Citation: Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230503. doi: 10.3866/PKU.WHXB202305034 shu

Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation

  • Corresponding author: Hua Zhang, hua.zhang@cityu.edu.hk
  • These authors contributed equally to this work.
  • Received Date: 17 May 2023
    Revised Date: 9 July 2023
    Accepted Date: 10 July 2023
    Available Online: 17 July 2023

    Fund Project: the Research Grants Council of Hong Kong 11301721the Research Grants Council of Hong Kong TRS(T23-713/22-R)-碳中和ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong 9380100ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong 7020054ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong 9678272ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong 7020013ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong 1886921

  • Direct methanol fuel cells (DMFCs) hold great promise as clean energy conversion devices in the future. Noble metal nanocatalysts, renowned for their exceptional catalytic activity and stability, play a crucial role in DMFCs. Among these catalysts, Pt- and Pd-based nanocatalysts are widely recognized as the most effective catalysts for the electrochemical methanol oxidation reaction (MOR), which is the key half-cell reaction in DMFCs. However, due to the high cost of Pt- and Pd-based materials, there is a strong desire to further enhance their catalytic performance. One of the most promising approaches for it is to develop noble metal-based alloy nanocatalysts, which have shown great potential in improving electrocatalytic activity. Notably, advancements in phase engineering of nanomaterials (PEN) have revealed that noble metal-based nanomaterials with unconventional phases exhibit superior catalytic properties in various catalytic reactions compared to their counterparts with conventional phases. To obtain noble metal-based nanocatalysts with unconventional crystal phases, wet-chemical epitaxial growth has been employed as a facile and effective method, utilizing unconventional-phase noble metal nanocrystals as templates. Nevertheless, epitaxially growing bimetallic alloy nanostructures with unconventional crystal phases remains a challenge, impeding further exploration of their catalytic performance in electrochemical reactions such as MOR. In this study, we utilize 4H hexagonal phase Au (4H-Au) nanoribbons as templates for the epitaxial growth of unconventional 4H hexagonal PdFe, PdIr, and PdRu, resulting in the formation of 4H-Au@PdM (M = Fe, Ir, and Ru) core-shell nanoribbons. As a proof-of-concept application, we investigate the electrocatalytic activity of the synthesized 4H-Au@PdFe nanoribbons towards MOR, which exhibit a mass activity of 3.69 A·mgPd−1, i.e., 10.5 and 2.4 times that of Pd black and Pt/C, respectively, placing it among the best Pd- and Pt-based MOR electrocatalysts. Our strategy opens up an avenue for the rational construction of unconventional-phase multimetallic nanostructures to explore their phase-dependent properties in various applications.
  • 加载中
    1. [1]

      Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Chem. Rev. 2021, 121, 649. doi: 10.1021/acs.chemrev.0c00454  doi: 10.1021/acs.chemrev.0c00454

    2. [2]

      Yang, T. H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R.; Qin, D. Chem. Rev. 2021, 121, 796. doi: 10.1021/acs.chemrev.0c00940  doi: 10.1021/acs.chemrev.0c00940

    3. [3]

      Li, L.; Wang, P.; Shao, Q.; Huang, X. Chem. Soc. Rev. 2020, 49, 3072. doi: 10.1039/d0cs00013b  doi: 10.1039/d0cs00013b

    4. [4]

      Nugroho, F. A. A.; Darmadi, I.; Cusinato, L.; Susarrey-Arce, A.; Schreuders, H.; Bannenberg, L. J.; da Silva Fanta, A. B.; Kadkhodazadeh, S.; Wagner, J. B.; Antosiewicz, T. J.; et al. Nat. Mater. 2019, 18, 489. doi: 10.1038/s41563-019-0325-4  doi: 10.1038/s41563-019-0325-4

    5. [5]

      Chen, Y.; Fan, Z.; Zhang, Z.; Niu, W.; Li, C.; Yang, N.; Chen, B.; Zhang, H. Chem. Rev. 2018, 118, 6409. doi: 10.1021/acs.chemrev.7b00727  doi: 10.1021/acs.chemrev.7b00727

    6. [6]

      Cao, L.; Liu, W.; Luo, Q.; Yin, R.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z.; et al. Nature 2019, 565, 631. doi: 10.1038/s41586-018-0869-5  doi: 10.1038/s41586-018-0869-5

    7. [7]

      Tian, X.; Zhao, X.; Su, Y. -Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W.; et al. Science 2019, 366, 850. doi: 10.1126/science.aaw7493  doi: 10.1126/science.aaw7493

    8. [8]

      Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M.; et al. Science 2015, 348, 1230. doi: 10.1126/science.aaa8765  doi: 10.1126/science.aaa8765

    9. [9]

      Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C.; Meng, X.; Yang, H.; Mesters, C.; et al. Science 2020, 367, 193. doi: 10.1126/science.aaw1108  doi: 10.1126/science.aaw1108

    10. [10]

      Guo, S. J.; Zhang, S.; Su, D.; Sun, S. H. J. Am. Chem. Soc. 2013, 135, 13879. doi: 10.1021/ja406091p  doi: 10.1021/ja406091p

    11. [11]

      Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Li, X. S.; Shi, Q. X.; Gao, D. W.; Wang, H.; Yu, N. F.; et al. Small 2016, 12, 524. doi: 10.1002/smll.201502669  doi: 10.1002/smll.201502669

    12. [12]

      Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G; Herron, J. A.; Mavrikakis, M.; et al. Science 2014, 343, 1339. doi: 10.1126/science.1249061  doi: 10.1126/science.1249061

    13. [13]

      Xie, X. B.; Gao, G. H.; Kang, S. D.; Shibayama, T.; Lei, Y. H.; Gao, D. Y.; Cai, L. T. Adv. Mater. 2015, 27, 5573. doi: 10.1002/adma.201501133  doi: 10.1002/adma.201501133

    14. [14]

      Kang, S. W.; Lee, Y. W.; Park, Y.; Choi, B. S.; Hong, J. W.; Park, K. H.; Han, S. W. ACS Nano 2013, 7, 7945. doi: 10.1021/nn403027j  doi: 10.1021/nn403027j

    15. [15]

      Wang, D. Y.; Chou, H. L.; Lin, Y. C.; Lai, F. J.; Chen, C. H.; Lee, J. F.; Hwang, B. J.; Chen, C. C. J. Am. Chem. Soc. 2012, 134, 10011. doi: 10.1021/ja3010754  doi: 10.1021/ja3010754

    16. [16]

      Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Nat. Rev. Chem. 2020, 4, 243. doi: 10.1038/s41570-020-0173-4  doi: 10.1038/s41570-020-0173-4

    17. [17]

      Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Adv. Mater. 2018, 30, 1707189. doi: 10.1002/adma.201707189  doi: 10.1002/adma.201707189

    18. [18]

      Ge, Y.; Shi, Z.; Tan, C.; Chen, Y.; Cheng, H.; He, Q.; Zhang, H. Chem 2020, 6, 1237. doi: 10.1016/j.chempr.2020.04.004  doi: 10.1016/j.chempr.2020.04.004

    19. [19]

      Fan, Z.; Zhang, H. Chem. Soc. Rev. 2016, 45, 63. doi: 10.1039/C5CS00467E  doi: 10.1039/C5CS00467E

    20. [20]

      Fan, Z.; Huang, X.; Chen, Y.; Huang, W.; Zhang, H. Nat. Protoc. 2017, 12, 2367. doi: 10.1038/nprot.2017.097  doi: 10.1038/nprot.2017.097

    21. [21]

      Fan, Z.; Zhang, H. Acc. Chem. Res. 2016, 49, 2841. doi: 10.1021/acs.accounts.6b00527  doi: 10.1021/acs.accounts.6b00527

    22. [22]

      Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. U.; Fu, G.; Lu, B.; Xie, Z. X.; Zheng, L. S. Nat. Commun. 2017, 8, 15131. doi: 10.1038/ncomms15131  doi: 10.1038/ncomms15131

    23. [23]

      Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A.; et al. Adv. Mater. 2018, 30, 1801741. doi: 10.1002/adma.201801741  doi: 10.1002/adma.201801741

    24. [24]

      Wu, X. Q.; Jiang, Y.; Yan, Y. C.; Li, X.; Luo, S.; Huang, J. B.; Li, J. J.; Shen, R.; Yang, D. R.; Zhang, H. Adv. Sci. 2019, 6, 1902249. doi: 10.1002/advs.201902249  doi: 10.1002/advs.201902249

    25. [25]

      Chen, B.; Yun, Q.; Ge, Y.; Li, L.; Zhang, H. Acc. Mater. Res. 2023, 4, 359. doi: 10.1021/accountsmr.2c00238  doi: 10.1021/accountsmr.2c00238

    26. [26]

      Fan, Z.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J.; et al. Nat. Commun. 2015, 6, 7684. doi: 10.1038/ncomms8684  doi: 10.1038/ncomms8684

    27. [27]

      Fan, Z.; Chen, Y.; Zhu, Y. H.; Wang, J.; Li, B.; Zong, Y.; Han, Y.; Zhang, H. Chem. Sci. 2017, 8, 795. doi: 10.1039/C6SC02953A  doi: 10.1039/C6SC02953A

    28. [28]

      Chen, Y.; Fan, Z.; Luo, Z.; Liu, X.; Lai, Z.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. Adv. Mater. 2017, 29, 1701331. doi: 10.1002/adma.201701331  doi: 10.1002/adma.201701331

    29. [29]

      Lu, Q. P.; Wang, A. L.; Gong, Y.; Hao, W.; Cheng, H. F.; Chen, J. Z.; Li, B.; Yang, N. L.; Niu, W. X.; Wang, J.; et al. Nat. Chem. 2018, 10, 456. doi: 10.1038/s41557-018-0012-0  doi: 10.1038/s41557-018-0012-0

    30. [30]

      Zhou, X. C.; Ma Y. B.; Ge, Y. Y.; Zhu, S. Q.; Cui, Y.; Chen, B.; Liao, L. W.; Yun, Q. B.; He, Z.; Long, H. W.; et al. J. Am. Chem. Soc. 2022, 144, 547. doi: 10.1021/jacs.1c11313  doi: 10.1021/jacs.1c11313

    31. [31]

      Li, Q.; Niu, W. X.; Liu, X. C.; Chen, Y.; Wu, X. T.; Wen, X. D.; Wang, Z. W.; Zhang, H.; Quan, Z. W. J. Am. Chem. Soc. 2018, 140, 15783. doi: 10.1021/jacs.8b08647  doi: 10.1021/jacs.8b08647

    32. [32]

      Liu, J.; Huang, J.; Niu, W.; Tan, C.; Zhang, H. Chem. Rev. 2021, 121, 5830. doi: 10.1021/acs.chemrev.0c01047  doi: 10.1021/acs.chemrev.0c01047

    33. [33]

      Lu, S.; Liang, J.; Long, H.; Li, H.; Zhou, X.; He, Z.; Chen, Y.; Sun, H.; Fan, Z.; Zhang, H. Acc. Chem. Res. 2020, 53, 2106. doi: 10.1021/acs.accounts.0c00487  doi: 10.1021/acs.accounts.0c00487

    34. [34]

      Zhao, M.; Xia, Y. Nat. Rev. Mater. 2020, 5, 440. doi: 10.1038/s41578-020-0183-3  doi: 10.1038/s41578-020-0183-3

    35. [35]

      Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135, 5493. doi: 10.1021/ja311261s  doi: 10.1021/ja311261s

    36. [36]

      Zhang, Z.; Liu, G.; Cui, X.; Gong, Y.; Yi, D.; Zhang, Q.; Zhu, C.; Saleem, F.; Chen, B.; Lai, Z.; et al. Sci. Adv. 2021, 7, eabd6647. doi: 10.1126/sciadv.abd6647  doi: 10.1126/sciadv.abd6647

    37. [37]

      Tong, W.; Huang, B.; Wang, P.; Li, L.; Shao, Q.; Huang, X. Angew. Chem., Int. Ed. 2020, 59, 2649. doi: 10.1002/anie.201913122  doi: 10.1002/anie.201913122

    38. [38]

      Fan, Z.; Bosman, M.; Huang, Z.; Chen, Y.; Ling, C.; Wu, L.; Akimov, Y. A.; Laskowski, R.; Chen, B.; Ercius, P.; et al. Nat. Commun. 2020, 11, 3293. doi: 10.1038/s41467-020-17068-w  doi: 10.1038/s41467-020-17068-w

    39. [39]

      Yun, Q.; Lu, Q.; Li, C.; Chen, B.; Zhang, Q.; He, Q.; Hu, Z.; Zhang, Z.; Ge, Y.; Yang, N.; et al. ACS Nano 2019, 13, 14329. doi: 10.1021/acsnano.9b07775  doi: 10.1021/acsnano.9b07775

    40. [40]

      Sun, Y.; Yang, W.; Ren, Y.; Wang, L.; Lei, C. Small 2011, 7, 606. doi: 10.1002/smll.201002201  doi: 10.1002/smll.201002201

    41. [41]

      Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. doi: 10.1126/science.287.5460.1989  doi: 10.1126/science.287.5460.1989

    42. [42]

      Sial, M. A. Z. G.; Din, M. A.; Wang, X. Chem. Soc. Rev. 2018, 47, 6175. doi: 10.1039/C8CS00113H  doi: 10.1039/C8CS00113H

    43. [43]

      Zhou, M.; Li, C.; Fang, J. Chem. Rev. 2021, 121, 736. doi: 10.1021/acs.chemrev.0c00436  doi: 10.1021/acs.chemrev.0c00436

    44. [44]

      Jiang, K. Z.; Wang, P. T.; Guo, S. J.; Zhang, X.; Shen, X.; Lu G.; Su, D.; Huang X. Q. Angew. Chem. Int. Ed. 2016, 55, 9030. doi: 10.1002/anie.201603022  doi: 10.1002/anie.201603022

    45. [45]

      Bao, Y. F.; Feng, L. G. Acta Phys. -Chim. Sin. 2021, 37, 2008031.  doi: 10.3866/PKU.WHXB202008031

    46. [46]

      Li, Z. R.; Shen, T.; Hu, Y. Z.; Chen, K.; Lu, Y.; Wang, D. L. Acta Phys. -Chim. Sin. 2021, 37, 2010029.  doi: 10.3866/PKU.WHXB202010029

    47. [47]

      Zhao, K. N.; Li, X.; Su, D. Acta Phys. -Chim. Sin. 2021, 37, 2009077.  doi: 10.3866/PKU.WHXB202009077

    48. [48]

      Chen, L; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D; Wang, L. Y. Nat. Commun. 2017, 8, 14136. doi: 10.1038/ncomms14136  doi: 10.1038/ncomms14136

    49. [49]

      Green, C. L.; Kucernak, A. J. Phys. Chem. B 2002, 106, 1036. doi: 10.1021/jp0131931  doi: 10.1021/jp0131931

  • 加载中
    1. [1]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    2. [2]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    3. [3]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    4. [4]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    5. [5]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    6. [6]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    7. [7]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    8. [8]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    9. [9]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    10. [10]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    11. [11]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    12. [12]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    13. [13]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    14. [14]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    15. [15]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    16. [16]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    17. [17]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    18. [18]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    19. [19]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    20. [20]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

Metrics
  • PDF Downloads(0)
  • Abstract views(103)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return