Citation: Liu Lin, Zemin Sun, Huatian Chen, Lian Zhao, Mingyue Sun, Yitao Yang, Zhensheng Liao, Xinyu Wu, Xinxin Li, Cheng Tang. Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230501. doi: 10.3866/PKU.WHXB202305019
-
Hydrogen peroxide (H2O2) is an environmentally friendly oxidant that has been widely used in water treatment, medical disinfection, chemical synthesis, and other industrial applications. However, traditional methods used to produce H2O2 consume significant amounts of energy and generate hazardous by-products, which limit their scope. On-site and on-demand electrocatalytic two-electron water oxidation chemistry is an attractive option for directly producing H2O2 from water; it also avoids the hazardous anthraquinone method, has fewer transportation costs and risks, and is integratable with renewable electricity. Despite these advantages, the two-electron water oxidation reaction (2e– WOR) still suffers from poor selectivity and activity due to a lack of mechanistic, material-design, and reactor-engineering understanding. This study summarizes recent advances in H2O2 electrosynthesis technology using the 2e– WOR. The catalytic 2e– WOR mechanism is first introduced with a focus on selectivity, activity, and stability. This reaction involves the electrocatalytic oxidation of water to produce H2O2, which can be further oxidized to O2. Selectivity is influenced by a variety of factors, including the electrocatalyst, pH, and electrolyte. Various quantitative H2O2 methods are discussed along with in situ characterization studies into the 2e– WOR aimed at better understanding the reaction process. Such methods include in situ Fourier-transform infrared spectroscopy and in situ Raman spectroscopy. Researchers are able to identify reaction intermediates and understand reaction mechanisms better using these techniques, thereby providing guidance for the design of more efficient electrocatalysts. In turn, various strategies for preparing high-performance electrocatalysts are summarized, including defect, doping, facet, and interfacial engineering methods. Mechanism-guided multiscale materials engineering can improve the activities and selectivities of electrocatalysts, thereby increasing H2O2 yields. In addition, device-level engineering, especially in relation to reactor and system innovations, is emphasized, which is important for improving reaction efficiency and reducing the cost of the 2e– WOR. Finally, current challenges and future opportunities in the 2e– WOR H2O2 electrosynthesis field are discussed. More effort directed at improving reaction selectivity, activity, and durability is required, along with exploring suitable application scenarios. The 2e– WOR is expected to become a more sustainable and efficient method for producing H2O2 facilitated by continuing progress in the materials science and electrochemical technology fields.
-
-
[1]
(1) Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Science 2019, 366 (6462), 226. doi: 10.1126/science.aay1844
-
[2]
(2) Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; et al. Nat. Mater. 2013, 12 (12), 1137. doi: 10.1038/nmat3795
-
[3]
(3) Shi, X.; Siahrostami, S.; Li, G. L.; Zhang, Y.; Chakthranont, P.; Studt, F.; Jaramillo, T. F.; Zheng, X.; Nørskov, J. K. Nat. Commun. 2017, 8 (1), 701. doi: 10.1038/s41467-017-00585-6
-
[4]
(4) Park, S. Y.; Abroshan, H.; Shi, X.; Jung, H. S.; Siahrostami, S.; Zheng, X. ACS Energy Lett. 2018, 4 (1), 352.
-
[5]
doi: 10.1021/acsenergylett.8b02303
-
[6]
(5) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi: 10.1002/anie.200503779
-
[7]
(6) Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60 (36), 19572. doi: 10.1002/anie.202101522
-
[8]
(7) Tang, C.; Chen, L.; Li, H.; Li, L.; Jiao, Y.; Zheng, Y.; Xu, H.; Davey, K.; Qiao, S. Z. J. Am. Chem. Soc. 2021, 143 (20), 7819. doi: 10.1021/jacs.1c03135
-
[9]
(8) Chen, Z.; Chen, S.; Siahrostami, S.; Chakthranont, P.; Hahn, C.; Nordlund, D.; Dimosthenis, S.; Nørskov, J. K.; Bao, Z.; Jaramillo, T. F. React. Chem. Eng. 2017, 2 (2), 239. doi: 10.1039/c6re00195e
-
[10]
(9) Tang, C.; Jiao, Y.; Shi, B.; Liu, J. N.; Xie, Z.; Chen, X.; Zhang, Q.; Qiao, S. Z. Angew. Chem. Int. Ed. 2020, 59 (23), 9171. doi: 10.1002/anie.202003842
-
[11]
(10) Shi, X.; Back, S.; Gill, T. M.; Siahrostami, S.; Zheng, X. Chem 2021, 7 (1), 38. doi: 10.1016/j.chempr.2020.09.013
-
[12]
(11) Siahrostami, S.; Villegas, S. J.; Bagherzadeh Mostaghimi, A. H.; Back, S.; Farimani, A. B.; Wang, H.; Persson, K. A.; Montoya, J. ACS Catal. 2020, 10 (14), 7495. doi: 10.1021/acscatal.0c01641
-
[13]
(12) Hu, X.; Sun, Z.; Mei, G.; Zhao, X.; Xia, B. Y.; You, B. Adv. Energy Mater. 2022, 12 (32), 2201466. doi: 10.1002/aenm.202201466
-
[14]
(13) Edwards, J. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2008, 47 (48), 9192. doi: 10.1002/anie.200802818
-
[15]
(14) Gao, M.; Wang, W.-K.; Zheng, Y.-M.; Zhao, Q.-B.; Yu, H.-Q. Chem. Eng. J. 2020, 402, 126171. doi: 10.1016/j.cej.2020.126171
-
[16]
(15) Zhang, J.; Zhang, H.; Cheng, M. J.; Lu, Q. Small 2020, 16 (15), e1902845. doi: 10.1002/smll.201902845
-
[17]
(16) Zhao, X.; Yang, H.; Xu, J.; Cheng, T.; Li, Y. ACS Mater. Lett. 2021, 3 (7), 996. doi: 10.1021/acsmaterialslett.1c00263
-
[18]
(17) Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Adv. Energy Mater. 2018, 8 (31), 1801909. doi: 10.1002/aenm.201801909
-
[19]
(18) Zhang, J.-Y.; Xia, C.; Wang, H.-F.; Tang, C. J. Energy Chem. 2022, 67, 432. doi: 10.1016/j.jechem.2021.10.013
-
[20]
(19) Zhao, X.; Yin, Q.; Mao, X.; Cheng, C.; Zhang, L.; Wang, L.; Liu, T. F.; Li, Y.; Li, Y. Nat. Commun. 2022, 13 (1), 2721. doi: 10.1038/s41467-022-30523-0
-
[21]
(20) Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S.; et al. Nat. Mater. 2020, 19 (4), 436. doi: 10.1038/s41563-019-0571-5
-
[22]
(21) Wen, Y.; Zhang, T.; Wang, J.; Pan, Z.; Wang, T.; Yamashita, H.; Qian, X.; Zhao, Y. Angew. Chem. Int. Ed. 2022, 61 (35), e202205972. doi: 10.1002/anie.202205972
-
[23]
(22) Zheng, Y. R.; Hu, S.; Zhang, X. L.; Ju, H.; Wang, Z.; Tan, P. J.; Wu, R.; Gao, F. Y.; Zhuang, T.; Zheng, X.; et al. Adv. Mater. 2022, 34 (43), e2205414. doi: 10.1002/adma.202205414
-
[24]
(23) Sun, Y.; Han, L.; Strasser, P. Chem. Soc. Rev. 2020, 49 (18), 6605. doi: 10.1039/d0cs00458h
-
[25]
(24) Jing, L.; Tang, C.; Tian, Q.; Liu, T.; Ye, S.; Su, P.; Zheng, Y.; Liu, J. ACS Appl. Mater. Interfaces 2021, 13 (33), 39763. doi: 10.1021/acsami.1c11765
-
[26]
(25) Zhang, Q.; Zhou, M.; Lang, Z.; Du, X.; Cai, J.; Han, L. Chem. Eng. J. 2021, 413, 127564. doi: 10.1016/j.cej.2020.127564
-
[27]
(26) Chen, Z.; Geng, S.; Wang, Y.; Wang, Y.; Song, S. Appl. Catal. B: Environ. 2022, 317, 121756. doi: 10.1016/j.apcatb.2022.121756
-
[28]
(27) Siahrostami, S.; Li, G. L.; Viswanathan, V.; Nørskov, J. K. J. Phys. Chem. Lett. 2017, 8 (6), 1157. doi: 10.1021/acs.jpclett.6b02924
-
[29]
(28) Fuku, K.; Miyase, Y.; Miseki, Y.; Gunji, T.; Sayama, K. RSC Adv. 2017, 7 (75), 47619. doi: 10.1039/c7ra09693c
-
[30]
(29) Liu, Y.; Niu, Z.; Lu, Y.; Zhang, L.; Yan, K. J. Alloy. Compd. 2018, 735, 654. doi: 10.1016/j.jallcom.2017.11.181
-
[31]
(30) Zhang, C.; Lu, J.; Liu, C.; Zou, Y.; Yuan, L.; Wang, J.; Yu, C. Environ. Res. 2022, 206, 112290. doi: 10.1016/j.envres.2021.112290
-
[32]
(31) Kelly, S. R.; Shi, X.; Back, S.; Vallez, L.; Park, S. Y.; Siahrostami, S.; Zheng, X.; Nørskov, J. K. ACS Catal. 2019, 9 (5), 4593. doi: 10.1021/acscatal.8b04873
-
[33]
(32) Jimenez-Villegas, S.; Kelly, S. R.; Siahrostami, S. J. Mater. Chem. A 2022, 10 (11), 6115. doi: 10.1039/d1ta07562d
-
[34]
(33) Viswanathan, V.; Hansen, H. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6 (21), 4224. doi: 10.1021/acs.jpclett.5b02178
-
[35]
(34) Mavrikis, S.; Goltz, M.; Rosiwal, S.; Wang, L.; Ponce de Leon, C. ChemSusChem 2022, 15 (4), e202102137. doi: 10.1002/cssc.202102137
-
[36]
(35) Espinoza-Montero, P. J.; Alulema-Pullupaxi, P.; Frontana-Uribe, B. A.; Barrera-Diaz, C. E. Curr. Opin. Solid State Mater. Sci. 2022, 26 (3). doi: 10.1016/j.cossms.2022.100988
-
[37]
(36) Xia, C.; Back, S.; Ringe, S.; Jiang, K.; Chen, F.; Sun, X.; Siahrostami, S.; Chan, K.; Wang, H. Nat. Catal. 2020, 3 (2), 125. doi: 10.1038/s41929-019-0402-8
-
[38]
(37) Fuku, K.; Miyase, Y.; Miseki, Y.; Gunji, T.; Sayama, K. ChemistrySelect 2016, 1 (18), 5721. doi: 10.1002/slct.201601469
-
[39]
(38) Shi, X.; Cai, L.; Choi, I. Y.; Ma, M.; Zhang, K.; Zhao, J.; Kim, J. K.; Kim, J. K.; Zheng, X.; Park, J. H. J. Mater. Chem. A 2018, 6 (40), 19542. doi: 10.1039/c8ta04081h
-
[40]
(39) Mavrikis, S.; Göltz, M.; Perry, S. C.; Bogdan, F.; Leung, P. K.; Rosiwal, S.; Wang, L.; Ponce de León, C. ACS Energy Lett. 2021, 6 (7), 2369. doi: 10.1021/acsenergylett.1c00904
-
[41]
(40) Mounfield, W. P.; Garg, A.; Shao-Horn, Y.; Román-Leshkov, Y. Chem 2018, 4 (1), 18. doi: 10.1016/j.chempr.2017.12.015
-
[42]
(41) Xia, C.; Kim, J. Y.; Wang, H. Nat. Catal. 2020, 3 (8), 605. doi: 10.1038/s41929-020-0486-1
-
[43]
(42) Gill, T. M.; Vallez, L.; Zheng, X. ACS Energy Lett. 2021, 6 (8), 2854. doi: 10.1021/acsenergylett.1c01264
-
[44]
(43) Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. Nano Lett. 2014, 14 (3), 1603. doi: 10.1021/nl500037x
-
[45]
(44) Ando, Y.; Tanaka, T. Int. J. Hydrog. Energy 2004, 29 (13), 1349. doi: 10.1016/j.ijhydene.2004.02.001
-
[46]
(45) Izgorodin, A.; Izgorodina, E.; MacFarlane, D. R. Energy Environ. Sci. 2012, 5 (11), 9496. doi: 10.1039/c2ee21832a
-
[47]
(46) Fuku, K.; Sayama, K. Chem. Commun. 2016, 52 (31), 5406. doi: 10.1039/c6cc01605g
-
[48]
(47) Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Nat. Commun. 2016, 7, 11470. doi: 10.1038/ncomms11470
-
[49]
(48) Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. ACS Energy Lett. 2016, 1 (5), 913. doi: 10.1021/acsenergylett.6b00415
-
[50]
(49) Kuttassery, F.; Mathew, S.; Sagawa, S.; Remello, S. N.; Thomas, A.; Yamamoto, D.; Onuki, S.; Nabetani, Y.; Tachibana, H.; Inoue, H. ChemSusChem 2017, 10 (9), 1909. doi: 10.1002/cssc.201700322
-
[51]
(50) Shi, X.; Zhang, Y.; Siahrostami, S.; Zheng, X. Adv. Energy Mater. 2018, 8 (23), 1801158. doi: 10.1002/aenm.201801158
-
[52]
(51) Zhang, J.; Chang, X.; Luo, Z.; Wang, T.; Gong, J. Chem. Commun. 2018, 54 (51), 7026. doi: 10.1039/c8cc03303j
-
[53]
(52) Baek, J. H.; Gill, T. M.; Abroshan, H.; Park, S.; Shi, X.; Nørskov, J.; Jung, H. S.; Siahrostami, S.; Zheng, X. ACS Energy Lett. 2019, 4 (3), 720. doi: 10.1021/acsenergylett.9b00277
-
[54]
(53) Liu, Y.; Han, Y.; Zhang, Z.; Zhang, W.; Lai, W.; Wang, Y.; Cao, R. Chem. Sci. 2019, 10 (9), 2613. doi: 10.1039/c8sc04529a
-
[55]
(54) Kang, T.; Li, B.; Hao, Q.; Gao, W.; Bin, F.; Hui, K. N.; Fu, D.; Dou, B. ACS Sustain. Chem. Eng. 2020, 8 (39), 15005. doi: 10.1021/acssuschemeng.0c05449
-
[56]
(55) Zhang, K.; Liu, J.; Wang, L.; Jin, B.; Yang, X.; Zhang, S.; Park, J. H. J. Am. Chem. Soc. 2020, 142 (19), 8641. doi: 10.1021/jacs.9b13410
-
[57]
(56) Dong, K.; Liang, J.; Wang, Y.; Ren, Y.; Xu, Z.; Zhou, H.; Li, L.; Liu, Q.; Luo, Y.; Li, T.; et al. Chem. Catal. 2021, 1 (7), 1437. doi: 10.1016/j.checat.2021.10.011
-
[58]
(57) Li, L.; Xu, L.; Chan, A. W. M.; Hu, Z.; Wang, Y.; Yu, J. C. Chem. Mater. 2021, 34 (1), 63. doi: 10.1021/acs.chemmater.1c02787
-
[59]
(58) Sun, Y.; Chen, X.; Ning, S.; Zhou, W.; Yang, Z.; Cui, J.; Wang, D.; Ye, J.; Liu, L. J. Mater. Chem. A 2021, 9 (42), 23994. doi: 10.1039/d1ta06306e
-
[60]
(59) Guo, W.; Xie, Y.; Liu, Y.; Shang, S.; Lian, X.; Liu, X. Appl. Surf. Sci. 2022, 606, 155006. doi: 10.1016/j.apsusc.2022.155006
-
[61]
(60) Baek, J.; Jin, Q.; Johnson, N. S.; Jiang, Y.; Ning, R.; Mehta, A.; Siahrostami, S.; Zheng, X. Nat. Commun. 2022, 13 (1), 7256. doi: 10.1038/s41467-022-34884-4
-
[62]
(61) Fan, L.; Bai, X.; Xia, C.; Zhang, X.; Zhao, X.; Xia, Y.; Wu, Z. Y.; Lu, Y.; Liu, Y.; Wang, H. Nat. Commun. 2022, 13 (1), 2668. doi: 10.1038/s41467-022-30251-5
-
[63]
(62) Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18 (8), e2104561. doi: 10.1002/smll.202104561
-
[64]
(63) Mavrikis, S.; Perry, S. C.; Leung, P. K.; Wang, L.; Ponce de León, C. ACS Sustain. Chem. Eng. 2020, 9 (1), 76. doi: 10.1021/acssuschemeng.0c07263
-
[65]
(64) Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Nat. Rev. Chem. 2019, 3 (7), 442. doi: 10.1038/s41570-019-0110-6
-
[66]
(65) Yi, Y.; Wang, L.; Li, G.; Guo, H. Catal. Sci. Technol. 2016, 6 (6), 1593. doi: 10.1039/c5cy01567g
-
[67]
(66) Li, B.; Li, J.; Rong, Y.; Tian, Y.; Li, J.; Liu, X.; Hao, Q.; Teng, B. Appl. Surf. Sci. 2022, 598, 153832. doi: 10.1016/j.apsusc.2022.153832
-
[68]
(67) Chen, L.; Wang, L.; Wan, Y.; Zhang, Y.; Qi, Z.; Wu, X.; Xu, H. Adv. Mater. 2020, 32 (2), e1904433. doi: 10.1002/adma.201904433
-
[69]
(68) Zhang, C.; Dai, Y.; Sun, Q.; Ye, C.; Lu, R.; Zhou, Y.; Zhao, Y. Mater. Today Adv. 2022, 16, 100280. doi: 10.1016/j.mtadv.2022.100280
-
[70]
(69) Geng, X.; Wang, L.; Zhang, L.; Wang, H.; Peng, Y.; Bian, Z. Chem. Eng. J. 2021, 420, 129722. doi: 10.1016/j.cej.2021.129722
-
[71]
(70) Shao, Y.; Hu, J.; Yang, T.; Yang, X.; Qu, J.; Xu, Q.; Li, C. M. Carbon 2022, 190, 337. doi: 10.1016/j.carbon.2022.01.019
-
[72]
(71) Sun, H.; Gao, N.; Dong, K.; Ren, J.; Qu, X. ACS Nano 2014, 8 (6), 6202. doi: 10.1021/nn501640q
-
[73]
(72) Cardoso, I. M. F.; Cardoso, R. M. F.; da Silva, J. Nanomater. 2021, 11 (8), 2045. doi: 10.3390/nano11082045
-
[74]
(73) Wu, W.; Huang, L.; Li, Y.; Li, M.; Chen, Y.; Yang, Y.; Chen, X.; Wu, Y.; Gu, L.; Cao, X. Adv. Mater. Technol. 2022, 7 (3), 2100708. doi: 10.1002/admt.202100708
-
[75]
(74) Pan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. Chem. Eng. J. 2021, 408, 127332. doi: 10.1016/j.cej.2020.127332
-
[76]
(75) Bokare, A. D.; Choi, W. J. Hazard. Mater. 2014, 275, 121. doi: 10.1016/j.jhazmat.2014.04.054
-
[77]
(76) Yang, Y.; Pignatello, J. J.; Ma, J.; Mitch, W. A. Water Res. 2016, 89, 192. doi: 10.1016/j.watres.2015.11.049
-
[78]
(77) Xiao, Y.; Zhang, L.; Zhang, W.; Lim, K. Y.; Webster, R. D.; Lim, T. T. Water Res. 2016, 102, 629. doi: 10.1016/j.watres.2016.07.004
-
[79]
(78) Luo, C.; Ma, J.; Jiang, J.; Liu, Y.; Song, Y.; Yang, Y.; Guan, Y.; Wu, D. Water Res. 2015, 80, 99. doi: 10.1016/j.watres.2015.05.019
-
[80]
(79) Attri, P.; Kim, Y. H.; Park, D. H.; Park, J. H.; Hong, Y. J.; Uhm, H. S.; Kim, K. N.; Fridman, A.; Choi, E. H. Sci. Rep. 2015, 5, 9332. doi: 10.1038/srep09332
-
[81]
(80) Scherer, N. F.; Zewail, A. H. J. Chem. Phys. 1987, 87 (1), 97. doi: 10.1063/1.453529
-
[82]
(81) Kim, M. S.; Lee, C.; Kim, J. H. Water Res. 2021, 201, 117338. doi: 10.1016/j.watres.2021.117338
-
[83]
(82) Sun, Z.; Lin, L.; He, J.; Ding, D.; Wang, T.; Li, J.; Li, M.; Liu, Y.; Li, Y.; Yuan, M.; et al. J. Am. Chem. Soc. 2022, 144 (18), 8204. doi: 10.1021/jacs.2c01153
-
[84]
(83) Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. J. Am. Chem. Soc. 2013, 135 (36), 13521. doi: 10.1021/ja405997s
-
[85]
(84) Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. J. Electroanal. Chem. 2007, 607 (1–2), 83. doi: 10.1016/j.jelechem.2006.11.008
-
[86]
(85) Exner, K. S. ChemCatChem 2020, 12 (7), 2000. doi: 10.1002/cctc.201902363
-
[87]
(86) Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Adv. Energy Mater. 2018, 8 (11), 1702774. doi: 10.1002/aenm.201702774
-
[88]
(87) Pang, Y.; Xie, H.; Sun, Y.; Titirici, M.-M.; Chai, G.-L. J. Mater. Chem. A 2020, 8 (47), 24996. doi: 10.1039/d0ta09122g
-
[89]
(88) Li, L.; Hu, Z.; Yu, J. C. Angew. Chem. Int. Ed. 2020, 59 (46), 20538. doi: 10.1002/anie.202008031
-
[90]
(89) Guo, W.; Xie, Y.; Tang, S.; Yu, B.; Lian, X.; Henkelman, G.; Liu, X. Appl. Surf. Sci. 2022, 596, 153634. doi: 10.1016/j.apsusc.2022.153634
-
[91]
(90) Nadar, A.; Gupta, S. S.; Kar, Y.; Shetty, S.; van Bavel, A. P.; Khushalani, D. J. Phys. Chem. C 2020, 124 (7), 4152. doi: 10.1021/acs.jpcc.9b11418
-
[92]
(91) Chaudhary, P.; Evazzade, I.; Belosludov, R.; Alexandrov, V. ChemCatChem 2023, 15 (10), e202300055. doi: 10.1002/cctc.202300055
-
[93]
(92) Huang, Z.-F.; Song, J.; Dou, S.; Li, X.; Wang, J.; Wang, X. Matter 2019, 1 (6), 1494. doi: 10.1016/j.matt.2019.09.011
-
[94]
(93) Toma, F. M.; Cooper, J. K.; Kunzelmann, V.; McDowell, M. T.; Yu, J.; Larson, D. M.; Borys, N. J.; Abelyan, C.; Beeman, J. W.; Yu, K. M.; et al. Nat. Commun. 2016, 7, 12012. doi: 10.1038/ncomms12012
-
[95]
(94) Singh, A. K.; Zhou, L.; Shinde, A.; Suram, S. K.; Montoya, J. H.; Winston, D.; Gregoire, J. M.; Persson, K. A. Chem. Mater. 2017, 29 (23), 10159. doi: 10.1021/acs.chemmater.7b03980
-
[96]
(95) Gill, T. M.; Zheng, X. Chem. Mater. 2020, 32 (15), 6285. doi: 10.1021/acs.chemmater.0c02010
-
[97]
(96) Zhang, C.; Lu, R.; Liu, C.; Yuan, L.; Wang, J.; Zhao, Y.; Yu, C. Adv. Funct. Mater. 2021, 31 (26), 2100099. doi: 10.1002/adfm.202100099
-
[98]
(97) Zhang, Q.; Tan, X.; Bedford, N. M.; Han, Z.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Nat. Commun. 2020, 11 (1), 4181. doi: 10.1038/s41467-020-17782-5
-
[99]
(98) Sheng, H.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J.; Song, B.; Schmidt, J. R.; Jin, S. Energy Environ. Sci. 2020, 13 (11), 4189. doi: 10.1039/d0ee01925a
-
[100]
(99) Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C.; Jiang, L.; Carroll, D. L.; et al. Nat. Commun. 2020, 11 (1), 3928. doi: 10.1038/s41467-020-175
-
[101]
(100) Wang, L.; Lu, Y.; Han, N.; Dong, C.; Lin, C.; Lu, S.; Min, Y.; Zhang, K. Small 2021, 17 (13), e2100400. doi: 10.1002/smll.202100400
-
[102]
(101) Chen, Z.; Jiang, S.; Kang, G.; Nguyen, D.; Schatz, G. C. J. Am. Chem. Soc. 2019, 141 (39), 15684. doi: 10.1021/jacs.9b07979
-
[103]
(102) Deng, Y.; Yeo, B. S. ACS Catal. 2017, 7 (11), 7873. doi: 10.1021/acscatal.7b02561
-
[104]
(103) Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y.; Xu, B. J. Am. Chem. Soc. 2018, 140 (41), 13387. doi: 10.1021/jacs.8b08379
-
[105]
(104) Kakizaki, H.; Ooka, H.; Hayashi, T.; Yamaguchi, A.; Bonnet‐Mercier, N.; Hashimoto, K.; Nakamura, R. Adv. Funct. Mater. 2018, 28 (24), 1706319. doi: 10.1002/adfm.201706319
-
[106]
(105) Ibrahim, K. B.; Tsai, M. C.; Chala, S. A.; Berihun, M. K.; Kahsay, A. W.; Berhe, T. A.; Su, W. N.; Hwang, B. J. J. Chin. Chem. Soc. 2019, 66 (8), 829. doi: 10.1002/jccs.201900001
-
[107]
(106) Sun, Y.; Gao, S.; Lei, F.; Liu, J.; Liang, L.; Xie, Y. Chem. Sci. 2014, 5 (10), 3976. doi: 10.1039/c4sc00565a
-
[108]
(107) Sun, Y.; Gao, S.; Lei, F.; Xie, Y. Chem. Soc. Rev. 2015, 44 (3), 623. doi: 10.1039/c4cs00236a
-
[109]
(108) Yang, C.; Zhu, Y.; Liu, J.; Qin, Y.; Wang, H.; Liu, H.; Chen, Y.; Zhang, Z.; Hu, W. Nano Energy 2020, 77, 105126. doi: 10.1016/j.nanoen.2020.105126
-
[110]
(109) Zhang, J.; Zhang, J.; He, F.; Chen, Y.; Zhu, J.; Wang, D.; Mu, S.; Yang, H. Y. Nanomicro. Lett. 2021, 13 (1), 65. doi: 10.1007/s40820-020-00579-y
-
[111]
(110) Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Adv. Mater. 2017, 29 (48), 1606459. doi: 10.1002/adma.201606459
-
[112]
(111) Jiang, H.; Gu, J.; Zheng, X.; Liu, M.; Qiu, X.; Wang, L.; Li, W.; Chen, Z.; Ji, X.; Li, J. Energy Eniron. Sci. 2019, 12 (1), 322. doi: 10.1039/c8ee03276a
-
[113]
(112) Anantharaj, S.; Kundu, S.; Noda, S. Nano Energy 2021, 80, 105514. doi: 10.1016/j.nanoen.2020.105514
-
[114]
(113) Sun, Y.; Li, R.; Chen, X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K.; Wang, L.; Zhang, Z.; Liao, Q.; et al. Adv. Energy Mater. 2021, 11 (12), 2003755. doi: 10.1002/aenm.202003755
-
[115]
(114) Böhm, D.; Beetz, M.; Schuster, M.; Peters, K.; Hufnagel, A. G.; Döblinger, M.; Böller, B.; Bein, T.; Fattakhova‐Rohlfing, D. Adv. Funct. Mater. 2019, 30 (1), 1906670. doi: 10.1002/adfm.201906670
-
[116]
(115) Li, N.; Bediako, D. K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; von Cube, F.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Proc. Natl. Acad. Sci. 2017, 114 (7), 1486. doi: 10.1073/pnas.1620787114
-
[117]
(116) Xue, S. G.; Tang, L.; Tang, Y. K.; Li, C. X.; Li, M. L.; Zhou, J. J.; Chen, W.; Zhu, F.; Jiang, J. ACS Appl. Mater. Interfaces 2020, 12 (4), 4423. doi: 10.1021/acsami.9b16937
-
[118]
(117) Zhang, K.; Lu, Y.; Zou, Q.; Jin, J.; Cho, Y.; Wang, Y.; Zhang, Y.; Park, J. H. ACS Energy Lett. 2021, 6 (11), 4071. doi: 10.1021/acsenergylett.1c01831
-
[119]
(118) Cheng, M.; Li, Z.; Xu, T.; Mao, Y.; Zhang, Y.; Zhang, G.; Yan, Z. Electrochim. Acta 2022, 430, 141091. doi: 10.1016/j.electacta.2022.141091
-
[120]
(119) Shan, J.; Zheng, Y.; Shi, B.; Davey, K.; Qiao, S.-Z. ACS Energy Lett. 2019, 4 (11), 2719. doi: 10.1021/acsenergylett.9b01758
-
[121]
(120) Luo, X.; Ji, P.; Wang, P.; Cheng, R.; Chen, D.; Lin, C.; Zhang, J.; He, J.; Shi, Z.; Li, N.; et al. Adv. Energy Mater. 2020, 10 (17), 1903891. doi: 10.1002/aenm.201903891
-
[122]
(121) Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Angew. Chem. Int. Ed. 2016, 55 (23), 6702. doi: 10.1002/anie.201602237
-
[123]
(122) Liu, Y.; Jiang, S.; Li, S.; Zhou, L.; Li, Z.; Li, J.; Shao, M. Appl. Catal. B: Environ. 2019, 247, 107. doi: 10.1016/j.apcatb.2019.01.094
-
[124]
(123) Li, Z.; Zhang, X.; Kang, Y.; Yu, C. C.; Wen, Y.; Hu, M.; Meng, D.; Song, W.; Yang, Y. Adv. Sci. 2021, 8 (2), 2002631. doi: 10.1002/advs.202002631
-
[125]
(124) Young, M. N.; Links, M. J.; Popat, S. C.; Rittmann, B. E.; Torres, C. I. ChemSusChem 2016, 9 (23), 3345. doi: 0.1002/cssc.201601182
-
[1]
-
-
[1]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[7]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[8]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[9]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[10]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[11]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[12]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[13]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[14]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[15]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[16]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[17]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[18]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[19]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[20]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(516)
- HTML views(60)