Citation: Hanmei Lü,  Xin Chen,  Qifu Sun,  Ning Zhao,  Xiangxin Guo. Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230501. doi: 10.3866/PKU.WHXB202305016 shu

Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes

  • Corresponding author: Ning Zhao,  Xiangxin Guo, 
  • Received Date: 8 May 2023
    Revised Date: 6 June 2023
    Accepted Date: 6 June 2023

    Fund Project: The project was supported by the Key R&D Program of Shandong Province (2021CXGC010401) and the National Natural Science Foundation of China (U1932205, 52002197).

  • Solid-state lithium batteries (SSLBs) have the potential to further boost the energy density of Li-ion batteries and improve their safety by facilitating the use of Li-metal anodes and limiting flammability, respectively. Solid electrolytes, as key SSLB materials, significantly impact battery performance, among which composite polymer/garnet electrolytes are promising materials for manufacturing SSLBs on a large scale, owing to polymer electrolyte processing ease in combination with the thermal stabilities and high ionic conductivities of garnet electrolytes, both of which are beneficial. Uniformly dispersing garnet particles in the polymer matrix is important for ensuring a highly ionically conductive composite polymer electrolyte. However, high nanoparticle surface energies and incompatible organic–inorganic interfaces lead to garnet particle agglomeration in the polymer matrix and a poorly ionically conductive composite electrolyte. With the aim of promoting Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particle dispersion in both solvents and polymer matrices, in this study, we introduced the 3-glycidyloxypropyl trimethoxy silane (GPTMS) coupling agent onto the LLZTO surface. A 5-nm-thick GPTMS shell was constructed on each LLZTO nanoparticle by covalently bonding GPTMS molecules on the surface of the nanoparticle. The lipophilic epoxy group in GPTMS enables the uniform dispersion of GPTMS-modified LLZTO nanoparticles (LLZTO@GPTMS) in organic solvents, such as acetonitrile, N-methylpyrrolidone, and N,N-dimethylformamide. Particle-size-distribution experiments reveal that LLZTO-nanoparticle dispersity is positively correlated with solvent polarity. Well-dispersed LLZTO suspensions led to superior polyethylene-oxide-based (PEO-based) composite polymer electrolyte ionic conductivities of 2.31 × 10-4 S·cm-1 at 30 °C. Both symmetric lithium batteries and SSLBs that use LiFePO4 (LFP) cathodes, lithium-metal anodes, and the optimal PEO: LLZTO@GPTMS electrolyte exhibited prolonged cycling lives. Moreover, the polyethylene separator was homogeneously coated with LLZTO nanoparticles following GPTMS modification. LFP|Li batteries with LLZTO@GPTMS-coated PE separators exhibited better cycling stabilities than those of batteries with unmodified LLZTO/PE. This study demonstrated that GPTMS effectively improves LLZTO-nanoparticle dispersibility in both organic solvents and polymer matrices, which is also instructive for other organic–inorganic composite systems.
  • 加载中
    1. [1]

      (1) Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Joule 2019, 3 (5), 1190. doi:10.1016/j.joule.2019.03.019

    2. [2]

      (2) Bi, Z. J.; Mu, S.; Zhao, N.; Sun, W. H.; Huang, W. L.; Guo, X. X. Energy Storage Mater. 2021, 35, 512. doi:10.1016/j.ensm.2020.11.038

    3. [3]

    4. [4]

      (4) Hu, X.; Zuo, D.; Cheng, S.; Chen, S.; Liu, Y.; Bao, W.; Deng, S.; Harris, S. J.; Wan, J. Chem. Soc. Rev. 2023, 52 (3), 1103. doi:10.1039/D2CS00322H

    5. [5]

      (5) Mi, J.; Ma, J.; Chen, L.; Lai, C.; Yang, K.; Biao, J.; Xia, H.; Song, X.; Lv, W.; Zhong, G.; et al. Energy Storage Mater. 2022, 48, 375. doi:10.1016/j.ensm.2022.02.048

    6. [6]

      (6) Li, W. K.; Zhao, N.; Bi, Z. J.; Guo, X. X. Appl. Phys. Lett. 2022, 121 (3), 7. doi:10.1063/5.0098255

    7. [7]

      (7) Chen, X.; Jia, Z. Q.; Lv, H. M.; Wang, C. G.; Zhao, N.; Guo, X. X. J. Power Sources 2022, 545, 6. doi:10.1016/j.jpowsour.2022.231939

    8. [8]

      (8) Li, W. K.; Zhao, N.; Bi, Z. J.; Guo, X. X. J. Inorg. Mater. 2022, 37 (2), 189. doi:10.15541/jim20210486

    9. [9]

    10. [10]

      (10) Tufail, M. K.; Zhai, P.; Jia, M.; Zhao, N.; Guo, X. Energy Mater. Adv. 2023, 4, 0015. doi:10.34133/energymatadv.0015

    11. [11]

      (11) Zhai, P. B.; Yang, Z. L.; Wei, Y.; Guo, X. X.; Gong, Y. J. Adv. Energy Mater. 2022, 12 (42), 13. doi:10.1002/aenm.202200967

    12. [12]

      (12) Chen, L. K.; Gu, T.; Ma, J. B.; Yang, K.; Shi, P. R.; Biao, J.; Mi, J. S.; Liu, M.; Lv, W.; He, Y. B. Nano Energy 2022, 100, 10. doi:10.1016/j.nanoen.2022.107470

    13. [13]

      (13) Huo, H. Y.; Chen, Y.; Luo, J.; Yang, X. F.; Guo, X. X.; Sun, X. L. Adv. Energy Mater. 2019, 9 (17), 8. doi:10.1002/aenm.201804004

    14. [14]

      (14) Mu, S.; Bi, Z. J.; Gao, S. H.; Guo, X. X. Chem. Res. Chin. Univ. 2021, 37 (2), 246. doi:10.1007/s40242-021-1054-1

    15. [15]

      (15) Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Nano Energy 2016, 28, 447. doi:10.1016/j.nanoen.2016.09.002

    16. [16]

    17. [17]

      (17) Zhai, P. B.; Chang, D. M.; Bi, Z. J.; Zhao, N.; Guo, X. X. Energy Storage Sci. Technol. 2022, 11 (9), 2847. doi:10.19799/j.cnki.2095-4239.2022.0097

    18. [18]

      (18) Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. Nano Energy 2018, 46, 176. doi:10.1016/j.nanoen.2017.12.037

    19. [19]

      (19) Huang, Z. Y.; Pang, W. Y.; Liang, P.; Jin, Z. H.; Grundish, N.; Li, Y. T.; Wang, C. A. J. Mater. Chem. A 2019, 7 (27), 16425. doi:10.1039/c9ta03395e

    20. [20]

      (20) Li, L. S.; Deng, Y. F.; Chen, G. H. J. Energy Chem. 2020, 50, 154. doi:10.1016/j.jechem.2020.03.017

    21. [21]

      (21) Zagorski, J.; del Amo, J. M. L.; Cordill, M. J.; Aguesse, F.; Buannic, L.; Llordes, A. ACS Appl. Energ. Mater. 2019, 2 (3), 1734. doi:10.1021/acsaem.8b01850

    22. [22]

      (22) Althues, H.; Henle, J.; Kaskel, S. Chem. Soc. Rev. 2007, 36 (9), 1454. doi:10.1039/b608177k

    23. [23]

      (23) Shrestha, S.; Wang, B.; Dutta, P. Adv. Colloid Interface Sci. 2020, 279, 16. doi:10.1016/j.cis.2020.102162

    24. [24]

      (24) Jia, M. Y.; Zhao, N.; Bi, Z. J.; Fu, Z. Q.; Xu, F. F.; Shi, C.; Guo, X. X. ACS Appl. Mater. Interfaces 2020, 12 (41), 46162. doi:10.1021/acsami.0c13434

    25. [25]

      (25) Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Prog. Polym. Sci. 2013, 38 (8), 1232. doi:10.1016/j.progpolymsci.2013.02.003

    26. [26]

      (26) Xie, Y. J.; Hill, C. A. S.; Xiao, Z. F.; Militz, H.; Mai, C. Compos. Pt. A-Appl. Sci. Manuf. 2010, 41 (7), 806. doi:10.1016/j.compositesa.2010.03.005

    27. [27]

      (27) Li, C.; Liang, Z.; Li, Z.; Cao, D.; Zuo, D.; Chang, J.; Wang, J.; Deng, Y.; Liu, K.; Kong, X.; et al. Nano Lett. 2023, 23 (9), 4014. doi:10.1021/acs.nanolett.3c00783

    28. [28]

      (28) Yan, C. Y.; Zhu, P.; Jia, H.; Du, Z.; Zhu, J. D.; Orenstein, R.; Cheng, H.; Wu, N. Q.; Dirican, M.; Zhang, X. W. Energy Storage Mater. 2020, 26, 448. doi:10.1016/j.ensm.2019.11.018

    29. [29]

      (29) Zhang, Z. Y.; Zhang, S.; Geng, S. X.; Zhou, S. B.; Hu, Z. L.; Luo, J. Y. Energy Storage Mater. 2022, 51, 19. doi:10.1016/j.ensm.2022.06.025

    30. [30]

      (30) Li, X. X.; Zheng, B. Y.; Xu, L. M.; Wu, D. D.; Liu, Z. L.; Zhang, H. C. Rare Metal Mat. Eng. 2012, 41 (1), 24. doi:10.1016/s1875-5372(12)60024-1

    31. [31]

      (31) Li, H.; Wang, C. A.; Guo, Z. H.; Wang, H. R.; Zhang, Y. X.; Hong, R.; Peng, Z. R. Effects of Silane Coupling Agents on the Electrical Properties of Silica/Epoxy Nanocomposites, In IEEE International Conference on Dielectrics (ICD), Montpellier, France July 03-07; IEEE:Montpellier, France, 2016; pp. 1036.

    32. [32]

      (32) Jia, M. Y.; Bi, Z. J.; Shi, C.; Zhao, N.; Guo, X. X. J. Power Sources 2021, 486, 7. doi:10.1016/j.jpowsour.2020.229363

    33. [33]

      (33) Gu, J.; Zhang, Q.; Dang, J.; Zhang, J.; Chen, S. Polym. Bull. 2009, 62 (5), 689. doi:10.1007/s00289-009-0045-z

    34. [34]

      (34) Yan, B.; Kotobuki, M.; Liu, J. Mater. Technol. 2016, 31 (11), 623. doi:10.1080/10667857.2016.1196033

    35. [35]

      (35) Song, S. D.; Chen, B. T.; Ruan, Y. L.; Sun, J.; Yu, L. M.; Wang, Y.; Thokchom, J. Electrochim. Acta 2018, 270, 501. doi:10.1016/j.electacta.2018.03.101

    36. [36]

      (36) Ghadimi, A.; Metselaar, I. H. Exp. Therm. Fluid Sci. 2013, 51, 1. doi:10.1016/j.expthermflusci.2013.06.001

    37. [37]

      (37) Jiang, L. Q.; Gao, L.; Sun, J. J. Colloid Interface Sci. 2003, 260 (1), 89. doi:10.1016/s0021-9797(02)00176-5

    38. [38]

      (38) Sadeghi, R.; Etemad, S. G.; Keshavarzi, E.; Haghshenasfard, M. Microfluid. Nanofluid. 2015, 18 (5-6), 1023. doi:10.1007/s10404-014-1491-y

    39. [39]

      (39) Isaac, J. A.; Devaux, D.; Bouchet, R. Nat. Mater. 2022, 21(12), 1412. doi:10.1038/s41563-022-01343-w

    40. [40]

      (40) Huang, W. L.; Zhao, N.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Mater. Today Nano 2020, 10, 100075. doi:10.1016/j.mtnano.2020.100075

    41. [41]

      (41) Pan, K. C.; Zhang, L.; Qian, W. W.; Wu, X. K.; Dong, K.; Zhang, H. T.; Zhang, S. J. Adv. Mater. 2020, 32 (17), 8. doi:10.1002/adma.202000399

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    5. [5]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    6. [6]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    7. [7]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(3)
  • Abstract views(439)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return