Citation: Lei Feng,  Ze-Min Zhu,  Ying Yang,  Zongbin He,  Jiafeng Zou,  Man-Bo Li,  Yan Zhao,  Zhikun Wu. 长期探寻的Au23(S-Adm)16结构及未曾预期的掺杂效应[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230502. doi: 10.3866/PKU.WHXB202305029 shu

长期探寻的Au23(S-Adm)16结构及未曾预期的掺杂效应

  • Received Date: 15 May 2023
    Revised Date: 10 June 2023
    Accepted Date: 12 June 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (21925303, 21771186, 21829501, 21222301, 21528303, 21171170, 92061110), CASHIPS Director’s Fund (BJPY2019A02), Key Program of 13th Five-year Plan, CASHIPS (KP-2017-16), Collaborative Innovation Program of Hefei Science Center, CAS (2020HSC-CIP005, 2022HSC-CIP018), Anhui Provincial Natural Science Foundation (2108085Y05), Hefei National Laboratory for Physical Sciences at the Microscale (KF2020102), and the Startup Fund of Anhui University (S020318006/037).

  • 一锅同时获得单个金属原子掺杂的纳米团簇与母体团簇富有挑战性。这样的合成可排除微量杂质的影响,使得掺杂和未掺杂纳米团簇的性质对比更加合理可靠。在此,我们首次实现了这种合成,得到了长期追寻的纳米团簇Au23(S-Adm)16和其单镉掺杂的Au22Cd1(S-Adm)16纳米团簇,并通过单晶X射线晶体学解析了其结构。令人惊讶的是,与以前的报道结果相反,Au23(S-Adm)16比Au22Cd1(S-Adm)16更稳定。另一方面,由于掺入镉原子后,内核Au―Au键长度增加,光激发电子转移阻力增加,导致Au22Cd1(S-Adm)16吸收和发射强度明显下降。因而,不仅团簇的稳定性,而且团簇的吸收和发射强度也与内核Au―Au键的长度关联。这项工作表明了两种团簇结构上的微小差异就可导致光学、热稳定性等方面的显著区别,也为研究金属纳米团簇的构效关系提供了良好的借鉴。
  • 加载中
    1. [1]

      (1) Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318 (5849), 430. doi: 10.1126/science.1148624

    2. [2]

      (2) Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41 (9), 3594. doi: 10.1039/C2CS15325D

    3. [3]

    4. [4]

      (4) Zeng, C.; Zhou, M.; Chen, Y. X.; Jin, R. Chem. Rev. 2016, 116 (18), 10346. doi: 10.1021/acs.chemrev.5b00703

    5. [5]

      (5) Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty. A.; Garg, N.; Jin, R. J. Phys. Chem. Lett. 2010, 1 (19), 2903. doi: 10.1021/jz100944k

    6. [6]

      (6) Wu, Y.-G.; Huang, J.-H.; Zhang, C.; Guo, X.-K.; Wu, W.-N.; Dong, X.-Y.; Zang, S.-Q. Chem. Commun. 2022, 58 (52), 7321. doi: 10.1039/D2CC00794K

    7. [7]

      (7) Li, J.-J.; Liu, Z.; Guan, Z.-J.; Han, X.-S.; Shi, W.-Q.; Wang, Q.-M., J. Am. Chem. Soc. 2022, 144 (2), 690. doi: 10.1021/jacs.1c11643

    8. [8]

      (8) Tian, S.; Cao, Y.; Chen, T.; Zang, S.; Xie, J. Chem. Commun. 2020, 56 (8), 1163. doi: 10.1039/C9CC08215H

    9. [9]

      (9) Yang, J.-S.; Zhang, M.-M.; Han, Z.; Li, H.-Y.; Li, L.-K.; Dong, X.-Y.; Zang, S.-Q.; Mak, T. C. W. Chem. Commun. 2020, 56 (16), 2451. doi: 10.1039/C9CC09439C

    10. [10]

      (10) Salorinne, K.; Man, R. W. Y.; Lummis, P. A.; Hazer, M. S. A.; Malola, S. J.; Yim, C.-H.; Veinot, A. J.; Zhou, W.; Häkkinen, H.; Nambo, M.; et al. Chem. Commun. 2020, 56 (45), 6102. doi: 10.1039/D0CC01482F

    11. [11]

      (11) Si, W.-D.; Li, Y.-Z.; Zhang, S.-S.; Wang, S.; Feng, L.; Gao, Z.-Y.; Tung, C.-H.; Sun, D. ACS Nano 2021, 15 (10), 16019. doi: 10.1021/acsnano.1c04421

    12. [12]

    13. [13]

      (13) Zhang, Q.-F.; Williard, P. G.; Wang, L.-S. Small 2016, 12 (18), 2518. doi: 10.1002/smll.201600407

    14. [14]

      (14) Chakrahari, K. K.; Silalahi, R. P. B.; Chiu, T.-H.; Wang, X. P.; Azrou, N.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Angew. Chem. Int. Ed. 2019, 58 (15), 4943. doi: 10.1002/anie.201814264

    15. [15]

      (15) Li, Y., Kim, H. K., McGillicuddy, R. D.; Zheng, S.-L.; Anderton, K. J.; Stec, G. J.; Lee, J.; Cui, D.; Mason, J. A. J. Am. Chem. Soc. 2023, 145 (16), 9304. doi: 10.1021/jacs.3c02458

    16. [16]

    17. [17]

      (17) Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Negishi, Y. Acc. Chem. Res. 2018, 51 (12), 3114. doi: 10.1021/acs.accounts.8b00453

    18. [18]

    19. [19]

      (19) Li, T.; Li, Q.; Yang, S.; Xu, L.; Chai, J.; Li, P.; Zhu, M. Chem. Commun. 2021, 57 (38), 4682. doi: 10.1039/D1CC00577D

    20. [20]

      (20) Hossain, S.; Suzuki, D.; Iwasa, T.; Kaneko, R.; Negishi, Y. J. Phys. Chem. C 2020, 124 (40), 22304. doi: 10.1021/acs.jpcc.0c06858

    21. [21]

      (21) Ito, E.; Ito, S.; Takano, S.; Nakamura, T.; Tsukuda, T. J. Am. Chem. Soc. Au 2022, 2 (11), 2627. doi: 10.1021/jacsau.2c00519

    22. [22]

      (22) Yao, C.; Chen, J.; Li, M.-B.; Liu, L.; Yang, J.; Wu, Z. Nano Lett. 2015, 15 (2), 1281. doi: 10.1021/nl504477t

    23. [23]

      (23) Kzan, R.; Müller, U.; Bürgi, T. Nanoscale 2019, 11 (6), 2938. doi: 10.1039/C8NR09214A

    24. [24]

      (24) Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Acc. Chem. Res. 2018, 51 (12), 3094. doi: 10.1021/acs.accounts.8b00412

    25. [25]

      (25) Sun, Y.; Cheng, X.; Zhang, Y.; Tang, A.; Cai, X.; Liu, X.; Zhu, Y. Nanoscale 2020, 12 (35), 18004. doi: 10.1039/D0NR04871B

    26. [26]

      (26) Yao, C.; Lin, Y. J.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.-H.; Wu, Z. J. Am. Chem. Soc. 2015, 137 (49), 15350. doi: 10.1021/jacs.5b09627

    27. [27]

    28. [28]

      (28) Zou, J.; Fei, W.; Qiao, Y.; Yang, Y.; He, Z.; Feng, L.; Li, M.-B.; Wu, Z. Chin. Chem. Lett. 2023, 34 (4), 107660. doi: 10.1016/j.cclet.2022.07.003

    29. [29]

      (29) Tang, L.; Ma, A.; Zhang, C.; Liu, X.; Wang, S.; Jin, R. Angew. Chem. Int. Ed. 2021, 133 (33), 18113. doi: 10.1002/ange.202106804

    30. [30]

      (30) Ma, X.; Xiong, L.; Qin, L.; Tang, Y.; Ma, G.; Pei, Y.; Tang, Z. Chem. Sci. 2021, 12 (38), 12819. doi: 10.1039/D1SC03679C

    31. [31]

      (31) Du, Y.; Guan, Z.-J.; Wen, Z.-R.; Lin, Y.-M.; Wang, Q.-M. Chem. Eur. J. 2018, 24 (60), 16029. doi: 10.1002/chem.201886065

    32. [32]

      (32) Li, Y.; Cowan, M. J.; Zhou, M.; Luo, T.; Jin, R. J. Am. Chem. Soc. 2020, 142 (48), 20426. doi: 10.1021/jacs.0c09110

    33. [33]

      (33) Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass, A. J. Am. Chem. Soc. 2014, 136 (42), 14933. doi: 10.1021/ja507738e

    34. [34]

    35. [35]

      (35) Wu, Z. Angew. Chem. Int. Ed. 2012, 51 (12), 2934. doi: 10.1002/anie.201107822

    36. [36]

      (36) Wang, M.; Chu, Z.; Yang, J.; Yao, C.; Wu, Z. Chem. -Asian. J. 2014, 9 (4), 1006. doi: 10.1002/asia.201301562

    37. [37]

      (37) Gan, Z.; Xia, N.; Wu, Z. Acc. Chem. Res. 2018, 51 (11), 2774. doi: 10.1021/acs.accounts.8b00374

    38. [38]

      (38) Zhuang, S.; Chen, D.; Liao, L.; Zhao, Y.; Xia, N.; Zhang, W.; Wang, C.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2019, 132 (8), 3097. doi: 10.1002/ange.201912845

    39. [39]

      (39) Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.; Paul, S.; Omkumar, R. V.; Pradeep, T. Chem. -Eur. J. 2009, 15 (39), doi: 10.1002/chem.200901425

    40. [40]

      (40) Wan, X.-K.; Yuan, S.-F.; Tang, Q.; Jiang, D.-E.; Wang, Q.-M. Angew. Chem. Int. Ed. 2015, 54 (20), 5977. doi: 10.1002/anie.201500590

    41. [41]

      (41) Kang, X.; Xiang, J.; Lv, Y.; Du, W.; Yu, H.; Wang, S.; Zhu, M. Chem. Mater. 2017, 29 (16), 6856. doi: 10.1021/acs.chemmater.7b02015

    42. [42]

      (42) Liu, C.; Ren, X.; Lin, F.; Fu, X.; Lin, X.; Li, T.; Sun, K.; Huang, J. Angew. Chem. Int. Ed. 2019, 58 (33), 11335. doi: 10.1002/anie.201904612

    43. [43]

      (43) Song, Y.; Chai, J.; Abroshan, H.; Kang, X.; Kim, H.; Zhu, M.; Jin, R. Chem. Mater. 2017, 29 (7), 3055. doi: 10.1021/acs.chemmater.7b00058

    44. [44]

      (44) Zhao, Y.; Zhuang, S.; Liao, L.; Wang, C.; Xia, N.; Gan, Z.; Gu, W.; Li, J.; Deng, H.; Wu, Z. J. Am. Chem. Soc. 2020, 142 (2), 973. doi: 10.1021/jacs.9b11017

    45. [45]

      (45) Wan, X.-K.; Yuan, S.-F.; Tang, Q.; Jiang, D.-E.; Wang, Q.-M. Angew. Chem. Int. Ed. 2015, 127 (20), 6075. doi: 10.1002/ange.201500590

    46. [46]

      (46) Li, H.; Zhou, C.; Wang, E.; Kang, X.; Xu, W.; Zhu, M. Chem. Commun. 2022, 58 (33), 5092. doi: 10.1039/D2CC00987K

    47. [47]

      (47) Yang, Y.; Chen, C.; X, G.-Y.; Yuan, J.; Ye, S.-F.; Chen, L.; Lv, Q.-L.; Luo, G.; Yang, J.; Li, M.-B.; et al. J. Catal. 2021, 401, 206. doi: 10.1016/j.jcat2021.07.023

    48. [48]

      (48) Zhu, M.; Wang, P.; Yan, N.; Chai, X.; He, L.; Zhao, Y.; Xia, N.; Yao, C.; Li, J.; Deng, H.; et al. Angew. Chem. Int. Ed. 2018, 57 (17), 4500. doi: 10.1002/anie.201800877

    49. [49]

      (49) Yi, H.; Han, S. M.; Song, S.; Kim, M.; Sim, E.; Lee, D. L. Angew. Chem. Int. Ed. 2021, 60 (41), 22293. doi: 10.1002/anie.202106311

    50. [50]

      (50) Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135 (49), 18264. doi: 10.1021/ja409177s

    51. [51]

      (51) Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. J. Am. Chem. Soc. 2008, 130 (4), 1138. doi: 10.1021/ja0782448

    52. [52]

      (52) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130 (18), 5883. doi: 10.1021/ja801173r

    53. [53]

      (53) Fan, W.; Yang, Y.; You, Q.; Li, J.; Deng, H.; Yan, N.; Wu, Z. J. Phys. Chem. C 2023, 127 (1), 816. doi: 10.1021/acs.jpcc.2c07678

    54. [54]

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    5. [5]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    18. [18]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    19. [19]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    20. [20]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

Metrics
  • PDF Downloads(0)
  • Abstract views(100)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return