Citation: Xiaojun Liu, Lang Qin, Yanlei Yu. 胆甾相液晶微球光子禁带的动态调控及其应用[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230501. doi: 10.3866/PKU.WHXB202305018
-
胆甾相液晶微球是空间结构高度对称的三维光子晶体,能够全方位地选择性反射特定波长的圆偏振光,具有无角度依赖性的光子禁带,作为一种新兴的光学材料在全向激光器、反射式显示和微传感器等领域展现出广阔的应用前景。近年来,毛细管微流控技术的蓬勃发展为连续、可控、高通量地制备结构复杂且分子规则取向的单分散胆甾相液晶微球提供了强有力的支持。本综述重点关注利用毛细管微流控技术制备胆甾相液晶微球的相关研究工作,首先分析了毛细管微流控装置在设计微球结构中的决定性作用,阐明了溶液体系的选择与液晶分子取向间的关系以及边界效应对微球尺寸的影响;随后,从胆甾相液晶微球的光学特性切入,介绍了利用温度、溶剂和光等外界刺激调控螺旋结构自组装的原理和策略以及微球之间独有的“光子交叉通讯”现象;最后,总结了现阶段胆甾相液晶微球的潜在应用方向并讨论了该材料体系未来面临的挑战。
-
-
[1]
(1) John, S. Phys. Rev. Lett. 1987, 58, 2486. doi: 10.1103/PhysRevLett.58.2486
-
[2]
(2) Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059. doi: 10.1103/PhysRevLett.58.2059
-
[3]
(3) Shopsowitz, K. E.; Qi, H.; Hamad, W. Y.; Maclachlan, M. J. Nature 2010, 468, 422. doi: 10.1038/nature09540
-
[4]
(4) Wang, L.; Urbas, A. M.; Li, Q. Adv. Mater. 2020, 32, 1801335. doi: 10.1002/adma.201801335
-
[5]
(5) Bisoyi, H. K.; Li, Q. Chem. Rev. 2022, 122, 4887. doi: 10.1021/acs.chemrev.1c00761
-
[6]
(6) Zhang, Y.; Sheng, Y.; Zhu, S.; Xiao, M.; Krolikowski, W. Optica 2021, 8, 372. doi: 10.1364/optica.416619
-
[7]
(7) Parisotto, A.; Steiner, U.; Cabras, A. A.; Van Dam, M. H.; Wilts, B. D. Small 2022, 18, 2200592. doi: 10.1002/smll.202200592
-
[8]
(8) Duan, C.; Cheng, Z.; Wang, B.; Zeng, J.; Xu, J.; Li, J.; Gao, W.; Chen, K. Small 2021, 17, 2007306. doi: 10.1002/smll.202007306
-
[9]
(9) Beltran-Gracia, E.; Parri, O. L. J. Mater. Chem. C 2015, 3, 11335. doi: 10.1039/c5tc02920a
-
[10]
(10) Bisoyi, H. K.; Li, Q. Acc. Chem. Res. 2014, 47, 3184. doi: 10.1021/ar500249k
-
[11]
(11) Schwartz, M.; Lenzini, G.; Geng, Y.; Ronne, P. B.; Ryan, P. Y. A.; Lagerwall, J. P. F. Adv. Mater. 2018, 30, 1707382. doi: 10.1002/adma.201707382
-
[12]
(12) Lee, S. S.; Kim, S.-H. Macromol. Res. 2018, 26, 1054. doi: 10.1007/s13233-018-6148-3
-
[13]
-
[14]
-
[15]
(15) Yang, C.; Wu, B.; Ruan, J.; Zhao, P.; Chen, L.; Chen, D.; Ye, F. Adv. Mater. 2021, 33, 2006361. doi: 10.1002/adma.202006361
-
[16]
-
[17]
(17) Belmonte, A.; Pilz da Cunha, M.; Nickmans, K.; Schenning, A. P. H. J. Adv. Opt. Mater. 2020, 8, 2000054. doi: 10.1002/adom.202000054
-
[18]
(18) Froyen, A. A. F.; Debije, M. G.; Schenning, A. P. H. J. Adv. Opt. Mater. 2022, 10, 2201648. doi: 10.1002/adom.202201648
-
[19]
(19) Kim, Y. G.; Park, S.; Kim, S. H. Chem. Commun. 2022, 58, 10303. doi: 10.1039/d2cc03629k
-
[20]
(20) Shang, L.; Cheng, Y.; Zhao, Y. Chem. Rev. 2017, 117, 7964. doi: 10.1021/acs.chemrev.6b00848
-
[21]
(21) Lee, T. Y.; Choi, T. M.; Shim, T. S.; Frijns, R. A.; Kim, S. H. Lab Chip 2016, 16, 3415. doi: 10.1039/c6lc00809g
-
[22]
(22) Urbanski, M.; Reyes, C. G.; Noh, J.; Sharma, A.; Geng, Y.; Subba Rao Jampani, V.; Lagerwall, J. P. J. Phys. Condens. Matter 2017, 29, 133003. doi: 10.1088/1361-648X/aa5706
-
[23]
(23) Guo, J.-K.; Vij, J. K.; Song, J.-K. Adv. Opt. Mater. 2017, 5, 1700119. doi: 10.1002/adom.201700119
-
[24]
(24) Iwai, Y.; Uchida, Y.; Nishiyama, N. Adv. Opt. Mater. 2016, 4, 1961. doi: 10.1002/adom.201600372
-
[25]
(25) Hong, W.; Yuan, Z.; Chen, X. Small 2020, 16, 1907626. doi: 10.1002/smll.201907626
-
[26]
(26) Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Science 2005, 308, 537. doi: 10.1126/science.1109164
-
[27]
(27) Shah, R. K.; Shum, H. C.; Rowat, A. C.; Lee, D.; Agresti, J. J.; Utada, A. S.; Chu, L.-Y.; Kim, J.-W.; Fernandez-Nieves, A.; Martinez, C. J.; et al. Mater. Today 2008, 11, 18. doi: 10.1016/s1369-7021(08)70053-1
-
[28]
(28) Utada, A. S.; Chu, L. Y.; Fernandez-Nieves, A.; Link, D. R.; Holtze, C.; Weitz, D. A. MRS Bull. 2011, 32, 702. doi: 10.1557/mrs2007.145
-
[29]
(29) Martinez, C. J.; Kim, J. W.; Ye, C.; Ortiz, I.; Rowat, A. C.; Marquez, M.; Weitz, D. Macromol. Biosci. 2012, 12, 946. doi: 10.1002/mabi.201100351
-
[30]
(30) Chen, H. Q.; Wang, X. Y.; Bisoyi, H. K.; Chen, L. J.; Li, Q. Langmuir 2021, 37, 3789. doi: 10.1021/acs.langmuir.1c00256
-
[31]
(31) Fan, J.; Li, Y.; Bisoyi, H. K.; Zola, R. S.; Yang, D. K.; Bunning, T. J.; Weitz, D. A.; Li, Q. Angew. Chem. Int. Ed. 2015, 54, 2160. doi: 10.1002/anie.201410788
-
[32]
(32) Wang, L.; Chen, D.; Gutierrez-Cuevas, K. G.; Bisoyi, H. K.; Fan, J.; Zola, R. S.; Li, G.; Urbas, A. M.; Bunning, T. J.; Weitz, D. A.; et al. Mater. Horiz. 2017, 4, 1190. doi: 10.1039/c7mh00644f
-
[33]
(33) Seo, H. J.; Lee, S. S.; Noh, J.; Ka, J.-W.; Won, J. C.; Park, C.; Kim, S.-H.; Kim, Y. H. J. Mater. Chem. C 2017, 5, 7567. doi: 10.1039/c7tc02660a
-
[34]
(34) Qin, L.; Liu, X.; He, K.; Yu, G.; Yuan, H.; Xu, M.; Li, F.; Yu, Y. Nat. Commun. 2021, 12, 699. doi: 10.1038/s41467-021-20908-y
-
[35]
(35) Gollapelli, B.; Tatipamula, A. K.; Dewanjee, S.; Pathinti, R. S.; Vallamkondu, J. J. Mater. Chem. C 2021, 9, 13991. doi: 10.1039/d1tc02801d
-
[36]
(36) Lin, P.; Yan, Q.; Wei, Z.; Chen, Y.; Chen, S.; Wang, H.; Huang, Z.; Wang, X.; Cheng, Z. ACS Appl. Mater. Interfaces 2018, 10, 18289. doi: 10.1021/acsami.8b02561
-
[37]
(37) Lee, W. J.; Kim, B.; Han, S. W.; Seo, M.; Choi, S.-E.; Yang, H.; Kim, S.-H.; Jeong, S.; Kim, J. W. J. Ind. Eng. Chem. 2018, 68, 393. doi: 10.1016/j.jiec.2018.08.014
-
[38]
(38) Lee, S. S.; Kim, B.; Kim, S. K.; Won, J. C.; Kim, Y. H.; Kim, S. H. Adv. Mater. 2015, 27, 627. doi: 10.1002/adma.201403271
-
[39]
(39) Pan, Y.; Xie, S.; Wang, H.; Huang, L.; Shen, S.; Deng, Y.; Ma, Q.; Liu, Z.; Zhang, M.; Jin, M.; et al. Adv. Opt. Mater. 2022, 11, 2202141. doi: 10.1002/adom.202202141
-
[40]
(40) Kim, J. W.; Oh, Y.; Lee, S.; Kim, S. H. Adv. Funct. Mater. 2021, 32, 2107275. doi: 10.1002/adfm.202107275
-
[41]
(41) Noh, K. G.; Park, S. Y. Mater. Horiz. 2017, 4, 633. doi: 10.1039/c7mh00155j
-
[42]
(42) Kim, J.-G.; Park, S.-Y. Adv. Opt. Mater. 2017, 5, 1700243. doi: 10.1002/adom.201700243
-
[43]
(43) Geng, Y.; Noh, J.; Drevensek-Olenik, I.; Rupp, R.; Lenzini, G.; Lagerwall, J. P. Sci. Rep. 2016, 6, 26840. doi: 10.1038/srep26840
-
[44]
(44) Geng, Y.; Jang, J.-H.; Noh, K.-G.; Noh, J.; Lagerwall, J. P. F.; Park, S.-Y. Adv. Opt. Mater. 2018, 6. doi: 10.1002/adom.201700923
-
[45]
(45) Myung, D. B.; Park, S. Y. ACS Appl. Mater. Interfaces 2019, 11, 20350. doi: 10.1021/acsami.9b04105
-
[46]
(46) Shan, Y. W.; You, L. Q.; Bisoyi, H. K.; Yang, Y. J.; Ge, Y. H.; Che, K. J.; Li, S. S.; Chen, L. J.; Li, Q. Adv. Opt. Mater. 2020, 8, 2000692. doi: 10.1002/adom.202000692
-
[47]
(47) Uchida, Y.; Takanishi, Y.; Yamamoto, J. Adv. Mater. 2013, 25, 3234. doi: 10.1002/adma.201300776
-
[48]
(48) Iwai, Y.; Iijima, R.; Yamamoto, K.; Akita, T.; Uchida, Y.; Nishiyama, N. Adv. Opt. Mater. 2020, 8, 1901363. doi: 10.1002/adom.201901363
-
[49]
(49) Lin, Y.; Gong, L.; Che, K.; Li, S.; Chu, C.; Cai, Z.; Yang, C. J.; Chen, L. Appl. Phys. Lett. 2017, 110, 223301. doi: 10.1063/1.4984743
-
[50]
(50) Chen, L.; Gong, L.; Lin, Y.; Jin, X.; Li, H.; Li, S.; Che, K.; Cai, Z.; Yang, C. J. Lab Chip 2016, 16, 1206. doi: 10.1039/c6lc00070c
-
[51]
(51) Chen, L.; Li, Y.; Fan, J.; Bisoyi, H. K.; Weitz, D. A.; Li, Q. Adv. Opt. Mater. 2014, 2, 845. doi: 10.1002/adom.201400166
-
[52]
(52) Lin, Y.; Yang, Y.; Shan, Y.; Gong, L.; Chen, J.; Li, S.; Chen, L. Nanomaterials 2017, 7, 376. doi: 10.3390/nano7110376
-
[53]
(53) Jang, J.-H.; Park, S.-Y. Sens. Actuators B-Chem. 2017, 241, 636. |doi: 10.1016/j.snb.2016.10.118
-
[54]
(54) Lee, S. S.; Seo, H. J.; Kim, Y. H.; Kim, S. H. Adv. Mater. 2017, 29, 1606894. doi: 10.1002/adma.201606894
-
[55]
(55) Che, K. J.; Yang, Y. J.; Lin, Y. L.; Shan, Y. W.; Ge, Y. H.; Li, S. S.; Chen, L. J.; Yang, C. J. Lab Chip 2019, 19, 3116. doi: 10.1039/c9lc00655a
-
[56]
(56) Kang, J. H.; Kim, S. H.; Fernandez-Nieves, A.; Reichmanis, E. J. Am. Chem. Soc. 2017, 139, 5708. doi: 10.1021/jacs.7b01981
-
[57]
(57) Lee, S. S.; Kim, J. B.; Kim, Y. H.; Kim, S. H. Sci. Adv. 2018, 4, eaat8276. doi: 10.1126/sciadv.aat8276
-
[58]
(58) Lee, S. S.; Kim, S. K.; Won, J. C.; Kim, Y. H.; Kim, S. H. Angew. Chem. Int. Ed. 2015, 54, 15266. doi: 10.1002/anie.201507723
-
[59]
(59) Park, S.; Lee, S. S.; Kim, S. H. Adv. Mater. 2020, 32, 2002166. doi: 10.1002/adma.202002166
-
[60]
(60) Liu, M.; Fu, J.; Yang, S.; Wang, Y.; Jin, L.; Nah, S. H.; Gao, Y.; Ning, Y.; Murray, C. B.; Yang, S. Adv. Mater. 2023, 35, 2207985. doi: 10.1002/adma.202207985
-
[61]
(61) Concellón, A.; Fong, D.; Swager, T. M. J. Am. Chem. Soc. 2021, 143, 9177. doi: 10.1021/jacs.1c04115
-
[62]
-
[63]
(63) Tran, L.; Lavrentovich, M. O.; Durey, G.; Darmon, A.; Haase, M. F.; Li, N.; Lee, D.; Stebe, K. J.; Kamien, R. D.; Lopez-Leon, T. Phys. Rev. X 2017, 7, 041029 doi: 10.1103/PhysRevX.7.041029
-
[64]
(64) Brake, J. M.; Abbott, N. L. Langmuir 2002, 18, 6101. doi: 10.1021/la011746t
-
[65]
(65) Zhang, W.; Froyen, A. A. F.; Schenning, A. P. H. J.; Zhou, G.; Debije, M. G.; de Haan, L. T. Adv. Photon. Res. 2021, 2, 2100016. doi: 10.1002/adpr.202100016
-
[66]
(66) Yang, T.; Yuan, D.; Liu, W.; Zhang, Z.; Wang, K.; You, Y.; Ye, H.; de Haan, L. T.; Zhang, Z.; Zhou, G. ACS Appl. Mater. Interfaces 2022, 14, 4588. doi: 10.1021/acsami.1c23101
-
[67]
(67) White, T. J.; McConney, M. E.; Bunning, T. J. J. Mater. Chem. 2010, 20, 9832. doi: 10.1039/c0jm00843e
-
[68]
(68) McConney, M. E.; Rumi, M.; Godman, N. P.; Tohgha, U. N.; Bunning, T. J. Adv. Opt. Mater. 2019, 7, 1900429. doi: 10.1002/adom.201900429
-
[69]
(69) Bisoyi, H. K.; Li, Q. Chem. Rev. 2016, 116, 15089. doi: 10.1021/acs.chemrev.6b00415
-
[70]
(70) Han, S.-Q.; Chen, Y.-Y.; Xu, B.; Wei, J.; Yu, Y.-L. Chin. J. Polym. Sci. 2020, 38, 806. doi: 10.1007/s10118-020-2383-0
-
[71]
(71) Lin, S.; Gutierrez-Cuevas, K. G.; Zhang, X.; Guo, J.; Li, Q. Adv. Funct. Mater. 2020, 31, 2007957. doi: 10.1002/adfm.202007957
-
[72]
(72) Qin, L.; Gu, W.; Wei, J.; Yu, Y. Adv. Mater. 2018, 30, 1704941. doi: 10.1002/adma.201704941
-
[73]
(73) Qin, L.; Wei, J.; Yu, Y. Adv. Opt. Mater. 2019, 7, 1900430. doi: 10.1002/adom.201900430
-
[74]
(74) Cui, S.; Qin, L.; Liu, X.; Yu, Y. Adv. Opt. Mater. 2022, 10, 2102108. doi: 10.1002/adom.202102108
-
[75]
(75) Hu, H.; Liu, B.; Li, M.; Zheng, Z.; Zhu, W. H. Adv. Mater. 2022, 34, 2110170. doi: 10.1002/adma.202110170
-
[76]
(76) Zheng, Z.; Hu, H.; Zhang, Z.; Liu, B.; Li, M.; Qu, D.-H.; Tian, H.; Zhu, W.-H.; Feringa, B. L. Nat. Photon. 2022, 16, 226. doi: 10.1038/s41566-022-00957-5
-
[77]
-
[78]
-
[79]
(79) Noh, J.; Liang, H.-L.; Drevensek-Olenik, I.; Lagerwall, J. P. F. J. Mater. Chem. C 2014, 2, 806. doi: 10.1039/c3tc32055c
-
[80]
(80) Abetahoff, S. J.; Sukas, S.; Yamaguchi, T.; Hommersom, C. A.; Le Gac, S.; Katsonis, N. Sci. Rep. 2015, 5, 14183. doi: 10.1038/srep14183
-
[81]
(81) Zola, R. S.; Bisoyi, H. K.; Wang, H.; Urbas, A. M.; Bunning, T. J.; Li, Q. Adv. Mater. 2019, 31, 1806172. doi: 10.1002/adma.201806172
-
[82]
(82) Humar, M.; Muševič, I. Opt. Express 2010, 18, 26995. doi: 10.1364/OE.18.026995
-
[83]
(83) Li, Y.; Jun-Yan Suen, J.; Prince, E.; Larin, E. M.; Klinkova, A.; Therien-Aubin, H.; Zhu, S.; Yang, B.; Helmy, A. S.; Lavrentovich, O. D.; et al. Nat. Commun. 2016, 7, 12520. doi: 10.1038/ncomms12520
-
[84]
(84) Franklin, D.; Ueltschi, T.; Carlini, A.; Yao, S.; Reeder, J.; Richards, B.; Van Duyne, R. P.; Rogers, J. A. ACS Nano 2021, 15, 2327. doi: 10.1021/acsnano.0c10234
-
[85]
(85) Wang, C.; Gong, C.; Zhang, Y.; Qiao, Z.; Yuan, Z.; Gong, Y.; Chang, G. E.; Tu, W. C.; Chen, Y. C. ACS Nano 2021, 15, 11126. doi: 10.1021/acsnano.1c02650
-
[86]
(86) Zhang, Y. S.; Weng, H. S.; Jiang, S. A.; Mo, T. S.; Yang, P. C.; Lin, J. D.; Lee, C. R. Adv. Opt. Mater. 2021, 9, 2100667. doi: 10.1002/adom.202100667
-
[87]
(87) Agha, H.; Geng, Y.; Ma, X.; Avsar, D. I.; Kizhakidathazhath, R.; Zhang, Y.; Tourani, A.; Bavle, H.; Sanchez-Lopez, J.; Voos, H.; et al. Light Sci. Appl. 2022, 11, 309. doi: 10.1038/s41377-022-01002-4
-
[88]
(88) Concellón, A.; Zentner, C. A.; Swager, T. M. J. Am. Chem. Soc. 2019, 141, 18246. doi: 10.1021/jacs.9b09216
-
[89]
(89) Lee, H. G.; Munir, S.; Park, S. Y. ACS Appl. Mater. Interfaces 2016, 8, 26407. doi: 10.1021/acsami.6b09624
-
[90]
(90) Lim, J.-S.; Kim, Y.-J.; Park, S.-Y. Sens. Actuators B-Chem. 2021, 329, 129165. doi: 10.1016/j.snb.2020.129165
-
[91]
(91) Belmonte, A.; Bus, T.; Broer, D. J.; Schenning, A. ACS Appl. Mater. Interfaces 2019, 11, 14376. doi: 10.1021/acsami.9b02680
-
[92]
(92) Yang, Y.; Kim, H.; Xu, J.; Hwang, M. S.; Tian, D.; Wang, K.; Zhang, L.; Liao, Y.; Park, H. G.; Yi, G. R.; et al. Adv. Mater. 2018, 30, 1707344. doi: 10.1002/adma.201707344
-
[93]
(93) Wang, Y.; Shang, L.; Bian, F.; Zhang, X.; Wang, S.; Zhou, M.; Zhao, Y. Small 2019, 15, 1900056. doi: 10.1002/smll.201900056
-
[94]
(94) Choi, T. M.; Je, K.; Park, J. G.; Lee, G. H.; Kim, S. H. Adv. Mater. 2018, 30, 1803387. doi: 10.1002/adma.201803387
-
[95]
(95) Yang, Y.; Kim, J. B.; Nam, S. K.; Zhang, M.; Xu, J.; Zhu, J.; Kim, S. H. Nat. Commun. 2023, 14, 793. doi: 10.1038/s41467-023-36482-4
-
[96]
(96) Lin, P.; Chen, H.; Li, A.; Zhuang, H.; Chen, Z.; Xie, Y.; Zhou, H.; Mo, S.; Chen, Y.; Lu, X.; et al. ACS Appl. Mater. Interfaces 2020, 12, 46788. doi: 10.1021/acsami.0c14698
-
[97]
(97) Lin, P.; Wei, Z.; Yan, Q.; Chen, Y.; Wu, M.; Xie, J.; Zeng, M.; Wang, W.; Xu, J.; Cheng, Z. J. Mater. Chem. C 2019, 7, 4822. doi: 10.1039/c8tc05879b
-
[98]
(98) Liu, Y.; Wu, P. Adv. Funct. Mater. 2020, 30, 2002193. doi: 10.1002/adfm.202002193
-
[99]
(99) Du, X. Y.; Li, Q.; Wu, G.; Chen, S. Adv. Mater. 2019, 31, 1903733. doi: 10.1002/adma.201903733
-
[1]
-
-
[1]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[2]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[5]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[6]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[7]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[8]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[9]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[10]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[11]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[12]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[13]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[14]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[15]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[16]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[17]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[18]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[19]
Yongmei Chen , Lidan Zhang , Shunlai Li , Chunting Zhang , Meng Cui , Qinghong Xu , Lan Jin , Chunchuang Li , Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017
-
[20]
Fan Yu , Aihua Li , Yun Liu , Tianrong Zhu , Liang Wang , Junhui Xu , Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(106)
- HTML views(8)