Citation: Jingyi Xie,  Qianxi Lü,  Weizhen Qiao,  Chenyu Bu,  Yusheng Zhang,  Xuejun Zhai,  Renqing Lü,  Yongming Chai,  Bin Dong. Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230502. doi: 10.3866/PKU.WHXB202305021 shu

Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution

  • Corresponding author: Yongming Chai,  Bin Dong, 
  • Received Date: 9 May 2023
    Revised Date: 8 July 2023
    Accepted Date: 10 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52174283), Innovation Fund Project for Graduate Student of China University of Petroleum (East China) (22CX04023A), and the Fundamental Research Funds for the Central Universities.

  • Co-based oxides have shown promise as catalysts for the oxygen evolution reaction (OER), as evidenced by experimental and theoretical studies. However, these common Co-based catalysts suffer from poor stability in acidic environments, making them susceptible to corrosion in acid electrolytes. Consequently, developing OER catalysts that can maintain both activity and stability under strongly acidic conditions is a challenging task for large-scale industrial hydrogen production applications. To address this challenge, the incorporation of manganese (Mn) into the spinel lattice of Co3O4 (CoMn1O) has been proposed, resulting in a defect-rich catalyst with improved lifetime in acidic electrolytes. The crystalline phase structures and chemical valence states were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive spectroscopy (EDS) elemental maps. The introduction of Mn led to the generation of a significant number of defects due to changes in the local crystal structure. Additionally, as the amount of Mn atoms increased, a red shift was observed in the Co 2p spectrum, indicating an increase in the overall valence of Co and the formation of more stable Co―O bonds. Moreover, when the Mn-to-Co ratio reached 1 (CoMn1O), the resulting catalyst exhibited promising OER activity, with overpotentials of 415 and 552 mV at 10 and 50 mA·cm-2, respectively. Detailed physical characterization and electrochemical tests demonstrated that CoMn1O exhibited over four times the stability of Mn-free Co3O4 (CoMn0O). This enhanced stability can be attributed to the introduction of Mn, which promotes electron density bias of Co towards O, resulting in the formation of more stable Co―O bonds. Mn also facilitates acidic oxygen evolution by delaying the oxidation rate of the Co active sites, thereby enhancing stability. Density functional theory (DFT) calculations were further employed to analyze the electronic structures of CoMn1O and CoMn0O. The d-band center of Co 3d (εd) in CoMn1O shifted closer to the Fermi level (EF) compared to that of CoMn0O, indicating a reduced reaction energy barrier for CoMn1O and enhanced bonding interaction with OER intermediates. Overall, this work presents a promising strategy for achieving highly efficient and stable acidic oxygen evolution using noble-metal-free electrocatalysts.
  • 加载中
    1. [1]

      (1) Wang, X.; Zhong, H.; Xi, S.; Lee, W. S. V.; Xue, J. Adv. Mater. 2022, 34, 2107956. doi:10.1002/adma.202107956

    2. [2]

      (2) Liu, W.; Li, X.; Wang, Y.; Yang, D.; Guo, Z.; Liu, M.; Wang, J. J. Energy Chem. 2023, 81, 339. doi:10.1016/j.jechem.2023.02.032

    3. [3]

      (3) Wang, F. L.; Xu, N.; Yu, C. J.; Xie, J. Y.; Dong, B.; Zhang, X. Y.; Dong, Y. W.; Zhou, Y. L.; Chai, Y. M. Appl. Catal. B 2023, 330, 122633. doi:10.1016/j.apcatb.2023.122633

    4. [4]

      (4) Liu, W.; Wang, Y.; Qi, K.; Wang, Y.; Wen, F.; Wang, J. J. Alloy. Compd. 2023, 933, 167789. doi:10.1016/j.jallcom.2022.167789

    5. [5]

      (5) Wang, F. L.; Zhang, X. Y.; Zhou, J. C.; Shi, Z. N.; Dong, B.; Xie, J. Y.; Dong, Y. W.; Yu, J. F.; Chai, Y. M. Inorg. Chem. Front. 2022, 9, 2068. doi:10.1039/D2QI00003B

    6. [6]

      (6) Zhu, K.; Shi, F.; Zhu, X.; Yang, W. Nano Energy 2020, 73, 104761. doi:10.1016/j.nanoen.2020.104761

    7. [7]

      (7) Jiang, J.; Zhou, X. L.; Lv, H. G.; Yu, H. Q.; Yu, Y. Adv. Funct. Mater. 2023, 33, 2212160. doi:10.1002/adfm.202212160

    8. [8]

      (8) Chen, R.; Hung, S. F.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Yang, H. B.; Zhang, L.; Zhang, L.; Xiong, Q.; et al. Adv. Mater. 2019, 31, 1903909. doi:10.1002/adma.201903909

    9. [9]

      (9) Kibsgaard, J.; Chorkendorff, I. Nat. Energy 2019, 4, 430. doi:10.1038/s41560-019-0407-1

    10. [10]

      (10) Blasco Ahicart, M.; Soriano López, J.; Carbó, J. J.; Poblet, J. M.; Galan Mascaros, J. R. Nat. Chem. 2018, 10, 24. doi:10.1038/nchem.2874

    11. [11]

      (11) Kim, M.; Park, J.; Wang, M.; Wang, Q.; Kim, M. J.; Kim, J. Y.; Cho, H. S.; Kim, C. H.; Feng, Z.; Kim, B. H.; et al. Appl. Catal. B 2022, 302, 120834. doi:10.1016/j.apcatb.2021.120834

    12. [12]

      (12) Xia, T.; Liu, C.; Lu, Y.; Jiang, W.; Li, H.; Ma, Y.; Wu, Y.; Che, G. Appl. Surf. Sci. 2022, 605, 154727. doi:10.1016/j.apsusc.2022.154727

    13. [13]

      (13) Choi, S.; Park, J.; Kabiraz, M. K.; Hong, Y.; Kwon, T.; Kim, T.; Oh, A.; Baik, H.; Lee, M.; Paek, S. M.; et al. Adv. Funct. Mater. 2020, 30, 2003935. doi:10.1002/adfm.202003935

    14. [14]

      (14) Zhu, J.; Xie, M.; Chen, Z.; Lyu, Z.; Chi, M.; Jin, W.; Xia, Y. Adv. Energy Mater. 2020, 10, 1904114. doi:10.1002/aenm.201904114

    15. [15]

      (15) Joo, J.; Park, Y.; Kim, J.; Kwon, T.; Jun, M.; Ahn, D.; Baik, H.; Jang, J. H.; Kim, J. Y.; Lee, K. Small Methods 2022, 6, 2101236. doi:10.1002/smtd.202101236

    16. [16]

      (16) Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D.; et al. Angew. Chem. Int. Ed. 2014, 53, 14016. doi:10.1002/anie.201406455

    17. [17]

      (17) Oh, H. S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P. Chem. Sci. 2015, 6, 3321. doi:10.1039/C5SC00518C

    18. [18]

      (18) Su, H.; Zhao, X.; Cheng, W.; Zhang, H.; Li, Y.; Zhou, W.; Liu, M.; Liu, Q. ACS Energy Lett. 2019, 4, 1816. doi:10.1021/acsenergylett.9b01129

    19. [19]

      (19) Yang, S.; Zhang, T.; Li, G.; Yang, L.; Lee, J. Y. Energy Storage Mater. 2017, 6, 140. doi:10.1016/j.ensm.2016.11.001

    20. [20]

      (20) Wang, H.; Zhang, X.; Yin, F.; Chu, W.; Chen, B. J. Mater. Chem. A 2020, 8, 22111. doi:10.1039/D0TA04331A

    21. [21]

      (21) Natarajan, K.; Munirathinam, E.; Yang, T. C. K. ACS Appl. Mater. Interfaces 2021, 13, 27140. doi:10.1021/acsami.1c07267

    22. [22]

      (22) Shang, F.; He, H.; Li, P.; Cai, H.; An, B.; Li, X.; Yang, S.; Sun, Z.; Wang, B. J. Colloid Interface Sci. 2023, 641, 329. doi:10.1016/j.jcis.2023.03.036

    23. [23]

      (23) Jiao, F.; Frei, H. Angew. Chem. Int. Ed. 2009, 48, 1841. doi:10.1002/anie.200805534

    24. [24]

      (24) Mondschein, J. S.; Callejas, J. F.; Read, C. G.; Chen, J. Y. C.; Holder, C. F.; Badding, C. K.; Schaak, R. E. Chem. Mater. 2017, 29, 950. doi:10.1021/acs.chemmater.6b02879

    25. [25]

      (25) Frydendal, R.; Paoli, E. A.; Chorkendorff, I.; Rossmeisl, J.; Stephens, I. E. L. Adv. Energy Mater. 2015, 5, 1500991. doi:10.1002/aenm.201500991

    26. [26]

      (26) Li, A.; Ooka, H.; Bonnet, N.; Hayashi, T.; Sun, Y.; Jiang, Q.; Li, C.; Han, H.; Nakamura, R. Angew. Chem. Int. Ed. 2019, 58, 5054. doi:10.1002/anie.201813361

    27. [27]

      (27) Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K.; et al. Science 2016, 353, 1011. doi:10.1126/science.aaf5050

    28. [28]

      (28) Zhang, F. F.; Cheng, C. Q.; Wang, J. Q.; Shang, L.; Feng, Y.; Zhang, Y.; Mao, J.; Guo, Q. J.; Xie, Y. M.; Dong, C. K.; et al. ACS Energy Lett. 2021, 6, 1588. doi:10.1021/acsenergylett.1c00283

    29. [29]

      (29) Strickler, A. L.; Flores, R. A.; King, L. A.; Nørskov, J. K.; Bajdich, M.; Jaramillo, T. F. ACS Appl. Mater. Interfaces 2019, 11, 34059. doi:10.1021/acsami.9b13697

    30. [30]

      (30) Fan, R. Y.; Zhao, H. Y.; Zhen, Y. N.; Wang, F. G.; Hu, H.; Chai, Y. M.; Dong, B. Fuel 2023, 333, 126361. doi:10.1016/j.fuel.2022.126361

    31. [31]

      (31) Li, A.; Kong, S.; Guo, C.; Ooka, H.; Adachi, K.; Hashizume, D.; Jiang, Q.; Han, H.; Xiao, J.; Nakamura, R. Nat. Catal. 2022, 5, 109. 10. doi:1038/s41929-021-00732-9

    32. [32]

      (32) Xie, J. Y.; Liu, Z. Z.; Li, J.; Feng, L.; Yang, M.; Ma, Y.; Liu, D. P.; Wang, L.; Chai, Y. M.; Dong, B. J. Energy Chem. 2020, 48, 328. doi:10.1016/j.jechem.2020.02.031

    33. [33]

      (33) Rong, C.; Shen, X.; Wang, Y.; Thomsen, L.; Zhao, T.; Li, Y.; Lu, X.; Amal, R.; Zhao, C. Adv. Mater. 2022, 34, 2110103. doi:10.1002/adma.202110103

    34. [34]

      (34) Liu, S.; Yin, Y.; Ni, D.; Hui, K. S.; Ma, M.; Park, S.; Hui, K. N.; Ouyang, C. Y.; Jun, S. C. Energy Storage Mater. 2019, 22, 384. doi:10.1016/j.ensm.2019.02.014

    35. [35]

      (35) Silva, A. L.; Esteves, L. M.; Silva, L. P. C.; Ramos, V. S.; Passos, F. B.; Carvalho, N. M. F. RSC Adv. 2022, 12, 26846. doi:10.1039/D2RA04570B

    36. [36]

      (36) Kwong, W. L.; Lee, C. C.; Shchukarev, A.; Messinger, J. Chem. Commun. 2019, 55, 5017. doi:10.1039/C9CC01369E

    37. [37]

      (37) Zhu, Y.; Zhang, T.; An, T.; Zong, Y.; Lee, J. Y. J. Energy Chem. 2020, 49, 8. doi:10.1016/j.jechem.2020.01.026

    38. [38]

      (38) Yan, K. L.; Qin, J. F.; Lin, J. H.; Dong, B.; Chi, J. Q.; Liu, Z. Z.; Dai, F. N.; Chai, Y. M.; Liu, C. G. J. Mater. Chem. A 2018, 6, 5678. doi:10.1039/C8TA00070K

    39. [39]

      (39) Yang, S.; Zhan, Y.; Li, J.; Lee, J. Y. ACS Appl. Mater. Interfaces 2016, 8, 3535. doi:10.1021/acsami.6b00437

    40. [40]

      (40) Niu, S.; Kong, X. P.; Li, S.; Zhang, Y.; Wu, J.; Zhao, W.; Xu, P. Appl. Catal. B 2021, 297, 120442. doi:10.1016/j.apcatb.2021.120442

    41. [41]

      (41) Anantharaj, S.; Karthick, K.; Kundu, S. Inorg. Chem. 2019, 58, 8570. doi:10.1021/acs.inorgchem.9b00868

    42. [42]

      (42) Chatti, M.; Gardiner, J. L.; Fournier, M.; Johannessen, B.; Williams, T.; Gengenbach, T. R.; Pai, N.; Nguyen, C.; MacFarlane, D. R.; Hocking, R. K.; et al. Nat. Catal. 2019, 2, 457. doi:10.1038/s41929-019-0277-8

    43. [43]

      (43) Wang, X.; Ma, R.; Li, S.; Xu, M.; Liu, L.; Feng, Y.; Thomas, T.; Yang, M.; Wang, J. Adv. Energy Mater. 2023, 2300765. doi:10.1002/aenm.202300765

    44. [44]

      (44) Wang, F. L.; Dong, Y. W.; Yu, C. J.; Dong, B.; Zhang, X. Y.; Fan, R. Y.; Xie, J. Y.; Zhou, Y. N.; Chai, Y. M. Appl. Catal. B 2023, 331, 122660. doi:10.1016/j.apcatb.2023.122660

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

Metrics
  • PDF Downloads(0)
  • Abstract views(451)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return