Citation: Hongyan Fang, Jingjing Jiang, Dingsheng Wang, Xiangwen Liu, Dunru Zhu, Yadong Li. Catalyst Design for Acetylene Semi-Hydrogenation[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230503. doi: 10.3866/PKU.WHXB202305030 shu

Catalyst Design for Acetylene Semi-Hydrogenation

  • Corresponding author: Xiangwen Liu, liuxiangwen@bcpca.ac.cn Dunru Zhu, zhudr@njtech.edu.cn Yadong Li, ydli@mail.tsinghua.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 16 May 2023
    Revised Date: 2 July 2023
    Accepted Date: 3 July 2023
    Available Online: 12 July 2023

    Fund Project: the National Natural Science Foundation of China 22101150the National Natural Science Foundation of China 22101029Beijing Municipal Natural Science Foundation 2222006Beijing Municipal Financial Project BJAST Scholar Programs B BS202001Beijing Municipal Financial Project BJAST Young Scholar Programs B YS202202the State Key Laboratory of Coordination Chemistry SKLCC2106

  • Traces of acetylene impurities in the feed gas during the subsequent industrial production process of polyethylene will inactivate ethylene polymerization. The semi-hydrogenation of acetylene to ethylene has been proved to be one of the most effective technologies for the purification of ethylene. Pd catalysts have been playing a leading role in industrial applications due to their excellent performance. However, as Pd is a precious metal, Pd catalysts are expensive. Thus, it is very important to design low-cost, high-selectivity, and high-conversion acetylene semi-hydrogenation catalysts. Here, we summarize the influence of single-metal catalysts based on the acetylene semi-hydrogenation mechanism. The hydrogenation ability of the catalysts should be neither too high nor too low. When other metals are added to palladium catalysts, bimetallic catalysts are formed, which can be classified into typical substitutional solid-solution alloy catalysts, intermetallic compound catalysts, and single-atom alloy catalysts. Regarding the influence of bimetallic catalysts on the performance of acetylene hydrogenation, metals other than Pd have different effects on the acetylene hydrogenation process due to the different structure and environment. While, the structure of the catalyst and the chemical environment ultimately affect the electronic structure of the active center of the catalyst. Based on this, we conclude that the key to the semi-hydrogenation of acetylene is the charge density of the active center of the catalyst, such as dual-atom sites and nano-single atoms; the electrons control the active center of the catalyst. Finely turning the electronic structure of single metal active sites will improve their catalytic activity, selectivity, and stability of the catalyst for acetylene semi-hydrogenation. Additionally, we propose a possible future direction for the development of high-performance acetylene semi-hydrogenation catalysts. Future catalysts for acetylene semi-hydrogenation able to precisely control the active sites to improve their catalytic activity, selectivity, and stability are the focus of researchers, such as the precise control of single-atom-site, dual-atom-site, and nano-single-atom-site catalysts.
  • 加载中
    1. [1]

      Liu, Y.; Wang, B.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2021, 60, 22522. doi: 10.1002/anie.202109538  doi: 10.1002/anie.202109538

    2. [2]

      Huang, W.; McCormick, J.; Lobo, R.; Chen, J. J. Catal. 2007, 246, 40. doi: 10.1016/j.jcat.2006.11.013  doi: 10.1016/j.jcat.2006.11.013

    3. [3]

      Bu, J.; Liu, Z.; Ma, W.; Zhang, L.; Wang, T.; Zhang, H.; Zhang, Q.; Feng, X.; Zhang, J. Nat. Catal. 2021, 4, 557. doi: 10.1038/s41929-021-00641-x  doi: 10.1038/s41929-021-00641-x

    4. [4]

      Zhou, H.; Yang, X.; Wang, A.; Miao, S.; Liu, X.; Pan, X.; Su, Y.; Li, L.; Tan, Y.; Zhang, T. Chin. J. Catal. 2016, 37, 692. doi: 10.1016/s1872-2067(15)61090-7  doi: 10.1016/s1872-2067(15)61090-7

    5. [5]

      Lopez, N.; Vargas-Fuentes, C. Chem. Commun. 2012, 48, 1379. doi: 10.1039/c1cc14922a  doi: 10.1039/c1cc14922a

    6. [6]

      Pei, G. X.; Liu, X. Y.; Wang, A.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z.; et al. ACS Catal. 2015, 5, 3717. doi: 10.1021/acscatal.5b00700  doi: 10.1021/acscatal.5b00700

    7. [7]

      Huang, B.; Durante, C.; Isse, A. A.; Gennaro, A. Electrochem. Commun. 2013, 34, 90. doi: 10.1016/j.elecom.2013.05.036  doi: 10.1016/j.elecom.2013.05.036

    8. [8]

      Shi, R.; Wang, Z.; Zhao, Y.; Waterhouse, G. I. N.; Li, Z.; Zhang, B.; Sun, Z.; Xia, C.; Wang, H.; Zhang, T. Nat. Catal. 2021, 4, 565. doi: 10.1038/s41929-021-00640-y  doi: 10.1038/s41929-021-00640-y

    9. [9]

      Zhou, H.; Yang, X.; Li, L.; Liu, X.; Huang, Y.; Pan, X.; Wang, A.; Li, J.; Zhang, T. ACS Catal. 2016, 6, 1054. doi: 10.1021/acscatal.5b01933  doi: 10.1021/acscatal.5b01933

    10. [10]

      Xing, H. B.; Yang, Q. W.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X. L.; Han, Y.; Li, B.; Ren, Q. L.; et al. Science 2016, 353, 141. doi: 10.1126/science.aaf2458  doi: 10.1126/science.aaf2458

    11. [11]

      Liu, Q.; Hoffmann, R. J. Am. Chem. Soc. 1995, 117, 4082. doi: 10.1021/ja00119a024  doi: 10.1021/ja00119a024

    12. [12]

      Jiang, L.; Tian, Y.; Sun, T.; Zhu, Y.; Ren, H.; Zou, X.; Ma, Y.; Meihaus, K. R.; Long, J. R.; Zhu, G. J. Am. Chem. Soc. 2018, 140, 15724. doi: 10.1021/jacs.8b08174  doi: 10.1021/jacs.8b08174

    13. [13]

      Ma, W.; Chen, Z.; Bu, J.; Liu, Z.; Li, J.; Yan, C.; Cheng, L.; Zhang, L.; Zhang, H.; Zhang, J.; et al. J. Mater. Chem. A 2022, 10, 6122. doi: 10.1039/d1ta08002d  doi: 10.1039/d1ta08002d

    14. [14]

      Hu, T. L.; Wang, H.; Li, B.; Krishna, R.; Wu, H.; Zhou, W.; Zhao, Y.; Han, Y.; Wang, X.; Zhu, W.; et al. Nat. Commun. 2015, 6, 7328. doi: 10.1038/ncomms8328  doi: 10.1038/ncomms8328

    15. [15]

      Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry, Fourth Edition. WILEY-VCH: Hoboken, 2013; pp. 91–98.

    16. [16]

      Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Xie, J.; Xiao, D.; Wen, X.; Wang, N.; et al. Nat. Commun. 2019, 10, 4431. doi: 10.1038/s41467-019-12460-7  doi: 10.1038/s41467-019-12460-7

    17. [17]

      Rahimpour, M. R.; Dehghani, O.; Gholipour, M. R.; Shokrollahi Yancheshmeh, M. S.; Seifzadeh Haghighi, S.; Shariati, A. Chem. Eng. J. 2012, 198199, 491. doi: 10.1016/j.cej.2012.06.005  doi: 10.1016/j.cej.2012.06.005

    18. [18]

      Huang, W.; Pyrz, W.; Lobo, R. F.; Chen, J. G. Appl. Catal. A 2007, 333, 254. doi: 10.1016/j.apcata.2007.09.017  doi: 10.1016/j.apcata.2007.09.017

    19. [19]

      Ma, H.-Y.; Wang, G.-C. ACS Catal. 2020, 10, 4922. doi: 10.1021/acscatal.0c00190  doi: 10.1021/acscatal.0c00190

    20. [20]

      Yuan, Z.; Kumar, A.; Zhou, D.; Feng, J.; Liu, B.; Sun, X. J. Catal. 2022, 414, 374. doi: 10.1016/j.jcat.2022.09.005  doi: 10.1016/j.jcat.2022.09.005

    21. [21]

      Mostoufi, N.; Ghoorchian, A.; Sotudeh-Gharebagh, R. Int. J. Chem. React. Eng. 2005, 3, 1. doi: 10.2202/1542-6580.1215  doi: 10.2202/1542-6580.1215

    22. [22]

      Vincent, M. J.; Gonzalez, R. D. Appl. Catal. A 2001, 217, 143. doi: 10.1016/s0926-860x(01)00586-5  doi: 10.1016/s0926-860x(01)00586-5

    23. [23]

      Guo, Z.; Liu, Y.; Liu, Y.; Chu, W. Appl. Surf. Sci. 2018, 442, 736. doi: 10.1016/j.apsusc.2018.02.145  doi: 10.1016/j.apsusc.2018.02.145

    24. [24]

      Hu, M.; Wang, X. Catal. Today 2016, 263, 98. doi: 10.1016/j.cattod.2015.06.021  doi: 10.1016/j.cattod.2015.06.021

    25. [25]

      Prinz, J.; Pignedoli, C. A.; Stockl, Q. S.; Armbruster, M.; Brune, H.; Groning, O.; Widmer, R.; Passerone, D. J. Am. Chem. Soc. 2014, 136, 11792. doi: 10.1021/ja505936b  doi: 10.1021/ja505936b

    26. [26]

      Sheth, P. A.; Neurock, M.; Smith, C. M. J. Phys. Chem. B 2003, 107, 2009. doi: 10.1021/jp021342p  doi: 10.1021/jp021342p

    27. [27]

      Mattson, B.; Foster, W.; Greimann, J.; Hoette, T.; Le, N.; Mirich, A.; Wankum, S.; Cabri, A.; Reichenbacher, C.; Schwanke, E. J. Chem. Educ. 2013, 90, 613. doi: 10.1021/ed300437k  doi: 10.1021/ed300437k

    28. [28]

      Horiuti, I.; Polanyi, M. Trans. Faraday Soc. 1934, 30, 1164. doi: 10.1039/TF9343001164  doi: 10.1039/TF9343001164

    29. [29]

      Mei, D.; Neurock, M.; Smith, C. M. J. Catal. 2009, 268, 181. doi: 10.1016/j.jcat.2009.09.004  doi: 10.1016/j.jcat.2009.09.004

    30. [30]

      Xiao, L.; Shan, Y. L.; Sui, Z. J.; Chen, D.; Zhou, X. G.; Yuan, W. K.; Zhu, Y. A. ACS Catal. 2020, 10, 14887. doi: 10.1021/acscatal.0c03381  doi: 10.1021/acscatal.0c03381

    31. [31]

      Albani, D.; Shahrokhi, M.; Chen, Z.; Mitchell, S.; Hauert, R.; Lopez, N.; Perez-Ramirez, J. Nat. Commun. 2018, 9, 2634. doi: 10.1038/s41467-018-05052-4  doi: 10.1038/s41467-018-05052-4

    32. [32]

      Guo, Y.; Li, Y.; Du, X.; Li, L.; Jiang, Q.; Qiao, B. Nano Res. 2022, 15, 10037. doi: 10.1007/s12274-022-4376-5  doi: 10.1007/s12274-022-4376-5

    33. [33]

      Li, Z.; Zhang, J.; Tian, J.; Feng, K.; Jiang, Z.; Yan, B. Chem. Eng. J. 2022, 450, 138244. doi: 10.1016/j.cej.2022.138244  doi: 10.1016/j.cej.2022.138244

    34. [34]

      Cao, Y.; Ge, X.; Li, Y.; Si, R.; Sui, Z.; Zhou, J.; Duan, X.; Zhou, X. Engineering 2021, 7, 103. doi: 10.1016/j.eng.2020.06.023  doi: 10.1016/j.eng.2020.06.023

    35. [35]

      Chen, X.; Xu, Q.; Zhao, B.; Ren, S.; Wu, Z.; Wu, J.; Yue, Y.; Han, D.; Li, R. Catal. Lett. 2021, 151, 3372. doi: 10.1007/s10562-020-03485-5  doi: 10.1007/s10562-020-03485-5

    36. [36]

      Wang, J.; Xu, H.; Che, C.; Zhu, J.; Cheng, D. ACS Catal. 2022, 13, 433. doi: 10.1021/acscatal.2c05498  doi: 10.1021/acscatal.2c05498

    37. [37]

      Xie, W.; Hu, P. Catal. Sci. Technol. 2021, 11, 5212. doi: 10.1039/d1cy00665g  doi: 10.1039/d1cy00665g

    38. [38]

      Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Chem. Rev. 2020, 120, 683. doi: 10.1021/acs.chemrev.9b00230  doi: 10.1021/acs.chemrev.9b00230

    39. [39]

      Wasim, E.; Din, N. U.; Le, D.; Zhou, X.; Sterbinsky, G. E.; Pape, M. S.; Rahman, T. S.; Tait, S. L. J. Catal. 2022, 413, 81. doi: 10.1016/j.jcat.2022.06.010  doi: 10.1016/j.jcat.2022.06.010

    40. [40]

      McCue, A. J.; Anderson, J. A. Front. Chem. Sci. Eng. 2015, 9, 142. doi: 10.1007/s11705-015-1516-4  doi: 10.1007/s11705-015-1516-4

    41. [41]

      Gigola, C. E.; Aduriz H. R.; Bodnariuk, P. Appl. Catal. 1986, 27, 133. doi: 10.1016/S0166-9834(00)81052-0  doi: 10.1016/S0166-9834(00)81052-0

    42. [42]

      Takht Ravanchi, M.; Sahebdelfar, S.; Komeili, S. Rev. Chem. Eng. 2018, 34, 215. doi: 10.1515/revce-2016-0036  doi: 10.1515/revce-2016-0036

    43. [43]

      Sárkány, A.; Weiss, A. H.; Guczi, L. J. Catal. 1986, 98, 550. doi: 10.1016/0021-9517(86)90343-X  doi: 10.1016/0021-9517(86)90343-X

    44. [44]

      Cao, Y.; Sui, Z.; Zhu, Y.; Zhou, X.; Chen, D. ACS Catal. 2017, 7, 7835. doi: 10.1021/acscatal.7b01745  doi: 10.1021/acscatal.7b01745

    45. [45]

      Liu, Y.; McCue, A. J.; Miao, C.; Feng, J.; Li, D.; Anderson, J. A. J. Catal. 2018, 364, 406. doi: 10.1016/j.jcat.2018.06.001  doi: 10.1016/j.jcat.2018.06.001

    46. [46]

      Wang, Z.; Garg, A.; Wang, L.; He, H.; Dasgupta, A.; Zanchet, D.; Janik, M. J.; Rioux, R. M.; Román-Leshkov, Y. ACS Catal. 2020, 10, 6763. doi: 10.1021/acscatal.9b04070  doi: 10.1021/acscatal.9b04070

    47. [47]

      Zhan, X.; Zhu, H.; Ma, H.; Hu, X.; Xie, Y.; Guo, D.; Chen, M.; Ma, P.; Sun, L.; Wang, W. D.; et al. Dalton Trans. 2022, 51, 16361. doi: 10.1039/d2dt02765h  doi: 10.1039/d2dt02765h

    48. [48]

      Shi, X.; Lin, Y.; Huang, L.; Sun, Z.; Yang, Y.; Zhou, X.; Vovk, E.; Liu, X.; Huang, X.; Sun, M.; et al. ACS Catal. 2020, 10, 3495. doi: 10.1021/acscatal.9b05321  doi: 10.1021/acscatal.9b05321

    49. [49]

      Gu, H.; Xu, B. L.; Zhou, J.; Li, Y. Z.; Fan, Y. N. Acta Phys. -Chim. Sin. 2006, 22, 712.  doi: 10.3866/PKU.WHXB20060613

    50. [50]

      Wang, Z. Q.; Zhou, Z. M.; Zhang, R.; Li, L.; Chen, Z. M. Acta Phys. -Chim. Sin. 2014, 30, 2315.  doi: 10.3866/PKU.WHXB201410152

    51. [51]

      Wang, Y.; Zheng, X.; Wang, D. Nano Res. 2021, 15, 1730. doi: 10.1007/s12274-021-3794-0  doi: 10.1007/s12274-021-3794-0

    52. [52]

      Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. ACS Catal. 2020, 10, 8567. doi: 10.1021/acscatal.0c01536  doi: 10.1021/acscatal.0c01536

    53. [53]

      Rai, R. K.; Awasthi, M. K.; Singh, V. K.; Barman, S. R.; Behrens, S.; Singh, S. K. Catal. Sci. Technol. 2020, 10, 4968. doi: 10.1039/d0cy01153c  doi: 10.1039/d0cy01153c

    54. [54]

      Liu, J.; Zhu, Y.; Liu, C.; Wang, X.; Cao, C.; Song, W. ChemCatChem 2017, 9, 4053. doi: 10.1002/cctc.201700800  doi: 10.1002/cctc.201700800

    55. [55]

      Li, Q.; Wang, Y.; Skoptsov, G.; Hu, J. Ind. Eng. Chem. Res. 2019, 58, 20620. doi: 10.1021/acs.iecr.9b04604  doi: 10.1021/acs.iecr.9b04604

    56. [56]

      Zhou, S.; Kang, L.; Zhou, X.; Xu, Z.; Zhu, M. Nanomaterials 2020, 10, 509. doi: 10.3390/nano10030509  doi: 10.3390/nano10030509

    57. [57]

      Pei, G. X.; Liu, X. Y.; Wang, A.; Su, Y.; Li, L.; Zhang, T. Appl. Catal. A 2017, 545, 90. doi: 10.1016/j.apcata.2017.07.041  doi: 10.1016/j.apcata.2017.07.041

    58. [58]

      Liu, X.; Li, Y.; Lee, J. W.; Hong, C. Y.; Mou, C. Y.; Jang, B. W. L. Appl. Catal. A 2012, 439440, 8. doi: 10.1016/j.apcata.2012.06.030  doi: 10.1016/j.apcata.2012.06.030

    59. [59]

      Jorgensen, M.; Gronbeck, H. J. Am. Chem. Soc. 2019, 141, 8541. doi: 10.1021/jacs.9b02132  doi: 10.1021/jacs.9b02132

    60. [60]

      Kruppe, C. M.; Krooswyk, J. D.; Trenary, M. ACS Catal. 2017, 7, 8042. doi: 10.1021/acscatal.7b02862  doi: 10.1021/acscatal.7b02862

    61. [61]

      Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Chem. Rev. 2020, 120, 12044. doi: 10.1021/acs.chemrev.0c00078  doi: 10.1021/acs.chemrev.0c00078

    62. [62]

      Jiang, J.; Wang, Y.; Wang, D.; Zhang, W.; Li, Y. Chin. J. Chem. 2021, 39, 2789. doi: 10.1002/cjoc.202100356  doi: 10.1002/cjoc.202100356

    63. [63]

      Zhang, W.; Chao, Y.; Zhang, W.; Zhou, J.; Lv, F.; Wang, K.; Lin, F.; Luo, H.; Li, J.; Tong, M.; et al. Adv. Mater. 2021, 33, 2102576. doi: 10.1002/adma.202102576  doi: 10.1002/adma.202102576

    64. [64]

      Qiu, N.; Li, J.; Wang, H.; Zhang, Z. Sci. China Mater. 2022, 65, 3302. doi: 10.1007/s40843-022-2189-x  doi: 10.1007/s40843-022-2189-x

    65. [65]

      Yu, D.; Ma, Y.; Hu, F.; Lin, C.-C.; Li, L.; Chen, H.-Y.; Han, X.; Peng, S. Adv. Energy Mater. 2021, 11, 2101242. doi: 10.1002/aenm.202101242  doi: 10.1002/aenm.202101242

    66. [66]

      Liu, L.; Corma, A. Chem. Rev. 2018, 118, 4981. doi: 10.1021/acs.chemrev.7b00776  doi: 10.1021/acs.chemrev.7b00776

    67. [67]

      Zhang, Z.; Zhu, J.; Chen, S.; Sun, W.; Wang, D. Angew. Chem. Int. Ed. 2023, 62, e202215136. doi: 10.1002/anie.202215136  doi: 10.1002/anie.202215136

    68. [68]

      Li, W. H.; Ye, B. C.; Yang, J.; Wang, Y.; Yang, C. J.; Pan, Y.-M.; Tang, H. T.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202209749. doi: 10.1002/anie.202209749  doi: 10.1002/anie.202209749

    69. [69]

      Yang, J.; Li, W.-H.; Xu, K.; Tan, S.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202200366. doi: 10.1002/anie.202200366  doi: 10.1002/anie.202200366

    70. [70]

      Zhang, Q.; Guan, J. Nano Res. 2022, 15, 38. doi: 10.1007/s12274-021-3479-8  doi: 10.1007/s12274-021-3479-8

    71. [71]

      Kuo, C. T.; Lu, Y.; Kovarik, L.; Engelhard, M.; Karim, A. M. ACS Catal. 2019, 9, 11030. doi: 10.1021/acscatal.9b02840  doi: 10.1021/acscatal.9b02840

    72. [72]

      Guo, J.; Wan, Y.; Zhu, Y.; Zhao, M.; Tang, Z. Nano Res. 2021, 14, 2037. doi: 10.1007/s12274-020-3182-1  doi: 10.1007/s12274-020-3182-1

    73. [73]

      Xiang, L.; Feng, H.; Liu, M.; Zhang, X.; Fan, G.; Li, F. ACS Appl. Nano Mater. 2021, 4, 4688. doi: 10.1021/acsanm.1c00301  doi: 10.1021/acsanm.1c00301

    74. [74]

      Sun, M.; Wang, F.; Lv, G.; Zhang, X. Ind. Eng. Chem. Res. 2022, 61, 13341. doi: 10.1021/acs.iecr.2c01477  doi: 10.1021/acs.iecr.2c01477

    75. [75]

      Gong, T.; Huang, Y.; Qin, L.; Zhang, W.; Li, J.; Hui, L.; Feng, H. Appl. Surf. Sci. 2019, 495, 143495. doi: 10.1016/j.apsusc.2019.07.237  doi: 10.1016/j.apsusc.2019.07.237

    76. [76]

      Liu, D. Appl. Surf. Sci. 2016, 386, 125. doi: 10.1016/j.apsusc.2016.06.013  doi: 10.1016/j.apsusc.2016.06.013

    77. [77]

      Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y. Angew. Chem. Int. Ed. 2015, 54, 10889. doi: 10.1002/anie.201504242  doi: 10.1002/anie.201504242

    78. [78]

      Zhao, X.; Zhou, L.; Zhang, W.; Hu, C.; Dai, L.; Ren, L.; Wu, B.; Fu, G.; Zheng, N. Chem 2018, 4, 1080. doi: 10.1016/j.chempr.2018.02.011  doi: 10.1016/j.chempr.2018.02.011

    79. [79]

      Wang, S.; Zhao, Z. J.; Chang, X.; Zhao, J.; Tian, H.; Yang, C.; Li, M.; Fu, Q.; Mu, R.; Gong, J. Angew. Chem. Int. Ed. 2019, 58, 7668. doi: 10.1002/anie.201903827  doi: 10.1002/anie.201903827

    80. [80]

      Gonçalves, L. P. L.; Wang, J.; Vinati, S.; Barborini, E.; Wei, X. K.; Heggen, M.; Franco, M.; Sousa, J. P. S.; Petrovykh, D. Y.; Soares, O. S. G. P.; et al. Int. J. Hydrogen Energy 2020, 45, 1283. doi: 10.1016/j.ijhydene.2019.04.086  doi: 10.1016/j.ijhydene.2019.04.086

    81. [81]

      Sun, M.; Wang, F.; Hu, J.; Lv, G.; Zhang, X. Chem. Eng. Sci. 2022, 247, 116939. doi: 10.1016/j.ces.2021.116939  doi: 10.1016/j.ces.2021.116939

    82. [82]

      Jiang, Y.; Sung, Y.; Choi, C.; Bang, G. J.; Hong, S.; Tan, X.; Wu, T. S.; Soo, Y. L.; Xiong, P.; Li, M. M. J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202203836. doi: 10.1002/anie.202203836  doi: 10.1002/anie.202203836

    83. [83]

      Ma, X.; Liu, H.; Yang, W.; Mao, G.; Zheng, L.; Jiang, H.-L. J. Am. Chem. Soc. 2021, 143, 12220. doi: 10.1021/jacs.1c05032  doi: 10.1021/jacs.1c05032

    84. [84]

      Wang, Y.; Zheng, M.; Li, Y.; Ye, C.; Chen, J.; Ye, J.; Zhang, Q.; Li, J.; Zhou, Z.; Fu, X.-Z.; et al. Angew. Chem. Int. Ed. 2022, 61, e202115735. doi: 10.1002/anie.202115735  doi: 10.1002/anie.202115735

    85. [85]

      Hou, Z.; Dai, L.; Deng, J.; Zhao, G.; Jing, L.; Wang, Y.; Yu, X.; Gao, R.; Tian, X.; Dai, H.; et al. Angew. Chem. Int. Ed. 2022, 61, e202201655. doi: 10.1002/anie.202201655  doi: 10.1002/anie.202201655

    86. [86]

      Zheng, X.; Yang, J.; Xu, Z.; Wang, Q.; Wu, J.; Zhang, E.; Dou, S.; Sun, W.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202205946. doi: 10.1002/anie.202205946  doi: 10.1002/anie.202205946

    87. [87]

      Guo, P.; Liu, H.; Zhao, J. Nano Res. 2022, 15, 7840. doi: 10.1007/s12274-022-4495-z  doi: 10.1007/s12274-022-4495-z

    88. [88]

      Dai, X.; Chen, Z.; Yao, T.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Wei, S.; et al. Chem. Commun. 2017, 53, 11568. doi: 10.1039/c7cc04820c  doi: 10.1039/c7cc04820c

    89. [89]

      Hu, M.; Zhang, J.; Zhu, W.; Chen, Z.; Gao, X.; Du, X.; Wan, J.; Zhou, K.; Chen, C.; Li, Y. Nano Res. 2018, 11, 905. doi: 10.1007/s12274-017-1701-5  doi: 10.1007/s12274-017-1701-5

    90. [90]

      Feng, Q.; Zhao, S.; Xu, Q.; Chen, W.; Tian, S.; Wang, Y.; Yan, W.; Luo, J.; Wang, D.; Li, Y. Adv. Mater. 2019, 31, 1901024. doi: 10.1002/adma.201901024  doi: 10.1002/adma.201901024

    91. [91]

      Cao, Y.; Zhang, H.; Ji, S.; Sui, Z.; Jiang, Z.; Wang, D.; Zaera, F.; Zhou, X.; Duan, X.; Li, Y. Angew. Chem. Int. Ed. 2020, 59, 11647. doi: 10.1002/anie.202004966  doi: 10.1002/anie.202004966

    92. [92]

      Wei, S.; Li, A.; Liu, J. C.; Li, Z.; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W. C.; Wang, Y.; Zheng, L.; et al. Nat. Nanotechnol. 2018, 13, 856. doi: 10.1038/s41565-018-0197-9  doi: 10.1038/s41565-018-0197-9

    93. [93]

      Ding, S.; Guo, Y.; Hülsey, M. J.; Zhang, B.; Asakura, H.; Liu, L.; Han, Y.; Gao, M.; Hasegawa, J. Y.; Qiao, B.; et al. Chem 2019, 5, 3207. doi: 10.1016/j.chempr.2019.10.007  doi: 10.1016/j.chempr.2019.10.007

    94. [94]

      Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Ren, P.; Xiao, D.; Wen, X.; Wang, N.; et al. J. Am. Chem. Soc. 2018, 140, 13142. doi: 10.1021/jacs.8b07476  doi: 10.1021/jacs.8b07476

    95. [95]

      Riley, C.; Zhou, S.; Kunwar, D.; De La Riva, A.; Peterson, E.; Payne, R.; Gao, L.; Lin, S.; Guo, H.; Datye, A. J. Am. Chem. Soc. 2018, 140, 12964. doi: 10.1021/jacs.8b07789  doi: 10.1021/jacs.8b07789

    96. [96]

      Karunananda, M. K.; Mankad, N. P. J. Am. Chem. Soc. 2015, 137, 14598. doi: 10.1021/jacs.5b10357  doi: 10.1021/jacs.5b10357

    97. [97]

      Zhao, J.; Yuan, H.; Yang, G.; Liu, Y.; Qin, X.; Chen, Z.; Weng-Chon, C.; Zhou, L.; Fang, S. Nano Res. 2022, 15, 1796. doi: 10.1007/s12274-021-3732-1  doi: 10.1007/s12274-021-3732-1

    98. [98]

      Osswald, J.; Giedigkeit, R.; Jentoft, R.; Armbruster, M.; Girgsdies, F.; Kovnir, K.; Ressler, T.; Grin, Y.; Schlogl, R. J. Catal. 2008, 258, 210. doi: 10.1016/j.jcat.2008.06.013  doi: 10.1016/j.jcat.2008.06.013

    99. [99]

      Ma, C.; Du, Y.; Feng, J.; Cao, X.; Yang, J.; Li, D. J. Catal. 2014, 317, 263. doi: 10.1016/j.jcat.2014.06.018  doi: 10.1016/j.jcat.2014.06.018

    100. [100]

      McCue, A. J.; Shepherd, A. M.; Anderson, J. A. Catal. Sci. Technol. 2015, 5, 2880. doi: 10.1039/c5cy00253b  doi: 10.1039/c5cy00253b

    101. [101]

      Nikolaev, S. A.; Smirnov, V. V.; Vasil'kov, A. Y.; Podshibikhin, V. L. Kinet. Catal. 2010, 51, 375. doi: 10.1134/s0023158410030080  doi: 10.1134/s0023158410030080

    102. [102]

      Wang, W.; Zhang, J.; Li, Z.; Shao, X. Acta Phys. -Chim. Sin. 2020, 36, 1911035.  doi: 10.3866/PKU.WHXB201911035

    103. [103]

      Lomeli-Rosales, D. A.; Delgado, J. A.; Diaz de Los Bernardos, M.; Perez-Rodriguez, S.; Gual, A.; Claver, C.; Godard, C. Chem. Eur. J. 2019, 25, 8321. doi: 10.1002/chem.201901041  doi: 10.1002/chem.201901041

    104. [104]

      Nesper, R. Angew. Chem. Int. Ed. Engl. 1991, 30. doi: 10.1002/anie.199107891  doi: 10.1002/anie.199107891

    105. [105]

      Cava, R. J.; Takagi, H.; Zandbergent, H. W.; Krajewski, J. J.; Peck, W. F.; Siegrist, T.; Batlogg, B.; van Dover, R. B.; Felder, R. J.; Mlzuhashi, K.; et al. Nature 1994, 367, 252. doi: 10.1038/367252a0  doi: 10.1038/367252a0

    106. [106]

      Evans, M. J.; Wu, Y.; Kranak, V. F.; Newman, N.; Reller, A.; Garcia-Garcia, F. J.; Häussermann, U. Phys. Rev. B 2009, 80, 064514. doi: 10.1103/PhysRevB.80.064514  doi: 10.1103/PhysRevB.80.064514

    107. [107]

      Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sorensen, R. Z.; Christensen, C. H.; Norskov, J. K. Science 2008, 320, 1320. doi: 10.1126/science.1156660  doi: 10.1126/science.1156660

    108. [108]

      Armbruster, M.; Kovnir, K.; Friedrich, M.; Teschner, D.; Wowsnick, G.; Hahne, M.; Gille, P.; Szentmiklosi, L.; Feuerbacher, M.; Heggen, M.; et al. Nat. Mater. 2012, 11, 690. doi: 10.1038/nmat3347  doi: 10.1038/nmat3347

    109. [109]

      Jin, Y.; Ren, G.; Feng, Y.; Geng, S.; Li, L.; Zhu, X.; Guo, J.; Shao, Q.; Xu, Y.; Huang, X.; et al. Nano Res. 2022, 15, 9631. doi: 10.1007/s12274-022-4530-0  doi: 10.1007/s12274-022-4530-0

    110. [110]

      Liu, F.; Xia, Y.; Xu, W.; Cao, L.; Guan, Q.; Gu, Q.; Yang, B.; Lu, J. Angew. Chem. Int. Ed. 2021, 60, 19324. doi: 10.1002/anie.202105931  doi: 10.1002/anie.202105931

    111. [111]

      Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. Science 2012, 335, 1209. doi: 10.1126/science.1215864  doi: 10.1126/science.1215864

    112. [112]

      Shen, T.; Wang, S.; Zhao, T.; Hu, Y.; Wang, D. Adv. Energy Mater. 2022, 12, 2201823. doi: 10.1002/aenm.202201823  doi: 10.1002/aenm.202201823

    113. [113]

      Liu, X.; Wang, X.; Zhen, S.; Sun, G.; Pei, C.; Zhao, Z. J.; Gong, J. Chem. Sci. 2022, 13, 9537. doi: 10.1039/d2sc03723h  doi: 10.1039/d2sc03723h

    114. [114]

      Gholinejad, M.; Khosravi, F.; Afrasi, M.; Sansano, J. M.; Nájera, C. Catal. Sci. Technol. 2021, 11, 2652. doi: 10.1039/d0cy02339f  doi: 10.1039/d0cy02339f

    115. [115]

      Glyzdova, D. V.; Afonasenko, T. N.; Khramov, E. V.; Leont'eva, N. N.; Prosvirin, I. P.; Bukhtiyarov, A. V.; Shlyapin, D. A. Appl. Catal. A 2020, 600, 117627. doi: 10.1016/j.apcata.2020.117627  doi: 10.1016/j.apcata.2020.117627

    116. [116]

      Chen, Z.; Cai, C.; Wang, T. J. Phys. Chem. C 2022, 126, 3037. doi: 10.1021/acs.jpcc.1c09716  doi: 10.1021/acs.jpcc.1c09716

    117. [117]

      Han, Y.; Peng, D.; Xu, Z.; Wan, H.; Zheng, S.; Zhu, D. Chem. Commun. 2013, 49, 8350. doi: 10.1039/c3cc43511c  doi: 10.1039/c3cc43511c

    118. [118]

      Zhang, Y.; Diao, W.; Williams, C. T.; Monnier, J. R. Appl. Catal. A 2014, 469, 419. doi: 10.1016/j.apcata.2013.10.024  doi: 10.1016/j.apcata.2013.10.024

    119. [119]

      Ellis, I. T.; Wolf, E. H.; Jones, G.; Lo, B.; Meng-Jung Li, M.; York, A. P.; Edman Tsang, S. C. Chem. Commun. 2017, 53, 601. doi: 10.1039/c6cc08404d  doi: 10.1039/c6cc08404d

    120. [120]

      Liu, Y.; Zhao, J.; Feng, J.; He, Y.; Du, Y.; Li, D. J. Catal. 2018, 359, 251. doi: 10.1016/j.jcat.2018.01.009  doi: 10.1016/j.jcat.2018.01.009

    121. [121]

      Liu, Y.; Liu, X.; Feng, Q.; He, D.; Zhang, L.; Lian, C.; Shen, R.; Zhao, G.; Ji, Y.; Wang, D.; et al. Adv. Mater. 2016, 28, 4747. doi: 10.1002/adma.201600603  doi: 10.1002/adma.201600603

    122. [122]

      Zou, L.; Fan, J.; Zhou, Y.; Wang, C.; Li, J.; Zou, Z.; Yang, H. Nano Res. 2015, 8, 2777. doi: 10.1007/s12274-015-0784-0  doi: 10.1007/s12274-015-0784-0

    123. [123]

      Xiao, C.; Wang, L. L.; Maligal-Ganesh, R. V.; Smetana, V.; Walen, H.; Thiel, P. A.; Miller, G. J.; Johnson, D. D.; Huang, W. J. Am. Chem. Soc. 2013, 135, 9592. doi: 10.1021/ja403175c  doi: 10.1021/ja403175c

    124. [124]

      Li, R.; Wang, D. Nano Res. 2022, 15, 6888. doi: 10.1007/s12274-022-4371-x  doi: 10.1007/s12274-022-4371-x

    125. [125]

      Yang, Y.; Wei, M. J. Mater. Chem. A 2020, 8, 2207. doi: 10.1039/c9ta09448b  doi: 10.1039/c9ta09448b

    126. [126]

      Ye, T. N.; Lu, Y.; Li, J.; Nakao, T.; Yang, H.; Tada, T.; Kitano, M.; Hosono, H. J. Am. Chem. Soc. 2017, 139, 17089. doi: 10.1021/jacs.7b08252  doi: 10.1021/jacs.7b08252

    127. [127]

      Feng, Q.; Zhao, S.; Wang, Y.; Dong, J.; Chen, W.; He, D.; Wang, D.; Yang, J.; Zhu, Y.; Zhu, H.; et al. J. Am. Chem. Soc. 2017, 139, 7294. doi: 10.1021/jacs.7b01471  doi: 10.1021/jacs.7b01471

    128. [128]

      Hu, M.; Zhao, S.; Liu, S.; Chen, C.; Chen, W.; Zhu, W.; Liang, C.; Cheong, W. C.; Wang, Y.; Yu, Y.; et al. Adv. Mater. 2018, 30, 1801878. doi: 10.1002/adma.201801878  doi: 10.1002/adma.201801878

    129. [129]

      Osswald, J.; Kovnir, K.; Armbruster, M.; Giedigkeit, R.; Jentoft, R.; Wild, U.; Grin, Y.; Schlogl, R. J. Catal. 2008, 258, 219. doi: 10.1016/j.jcat.2008.06.014  doi: 10.1016/j.jcat.2008.06.014

    130. [130]

      Luo, Y.; Alarcón Villaseca, S.; Friedrich, M.; Teschner, D.; Knop-Gericke, A.; Armbrüster, M. J. Catal. 2016, 338, 265. doi: 10.1016/j.jcat.2016.03.025  doi: 10.1016/j.jcat.2016.03.025

    131. [131]

      Lou, B.; Kang, H.; Yuan, W.; Ma, L.; Huang, W.; Wang, Y.; Jiang, Z.; Du, Y.; Zou, S.; Fan, J. ACS Catal. 2021, 11, 6073. doi: 10.1021/acscatal.1c00804  doi: 10.1021/acscatal.1c00804

    132. [132]

      Maligal‐Ganesh, R. V.; Pei, Y.; Xiao, C.; Chen, M.; Goh, T. W.; Sun, W.; Wu, J.; Huang, W. ChemCatChem 2020, 12, 3022. doi: 10.1002/cctc.202000155  doi: 10.1002/cctc.202000155

    133. [133]

      Zhang, X.; Cui, G.; Feng, H.; Chen, L.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L.; Hong, S.; Wei, M. Nat. Commun. 2019, 10, 5812. doi: 10.1038/s41467-019-13685-2  doi: 10.1038/s41467-019-13685-2

    134. [134]

      Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Adv. Energy Mater. 2018, 8, 1701476. doi: 10.1002/aenm.201701476  doi: 10.1002/aenm.201701476

    135. [135]

      Wan, R.; Luo, M.; Wen, J.; Liu, S.; Kang, X.; Tian, Y. J. Energy Chem. 2022, 69, 44. doi: 10.1016/j.jechem.2021.12.045  doi: 10.1016/j.jechem.2021.12.045

    136. [136]

      Mao, J.; Yin, J.; Pei, J.; Wang, D.; Li, Y. Nano Today 2020, 34, 100917. doi: 10.1016/j.nantod.2020.100917  doi: 10.1016/j.nantod.2020.100917

    137. [137]

      Zhang, T.; Walsh, A. G.; Yu, J.; Zhang, P. Chem. Soc. Rev. 2021, 50, 569. doi: 10.1039/d0cs00844c  doi: 10.1039/d0cs00844c

    138. [138]

      Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Acc. Chem. Res. 2019, 52, 237. doi: 10.1021/acs.accounts.8b00490  doi: 10.1021/acs.accounts.8b00490

    139. [139]

      Pei, G. X.; Liu, X. Y.; Wang, A.; Li, L.; Huang, Y.; Zhang, T.; Lee, J. W.; Jang, B. W. L.; Mou, C. Y. New J. Chem. 2014, 38, 2043. doi: 10.1039/c3nj01136d  doi: 10.1039/c3nj01136d

    140. [140]

      Pei, G. X.; Liu, X. Y.; Yang, X.; Zhang, L.; Wang, A.; Li, L.; Wang, H.; Wang, X.; Zhang, T. ACS Catal. 2017, 7, 1491. doi: 10.1021/acscatal.6b03293  doi: 10.1021/acscatal.6b03293

    141. [141]

      Bridier, B.; Pérez-Ramírez, J. J. Am. Chem. Soc. 2010, 132, 4321. doi: 10.1021/ja9101997  doi: 10.1021/ja9101997

    142. [142]

      Feng, J.; Liu, Y.; Yin, M.; He, Y.; Zhao, J.; Sun, J.; Li, D. J. Catal. 2016, 344, 854. doi: 10.1016/j.jcat.2016.08.003  doi: 10.1016/j.jcat.2016.08.003

    143. [143]

      Zhang, Z.; Zhang, L.; Wang, X.; Feng, Y.; Liu, X.; Sun, W. Nano Res. 2022, 16, 343. doi: 10.1007/s12274-022-4823-3  doi: 10.1007/s12274-022-4823-3

    144. [144]

      Zhang, N.; Zhang, X.; Kang, Y.; Ye, C.; Jin, R.; Yan, H.; Lin, R.; Yang, J.; Xu, Q.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 13388. doi: 10.1002/anie.202101559  doi: 10.1002/anie.202101559

    145. [145]

      Xiao, Z.; Sun, P.; Qiao, Z.; Qiao, K.; Xu, H.; Wang, S.; Cao, D. Chem. Eng. J. 2022, 446, 137112. doi: 10.1016/j.cej.2022.137112  doi: 10.1016/j.cej.2022.137112

    146. [146]

      An, Q.; Jiang, J.; Cheng, W.; Su, H.; Jiang, Y.; Liu, Q. Small Methods 2022, 6, 2200408. doi: 10.1002/smtd.202200408  doi: 10.1002/smtd.202200408

    147. [147]

      Wang, Y.; Wu, J.; Tang, S.; Yang, J.; Ye, C.; Chen, J.; Lei, Y.; Wang, D. Angew. Chem. Int. Ed. 2023, 62, e202219191. doi: 10.1002/anie.202219191  doi: 10.1002/anie.202219191

    148. [148]

      Zheng, X.; Yang, J.; Li, P.; Jiang, Z.; Zhu, P.; Wang, Q.; Wu, J.; Zhang, E.; Sun, W.; Dou, S.; et al. Angew. Chem. Int. Ed. 2023, 62, e202217449. doi: 10.1002/anie.202217449  doi: 10.1002/anie.202217449

    149. [149]

      Li, W.-H.; Yang, J.; Wang, D. Angew. Chem. Int. Ed. 2022, 61, e202213318. doi: 10.1002/anie.202213318  doi: 10.1002/anie.202213318

    150. [150]

      Zhang, H.; Jin, X.; Lee, J. M.; Wang, X. ACS Nano 2022, 16, 17572. doi: 10.1021/acsnano.2c06827  doi: 10.1021/acsnano.2c06827

    151. [151]

      Zhang, S.; Wu, Y.; Zhang, Y.-X.; Niu, Z. Sci. China: Chem. 2021, 64, 1908. doi: 10.1007/s11426-021-1106-9  doi: 10.1007/s11426-021-1106-9

    152. [152]

      Zhang, J.; Huang, Q.-A.; Wang, J.; Wang, J.; Zhang, J.; Zhao, Y. Chin. J. Catal. 2020, 41, 783. doi: 10.1016/s1872-2067(20)63536-7  doi: 10.1016/s1872-2067(20)63536-7

    153. [153]

      Wei, X.; Wei, S.; Cao, S.; Hu, Y.; Zhou, S.; Liu, S.; Wang, Z.; Lu, X. Appl. Surf. Sci. 2021, 564, 150423. doi: 10.1016/j.apsusc.2021.150423  doi: 10.1016/j.apsusc.2021.150423

    154. [154]

      Zhao, J.; Zhao, J. X.; Li, F. Y.; Chen, Z. F.; J. Phys. Chem. C 2018, 122, 19712. doi: 10.1021/acs.jpcc.8b06494  doi: 10.1021/acs.jpcc.8b06494

    155. [155]

      Huang, F.; Peng, M.; Chen, Y.; Cai, X.; Qin, X.; Wang, N.; Xiao, D.; Jin, L.; Wang, G.; Wen, X. D.; et al. J. Am. Chem. Soc. 2022, 144, 18485. doi: 10.1021/jacs.2c07208  doi: 10.1021/jacs.2c07208

    156. [156]

      Lu, J.; Zhang, S.; Zhou, H.; Huang, C.; Xia, L.; Liu, X.; Luo, H.; Wang, H. Acta Phys. -Chim. Sin. 2023, 39, 2302021.  doi: 10.3866/PKU.WHXB202302021

    157. [157]

      Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. J. Am. Chem. Soc. 2022, 144, 18155. doi: 10.1021/jacs.1c12642  doi: 10.1021/jacs.1c12642

    158. [158]

      Guo, Y.; Huang, Y.; Zeng, B.; Han, B.; Akri, M.; Shi, M.; Zhao, Y.; Li, Q.; Su, Y.; Li, L.; et al. Nat. Commun. 2022, 13, 2648. doi: 10.1038/s41467-022-30291-x  doi: 10.1038/s41467-022-30291-x

    159. [159]

      Wang, J.; Xu, H.; Ao, C.; Pan, X.; Luo, X.; Wei, S.; Li, Z.; Zhang, L.; Xu, Z. L.; Li, Y. iScience 2020, 23, 101233. doi: 10.1016/j.isci.2020.101233  doi: 10.1016/j.isci.2020.101233

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    7. [7]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    8. [8]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    9. [9]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    10. [10]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    11. [11]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    12. [12]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    13. [13]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    14. [14]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    15. [15]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    16. [16]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    17. [17]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    20. [20]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

Metrics
  • PDF Downloads(2)
  • Abstract views(114)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return