Citation: Hanmei Lü, Xin Chen, Qifu Sun, Ning Zhao, Xiangxin Guo. Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230501. doi: 10.3866/PKU.WHXB202305016
-
Solid-state lithium batteries (SSLBs) have the potential to further boost the energy density of Li-ion batteries and improve their safety by facilitating the use of Li-metal anodes and limiting flammability, respectively. Solid electrolytes, as key SSLB materials, significantly impact battery performance, among which composite polymer/garnet electrolytes are promising materials for manufacturing SSLBs on a large scale, owing to polymer electrolyte processing ease in combination with the thermal stabilities and high ionic conductivities of garnet electrolytes, both of which are beneficial. Uniformly dispersing garnet particles in the polymer matrix is important for ensuring a highly ionically conductive composite polymer electrolyte. However, high nanoparticle surface energies and incompatible organic–inorganic interfaces lead to garnet particle agglomeration in the polymer matrix and a poorly ionically conductive composite electrolyte. With the aim of promoting Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particle dispersion in both solvents and polymer matrices, in this study, we introduced the 3-glycidyloxypropyl trimethoxy silane (GPTMS) coupling agent onto the LLZTO surface. A 5-nm-thick GPTMS shell was constructed on each LLZTO nanoparticle by covalently bonding GPTMS molecules on the surface of the nanoparticle. The lipophilic epoxy group in GPTMS enables the uniform dispersion of GPTMS-modified LLZTO nanoparticles (LLZTO@GPTMS) in organic solvents, such as acetonitrile, N-methylpyrrolidone, and N,N-dimethylformamide. Particle-size-distribution experiments reveal that LLZTO-nanoparticle dispersity is positively correlated with solvent polarity. Well-dispersed LLZTO suspensions led to superior polyethylene-oxide-based (PEO-based) composite polymer electrolyte ionic conductivities of 2.31 × 10-4 S·cm-1 at 30 °C. Both symmetric lithium batteries and SSLBs that use LiFePO4 (LFP) cathodes, lithium-metal anodes, and the optimal PEO: LLZTO@GPTMS electrolyte exhibited prolonged cycling lives. Moreover, the polyethylene separator was homogeneously coated with LLZTO nanoparticles following GPTMS modification. LFP|Li batteries with LLZTO@GPTMS-coated PE separators exhibited better cycling stabilities than those of batteries with unmodified LLZTO/PE. This study demonstrated that GPTMS effectively improves LLZTO-nanoparticle dispersibility in both organic solvents and polymer matrices, which is also instructive for other organic–inorganic composite systems.
-
-
[1]
(1) Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Joule 2019, 3 (5), 1190. doi:10.1016/j.joule.2019.03.019
-
[2]
(2) Bi, Z. J.; Mu, S.; Zhao, N.; Sun, W. H.; Huang, W. L.; Guo, X. X. Energy Storage Mater. 2021, 35, 512. doi:10.1016/j.ensm.2020.11.038
-
[3]
-
[4]
(4) Hu, X.; Zuo, D.; Cheng, S.; Chen, S.; Liu, Y.; Bao, W.; Deng, S.; Harris, S. J.; Wan, J. Chem. Soc. Rev. 2023, 52 (3), 1103. doi:10.1039/D2CS00322H
-
[5]
(5) Mi, J.; Ma, J.; Chen, L.; Lai, C.; Yang, K.; Biao, J.; Xia, H.; Song, X.; Lv, W.; Zhong, G.; et al. Energy Storage Mater. 2022, 48, 375. doi:10.1016/j.ensm.2022.02.048
-
[6]
(6) Li, W. K.; Zhao, N.; Bi, Z. J.; Guo, X. X. Appl. Phys. Lett. 2022, 121 (3), 7. doi:10.1063/5.0098255
-
[7]
(7) Chen, X.; Jia, Z. Q.; Lv, H. M.; Wang, C. G.; Zhao, N.; Guo, X. X. J. Power Sources 2022, 545, 6. doi:10.1016/j.jpowsour.2022.231939
-
[8]
(8) Li, W. K.; Zhao, N.; Bi, Z. J.; Guo, X. X. J. Inorg. Mater. 2022, 37 (2), 189. doi:10.15541/jim20210486
-
[9]
-
[10]
(10) Tufail, M. K.; Zhai, P.; Jia, M.; Zhao, N.; Guo, X. Energy Mater. Adv. 2023, 4, 0015. doi:10.34133/energymatadv.0015
-
[11]
(11) Zhai, P. B.; Yang, Z. L.; Wei, Y.; Guo, X. X.; Gong, Y. J. Adv. Energy Mater. 2022, 12 (42), 13. doi:10.1002/aenm.202200967
-
[12]
(12) Chen, L. K.; Gu, T.; Ma, J. B.; Yang, K.; Shi, P. R.; Biao, J.; Mi, J. S.; Liu, M.; Lv, W.; He, Y. B. Nano Energy 2022, 100, 10. doi:10.1016/j.nanoen.2022.107470
-
[13]
(13) Huo, H. Y.; Chen, Y.; Luo, J.; Yang, X. F.; Guo, X. X.; Sun, X. L. Adv. Energy Mater. 2019, 9 (17), 8. doi:10.1002/aenm.201804004
-
[14]
(14) Mu, S.; Bi, Z. J.; Gao, S. H.; Guo, X. X. Chem. Res. Chin. Univ. 2021, 37 (2), 246. doi:10.1007/s40242-021-1054-1
-
[15]
(15) Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Nano Energy 2016, 28, 447. doi:10.1016/j.nanoen.2016.09.002
-
[16]
-
[17]
(17) Zhai, P. B.; Chang, D. M.; Bi, Z. J.; Zhao, N.; Guo, X. X. Energy Storage Sci. Technol. 2022, 11 (9), 2847. doi:10.19799/j.cnki.2095-4239.2022.0097
-
[18]
(18) Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. Nano Energy 2018, 46, 176. doi:10.1016/j.nanoen.2017.12.037
-
[19]
(19) Huang, Z. Y.; Pang, W. Y.; Liang, P.; Jin, Z. H.; Grundish, N.; Li, Y. T.; Wang, C. A. J. Mater. Chem. A 2019, 7 (27), 16425. doi:10.1039/c9ta03395e
-
[20]
(20) Li, L. S.; Deng, Y. F.; Chen, G. H. J. Energy Chem. 2020, 50, 154. doi:10.1016/j.jechem.2020.03.017
-
[21]
(21) Zagorski, J.; del Amo, J. M. L.; Cordill, M. J.; Aguesse, F.; Buannic, L.; Llordes, A. ACS Appl. Energ. Mater. 2019, 2 (3), 1734. doi:10.1021/acsaem.8b01850
-
[22]
(22) Althues, H.; Henle, J.; Kaskel, S. Chem. Soc. Rev. 2007, 36 (9), 1454. doi:10.1039/b608177k
-
[23]
(23) Shrestha, S.; Wang, B.; Dutta, P. Adv. Colloid Interface Sci. 2020, 279, 16. doi:10.1016/j.cis.2020.102162
-
[24]
(24) Jia, M. Y.; Zhao, N.; Bi, Z. J.; Fu, Z. Q.; Xu, F. F.; Shi, C.; Guo, X. X. ACS Appl. Mater. Interfaces 2020, 12 (41), 46162. doi:10.1021/acsami.0c13434
-
[25]
(25) Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Prog. Polym. Sci. 2013, 38 (8), 1232. doi:10.1016/j.progpolymsci.2013.02.003
-
[26]
(26) Xie, Y. J.; Hill, C. A. S.; Xiao, Z. F.; Militz, H.; Mai, C. Compos. Pt. A-Appl. Sci. Manuf. 2010, 41 (7), 806. doi:10.1016/j.compositesa.2010.03.005
-
[27]
(27) Li, C.; Liang, Z.; Li, Z.; Cao, D.; Zuo, D.; Chang, J.; Wang, J.; Deng, Y.; Liu, K.; Kong, X.; et al. Nano Lett. 2023, 23 (9), 4014. doi:10.1021/acs.nanolett.3c00783
-
[28]
(28) Yan, C. Y.; Zhu, P.; Jia, H.; Du, Z.; Zhu, J. D.; Orenstein, R.; Cheng, H.; Wu, N. Q.; Dirican, M.; Zhang, X. W. Energy Storage Mater. 2020, 26, 448. doi:10.1016/j.ensm.2019.11.018
-
[29]
(29) Zhang, Z. Y.; Zhang, S.; Geng, S. X.; Zhou, S. B.; Hu, Z. L.; Luo, J. Y. Energy Storage Mater. 2022, 51, 19. doi:10.1016/j.ensm.2022.06.025
-
[30]
(30) Li, X. X.; Zheng, B. Y.; Xu, L. M.; Wu, D. D.; Liu, Z. L.; Zhang, H. C. Rare Metal Mat. Eng. 2012, 41 (1), 24. doi:10.1016/s1875-5372(12)60024-1
-
[31]
(31) Li, H.; Wang, C. A.; Guo, Z. H.; Wang, H. R.; Zhang, Y. X.; Hong, R.; Peng, Z. R. Effects of Silane Coupling Agents on the Electrical Properties of Silica/Epoxy Nanocomposites, In IEEE International Conference on Dielectrics (ICD), Montpellier, France July 03-07; IEEE:Montpellier, France, 2016; pp. 1036.
-
[32]
(32) Jia, M. Y.; Bi, Z. J.; Shi, C.; Zhao, N.; Guo, X. X. J. Power Sources 2021, 486, 7. doi:10.1016/j.jpowsour.2020.229363
-
[33]
(33) Gu, J.; Zhang, Q.; Dang, J.; Zhang, J.; Chen, S. Polym. Bull. 2009, 62 (5), 689. doi:10.1007/s00289-009-0045-z
-
[34]
(34) Yan, B.; Kotobuki, M.; Liu, J. Mater. Technol. 2016, 31 (11), 623. doi:10.1080/10667857.2016.1196033
-
[35]
(35) Song, S. D.; Chen, B. T.; Ruan, Y. L.; Sun, J.; Yu, L. M.; Wang, Y.; Thokchom, J. Electrochim. Acta 2018, 270, 501. doi:10.1016/j.electacta.2018.03.101
-
[36]
(36) Ghadimi, A.; Metselaar, I. H. Exp. Therm. Fluid Sci. 2013, 51, 1. doi:10.1016/j.expthermflusci.2013.06.001
-
[37]
(37) Jiang, L. Q.; Gao, L.; Sun, J. J. Colloid Interface Sci. 2003, 260 (1), 89. doi:10.1016/s0021-9797(02)00176-5
-
[38]
(38) Sadeghi, R.; Etemad, S. G.; Keshavarzi, E.; Haghshenasfard, M. Microfluid. Nanofluid. 2015, 18 (5-6), 1023. doi:10.1007/s10404-014-1491-y
-
[39]
(39) Isaac, J. A.; Devaux, D.; Bouchet, R. Nat. Mater. 2022, 21(12), 1412. doi:10.1038/s41563-022-01343-w
-
[40]
(40) Huang, W. L.; Zhao, N.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Mater. Today Nano 2020, 10, 100075. doi:10.1016/j.mtnano.2020.100075
-
[41]
(41) Pan, K. C.; Zhang, L.; Qian, W. W.; Wu, X. K.; Dong, K.; Zhang, H. T.; Zhang, S. J. Adv. Mater. 2020, 32 (17), 8. doi:10.1002/adma.202000399
-
[1]
-
-
[1]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[4]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[5]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[6]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[7]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[8]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[9]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[10]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[11]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[12]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[13]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[14]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[15]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[16]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[17]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[18]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[19]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[20]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(439)
- HTML views(58)