Citation: Meijia Xu, Yuchen Zhang, Yifan Zhu, Changlin Li, Zi-Ang Wu, Xiong Zhou, Kai Wu. Active Phase on Oxidized Pd(100) for Low-Temperature Propane Oxidation[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230503. doi: 10.3866/PKU.WHXB202305033 shu

Active Phase on Oxidized Pd(100) for Low-Temperature Propane Oxidation

  • Corresponding author: Xiong Zhou, xiongzhou@pku.edu.cn Kai Wu, kaiwu@pku.edu.cn
  • Received Date: 16 May 2023
    Revised Date: 12 June 2023
    Accepted Date: 13 June 2023
    Available Online: 28 June 2023

    Fund Project: the National Natural Science Foundation of China 22222102the National Natural Science Foundation of China 21821004the National Natural Science Foundation of China 21927901

  • Palladium, a key component of three-way catalysts used in automobile exhaust treatment, plays a pivotal role in complete oxidation of alkanes and low-temperature oxidation of CO. Under oxygen-rich conditions, a thin oxide layer spontaneously forms on the palladium surface. To understand the influence of the oxidized palladium surface on the active phase of low-temperature hydrocarbon oxidation, we have conducted a comprehensive study of the oxidation process on Pd(100) and its impact on propane oxidation. Our experimental results reveal that under varying oxidation conditions, the Pd(100) surface sequentially forms three different monolayered oxide phases, namely, (2 × 2)-O, (5 × 5)-PdO and (\begin{document}$ \sqrt{\text{5}} $\end{document} × \begin{document}$ \sqrt{\text{5}} $\end{document}) R27°-PdO. The oxygen coverage correspondingly increases in the order of 0.25 monolayer, 0.56 monolayer and 0.8 monolayer. Notably, (5 × 5)-PdO is identified for the first time by high-resolution scanning tunneling microscopy. Experiments show this structure exhibits typical chiral features with its two enantiomers observed in the experiments. The chiral features of the (5 × 5)-PdO structure may bear significant implications in practical applications like chiral catalysis. Based on high-resolution atomic imaging, we have proposed a new (5 × 5)-PdO structure model. In addition, it's experimentally revealed that upon thermal treatments the (5 × 5)-PdO structure decomposes into the (\begin{document}$ \sqrt{\text{5}} $\end{document} × \begin{document}$ \sqrt{\text{5}} $\end{document}) R27°-PdO and the (2 × 2)-O structures, and the (\begin{document}$ \sqrt{\text{5}} $\end{document} × \begin{document}$ \sqrt{\text{5}} $\end{document}) R27°-PdO decomposes into the (2 × 2)-O structure as well. These results suggest that the thermal stability of these oxide phases is in the order of (2 × 2)-O > (\begin{document}$ \sqrt{\text{5}} $\end{document} × \begin{document}$ \sqrt{\text{5}} $\end{document}) R27°-PdO > (5 × 5)-PdO. We have also compared the catalytic activities of these three oxidation phases in low-temperature propane oxidation. The results show that only the (\begin{document}$ \sqrt{\text{5}} $\end{document} × \begin{document}$ \sqrt{\text{5}} $\end{document}) R27°-PdO could catalyze propane oxidation near room temperature. We have observed a significant number of oxygen defects in the (\begin{document}$ \sqrt{\text{5}} $\end{document} × \begin{document}$ \sqrt{\text{5}} $\end{document}) R27°-PdO, which also forms the reduced (2 × 2)-O phase. Both complete oxidation products H2O and CO2 are detectable by temperature-programmed desorption within two main temperature slots around 285 and 315 K. Neither the (2 × 2)-O nor the (5 × 5)-PdO phase shows an obvious catalytic activity. The superior oxidation activity of the (\begin{document}$ \sqrt{\text{5}} $\end{document} × \begin{document}$ \sqrt{\text{5}} $\end{document}) R27°-PdO phase might be associated with its higher O density and hence more active O species within the structure. Our study indicates that the (\begin{document}$ \sqrt{\text{5}} $\end{document} × \begin{document}$ \sqrt{\text{5}} $\end{document}) R27°-PdO serves as the active phase for the low-temperature propane oxidation. These insights would help understand the working mechanisms of three-way catalysts and should be of great importance for the development of efficient and low-temperature three-way catalysts.
  • 加载中
    1. [1]

      Li, H. M.; Lan, L.; Chen, S. H.; Liu, D. Y.; Wang, W.; Gong, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2016, 32, 1734.  doi: 10.3866/PKU.WHXB201603235

    2. [2]

      Gao, F.; McClure, S. M.; Cai, Y.; Gath, K. K.; Wang, Y.; Chen, M. S.; Guo, Q. L.; Goodman, D. W. Surf. Sci. 2009, 603, 65. doi: 10.1016/j.susc.2008.10.031  doi: 10.1016/j.susc.2008.10.031

    3. [3]

      Jia, Y. C.; Wang, S. Y.; Meng, L.; Lu, J. Q.; Luo, M. F. Acta Phys. -Chim. Sin. 2016, 32, 1801  doi: 10.3866/PKU.WHXB201604081

    4. [4]

      Schwartz, A. J. Catal. 1971, 21, 199. doi: 10.1016/0021-9517(71)90138-2  doi: 10.1016/0021-9517(71)90138-2

    5. [5]

      Niu, Y. M.; Liu, X.; Wang, Y. Z.; Zhou, S.; Lv, Z. G.; Zhang, L. Y.; Shi, W.; Li, Y. W.; Zhang, W.; Su, D. S.; et al. Angew. Chem. Int. Ed. 2019, 58, 4232. doi: 10.1002/anie.201812292  doi: 10.1002/anie.201812292

    6. [6]

      Zhang, J.; Fan, L.; Zhao, F.; Fu, Y.; Lu, J. Q.; Zhang, Z.; Teng, B.; Huang, W. ChemCatChem 2020, 12, 5540. doi: 10.1002/cctc.202000934  doi: 10.1002/cctc.202000934

    7. [7]

      Li, R. T.; Xu, X. Y.; Zhu, B. E.; Li, X. Y.; Ning, Y. X.; Mu, R. T.; Du, P. F.; Li, M. W.; Wang, H. K.; Liang, J. J.; et al. Nat. Commun. 2021, 12, 1406. doi: 10.1038/s41467-021-21552-2  doi: 10.1038/s41467-021-21552-2

    8. [8]

      Hellman, A.; Resta, A.; Martin, N. M.; Gustafson, J.; Trinchero, A.; Carlsson, P. A.; Balmes, O.; Felici, R.; van Rijn, R.; Frenken, J. W. M.; et al. J. Phys. Chem. Lett. 2012, 3, 678. doi: 10.1021/jz300069s  doi: 10.1021/jz300069s

    9. [9]

      Hirvi, J. T.; Kinnunen, T. J. J.; Suvanto, M.; Pakkanen, T. A.; Norskov, J. K. J. Chem. Phys. 2010, 133, 084704. doi: 10.1063/1.3464481  doi: 10.1063/1.3464481

    10. [10]

      Shipilin, M.; Hejral, U.; Lundgren, E.; Merte, L. R.; Zhang, C.; Stierle, A.; Ruett, U.; Gutowski, O.; Skoglundh, M.; Carlsson, P. -A.; et al. Surf. Sci. 2014, 630, 229. doi: 10.1016/j.susc.2014.08.021  doi: 10.1016/j.susc.2014.08.021

    11. [11]

      Hoffmann, M. J.; Reuter, K. Top. Catal. 2014, 57, 159. doi: 10.1007/s11244-013-0172-5  doi: 10.1007/s11244-013-0172-5

    12. [12]

      Chang, S. L.; Thiel, P. A.; Evans, J. W. Surf. Sci. 1988, 205, 117. doi: 10.1016/0039-6028(88)90167-7  doi: 10.1016/0039-6028(88)90167-7

    13. [13]

      Zheng, G.; Altman, E. I. Surf. Sci. 2002, 504, 253. doi: 10.1016/s0039-6028(02)01104-4  doi: 10.1016/s0039-6028(02)01104-4

    14. [14]

      Mehar, V.; Kim, M.; Shipilin, M.; Van den Bossche, M.; Gustafson, J.; Merte, L. R.; Hejral, U.; Grönbeck, H.; Lundgren, E.; Asthagiri, A.; et al. ACS Catal. 2018, 8, 8553. doi: 10.1021/acscatal.8b02191  doi: 10.1021/acscatal.8b02191

    15. [15]

      Rose, M. K.; Borg, A.; Dunphy, J. C.; Mitsui, T.; Ogletree, D. F.; Salmeron, M. Surf. Sci. 2003, 547, 162. doi: 10.1016/j.susc.2003.08.057  doi: 10.1016/j.susc.2003.08.057

    16. [16]

      Orent, T. W.; Bader, S. D. Surf. Sci. 1982, 115, 323. doi: 10.1016/0039-6028(82)90412-5  doi: 10.1016/0039-6028(82)90412-5

    17. [17]

      Todorova, M.; Lundgren, E.; Blum, V.; Mikkelsen, A.; Gray, S.; Gustafson, J.; Borg, M.; Rogal, J.; Reuter, K.; Andersen, J. N.; et al. Surf. Sci. 2003, 541, 101. doi: 10.1016/s0039-6028(03)00873-2  doi: 10.1016/s0039-6028(03)00873-2

    18. [18]

      Kostelník, P.; Seriani, N.; Kresse, G.; Mikkelsen, A.; Lundgren, E.; Blum, V.; Šikola, T.; Varga, P.; Schmid, M. Surf. Sci. 2007, 601, 1574. doi: 10.1016/j.susc.2007.01.026  doi: 10.1016/j.susc.2007.01.026

    19. [19]

      Shipilin, M.; Stierle, A.; Merte, L. R.; Gustafson, J.; Hejral, U.; Martin, N. M.; Zhang, C.; Franz, D.; Kilic, V.; Lundgren, E. Surf. Sci. 2017, 660, 1. doi: 10.1016/j.susc.2017.01.009  doi: 10.1016/j.susc.2017.01.009

    20. [20]

      Huang, Z.; Han, C.; Sun, Y. Y.; Wu, K.; Chen, W. J. Phys. Chem. C 2021, 125, 15599. doi: 10.1021/acs.jpcc.1c03682  doi: 10.1021/acs.jpcc.1c03682

    21. [21]

      Huang, Z. C.; Xu, Z.; Zhou, J. Y.; Chen, H. R.; Rong, W. H.; Lin, Y. X.; Wen, X. J.; Zhu, H.; Wu, K. J. Phys. Chem. C 2019, 123, 17823. doi: 10.1021/acs.jpcc.9b03253  doi: 10.1021/acs.jpcc.9b03253

    22. [22]

      Zhang, Y.; Feng, W.; Yang, F.; Bao, X. H. Chin. J. Catal. 2019, 40, 204. doi: 10.1016/s1872-2067(18)63171-7  doi: 10.1016/s1872-2067(18)63171-7

    23. [23]

      Zhao, X. F.; Chen, H.; Wu, H.; Wang, R.; Cui, Y.; Fu, Q.; Yang, F.; Bao, X. H. Acta Phys. -Chim. Sin. 2018, 34, 1373.  doi: 10.3866/PKU.WHXB201804131

    24. [24]

      Hendriksen, B. L. M.; Bobaru, S. C.; Frenken, J. W. M. Surf. Sci. 2004, 552, 229. doi: 10.1016/j.susc.2004.01.025  doi: 10.1016/j.susc.2004.01.025

    25. [25]

      Zheng, G.; Altman, E. I. J. Phys. Chem. B 2002, 106, 1048. doi: 10.1021/jp013395x  doi: 10.1021/jp013395x

    26. [26]

      van Rijn, R.; Balmes, O.; Resta, A.; Wermeille, D.; Westerstrom, R.; Gustafson, J.; Felici, R.; Lundgren, E.; Frenken, J. W. Phys. Chem. Chem. Phys. 2011, 13, 13167. doi: 10.1039/c1cp20989b  doi: 10.1039/c1cp20989b

    27. [27]

      Toyoshima, R.; Yoshida, M.; Monya, Y.; Suzuki, K.; Mun, B. S.; Amemiya, K.; Mase, K.; Kondoh, H. J. Phys. Chem. Lett. 2012, 3, 3182. doi: 10.1021/jz301404n  doi: 10.1021/jz301404n

    28. [28]

      Weaver, J. F.; Hakanoglu, C.; Hawkins, J. M.; Asthagiri, A. J. Chem. Phys. 2010, 132, 024709. doi: 10.1063/1.3277672  doi: 10.1063/1.3277672

    29. [29]

      Weaver, J. F.; Devarajan, S. P.; Akanoglu, C. J. Phys. Chem. C 2009, 113, 9773. doi: 10.1021/jp9013114  doi: 10.1021/jp9013114

    30. [30]

      Antony, A.; Asthagiri, A.; Weaver, J. F. Phys. Chem. Chem. Phys. 2012, 14, 12202. doi: 10.1039/c2cp41900a  doi: 10.1039/c2cp41900a

    31. [31]

      Wrobel, R. J.; Becker, S. Vacuum 2010, 84, 1258. doi: 10.1016/j.vacuum.2010.01.056  doi: 10.1016/j.vacuum.2010.01.056

    32. [32]

      Huang, W. X.; Zhai, R. S.; Bao, X. H. Surf. Sci. 1999, 439, L803. doi: 10.1016/s0039-6028(99)00820-1  doi: 10.1016/s0039-6028(99)00820-1

    33. [33]

      Rose, M. K.; Borg, A.; Mitsui, T.; Ogletree, D. F.; Salmeron, M. J. Chem. Phys. 2001, 115, 10927. doi: 10.1063/1.1420732  doi: 10.1063/1.1420732

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(2)
  • Abstract views(316)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return