Duan, F.; Liu, X.; Qu, D.; Li, B.; Wu, L. CCS Chem. 2021, 3, 2676. doi: 10.31635/ccschem.020.202000498

    35. [35]

      Li, B.; Wu, L. Polyoxometalates 2023, 2, 9140016. doi: 10.26599/pom.2022.9140016

    36. [36]

      Zhang, G.; Li, B.; Zhou, Y.; Chen, X.; Li, B.; Lu, Z.-Y.; Wu, L. Nat. Commun. 2020, 11, 425. doi: 10.1038/s41467-019-14227-6

    37. [37]

      Zhang, Y.; Zhang, G.; Li, B.; Wu, L. Small Methods 2023, 7, 2201455. doi: 10.1002/smtd.202201455

    38. [38]

      Zhang, G.; Li, X.; Chen, G.; Zhang, Y.; Wei, M.; Chen, X.; Li, B.; Wu, Y.; Wu, L. Nat. Commun. 2023, 14, 975. doi: 10.1038/s41467-023-36684-w

    39. [39]

      Ma, S.-D.; Chen, Y.-L.; Feng, J.; Liu, J.-J.; Zuo, X.-W.; Chen, X.-G. Anal. Chem. 2016, 88, 10474. doi: 10.1021/acs.analchem.6b02448

    40. [40]

      Gao, S.; Zhu, Y.; Wang, J.; Zhang, F.; Li, J.; Jin, J. Adv. Funct. Mater. 2018, 28, 1801944. doi: 10.1002/adfm.201801944

    41. [41]

      An, Y. P.; Yang, J.; Yang, H. C.; Wu, M. B.; Xu, Z. K. ACS Appl. Mater. Interfaces 2018, 10, 9832. doi: 10.1021/acsami.7b19700

    42. [42]

      Eda, G.; Chhowalla, M. Adv. Mater. 2010, 22, 2392. doi: 10.1002/adma.200903689

    43. [43]

      Liu, M.; Wang, S.; Wei, Z.; Song, Y.; Jiang, L. Adv. Mater. 2009, 21, 665. doi: 10.1002/adma.200801782

    44. [44]

      Feng, L.; Gao, Y.; Xu, Y.; Dan, H.; Qi, Y.; Wang, S.; Yin, F.; Yue, Q.; Gao, B. J. Hazard. Mater. 2021, 420, 126681. doi: 10.1016/j.jhazmat.2021.126681

    45. [45]

      Kim, B.-S.; Harriott, P. J. Colloid Interface Sci. 1987, 115, 1. doi: 10.1016/0021-9797(87)90002-6

    46. [46]

      Lu, T.; Deng, Y.; Cui, J.; Cao, W.; Qu, Q.; Wang, Y.; Xiong, R.; Ma, W.; Lei, J.; Huang, C. ACS Appl. Mater. Interfaces 2021, 13, 22874. doi: 10.1021/acsami.1c05667

    47. [47]

      He, H.; Liu, Y.; Zhu, Y.; Zhang, T. C.; Yuan, S. Sep. Purif. Technol. 2022, 293, 121089. doi: 10.1016/j.seppur.2022.121089

    48. [48]

      Zheng, Y.; Zhang, C.; Wang, L.; Long, X.; Zhang, J.; Zuo, Y.; Jiao, F. Sep. Purif. Technol. 2021, 272, 118893. doi: 10.1016/j.seppur.2021.118893

    49. [49]

      Zhu, Y.; Wang, J.; Zhang, F.; Gao, S.; Wang, A.; Fang, W.; Jin, J. Adv. Funct. Mater. 2018, 28, 1804121. doi: 10.1002/adfm.201804121

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  233
  • HTML全文浏览量:  9
文章相关
  • 发布日期:  2024-05-15
  • 收稿日期:  2023-05-18
  • 接受日期:  2023-06-27
  • 修回日期:  2023-06-26
  • 网络出版日期:  2023-07-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章