Citation:
Yinjie Xu, Suiqin Li, Lihao Liu, Jiahui He, Kai Li, Mengxin Wang, Shuying Zhao, Chun Li, Zhengbin Zhang, Xing Zhong, Jianguo Wang. Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals[J]. Acta Physico-Chimica Sinica,
;2024, 40(3): 230501.
doi:
10.3866/PKU.WHXB202305012
-
Conventional oxidation methods of sterol intermediates using the heavy metal chromium as an oxidant has critical drawbacks, such as high toxicity and environmental pollution. Electrocatalytic oxidation (ECO), on the other hand, is considered a promising alternative to conventional processes owing to its high efficiency, eco-friendliness, and controllability. However, ECO currently faces two major challenges: low current densities and reduced space-time yields. In this study, a single-step solvothermal method was employed to synthesize self-supported nickel-iron metal-organic framework (NiFe-MOF) nanosheet electrocatalysts on graphite felt. Various analytical techniques were employed to comprehensively characterize the synthesized NiFe-MOF, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and Brunauer-Emmett-Teller (BET) analysis Furthermore, we implemented a synergistic electrocatalytic strategy by combining the NiFe-MOF catalyst with aminoxyl radicals, i.e., 4-acetamido-2,2,6,6-tetramethyl-1-piperidine-N-oxyl (ACT), to enhance the performance of the ECO reaction. According to the results of structural characterization, the synthesized NiFe-MOF exhibited an amorphous nanosheet structure with a high specific surface area and microporosity. Moreover, we successfully achieved continuous flow with enhanced mass transfer during the electrocatalytic oxidation of 19-hydroxy-4-androstene-3,17-dione (1a) at a current density of 100 mA·cm-2. The optimal reaction conditions for the ECO reaction were as follows: 100 mmol·L-1 concentration of 1a, 10% (molar fraction) of ACT, a 1 mol·L-1 Na2CO3/acetonitrile electrolyte (6: 4), room temperature, pH 12.5, and a flow rate of 225 mL·min-1. Under these conditions, the conversion and selectivity of the reaction reached outstanding levels of 99 and 98%, respectively. Moreover, the space-time yield was calculated to be as high as 15.88 kg·m-3·h-1, with a remarkable 35-fold increase compared to that achieved in a batch reactor. The NiFe-MOF/ACT synergistic system demonstrated a high conversion rate for ECO even after 10 reaction cycles. To assess the system’s efficacy in converting other sterols, we conducted an analysis of substrate expansion, which yielded conversion rates exceeding 95%. The SEM, TEM, and XPS results of the catalyst obtained before and after the reaction indicated that the alkaline electrolyte could effectively reconstitute the NiFe-MOF structure, leading to a significant improvement in its performance. By leveraging a ten-fold increased surface area of the NiFe-MOF and constructing a continuous flow electroreactor for ECO with a constant current, we achieved a remarkable space-time yield of 12.99 kg·m-3·h-1. Thus, we developed a synergistic electrocatalytic oxidation strategy based on NiFe-MOF/ACT, and this study not only provides valuable insights for realizing the selective oxidation of sterols but also contributes to the advancement of sustainable and efficient chemical processes.
-
-
-
[1]
(1) Peng, H.; Wang, Y.; Jiang, K.; Chen, X.; Zhang, W.; Zhang, Y.; Deng, Z.; Qu, X. Angew. Chem. Int. Ed. 2021, 60, 5414. doi:10.1002/anie.202015462
-
[2]
(2) Bansal, R.; Singh, R. Med. Res. Rev. 2018, 38, 1126. doi:10.1002/med.21458
-
[3]
(3) Disha; Nayak, M.; Kumari, P.; Patel, M.; Kumar, P. Trends Anal. Chem. 2022, 150, 116571. doi:10.1016/j.trac.2022.116571
-
[4]
(4) Grainger, W. S.; Parish, E. J. Steroids 2015, 101, 103. doi:10.1016/j.steroids.2015.06.005
-
[5]
(5) Su, B.-M.; Zhao, H.-R.; Xu, L.; Xu, X. Q.; Wang, L. C.; Lin, J.; Lin, W. ACS Sustain. Chem. Eng. 2022, 10, 3373. doi:10.1021/acssuschemeng.2c00411
-
[6]
(6) Hilario-Martínez, J. C.; Murillo, F.; García-Méndez, J.; Dzib, E.; Sandoval-Ramírez, J.; Muñoz-Hernández, M. Á.; Bernès, S.; Kürti, L.; Duarte, F.; Merino, G.; et al. Chem. Sci. 2020, 11, 12764. doi:10.1039/d0sc01701a
-
[7]
(7) Tang, D.; Lu, G.; Shen, Z.; Hu, Y.; Yao, L.; Li, B.; Zhao, G.; Peng, B.; Huang, X. J. Energy Chem. 2023, 77, 80. doi:10.1016/j.jechem.2022.10.038
-
[8]
(8) Waldie, K. M.; Flajslik, K. R.; McLoughlin, E.; Chidsey, C. E.; Waymouth, R. M. J. Am. Chem. Soc. 2017, 139, 738. doi:10.1021/jacs.6b09705
-
[9]
-
[10]
(10) Han, C.; Lyu, Y.; Wang, S.; Liu, B.; Zhang, Y.; Lu, J.; Du, H. Carbon Energy 2023, 5, e339. doi:10.1002/cey2.339
-
[11]
-
[12]
(12) You, B.; Liu, X.; Liu, X.; Sun, Y. ACS Catal. 2017, 7, 4564. doi:10.1021/acscatal.7b00876
-
[13]
(13) Li, R.; Kuang, P.; Wang, L.; Tang, H.; Yu, J. Chem. Eng. J. 2022, 431, 134137. doi:10.1016/j.cej.2021.134137
-
[14]
(14) Feng, Y.; Yang, K.; Smith, R. L.; Qi, X. J. Mater. Chem. A 2023, 11, 6375. doi:10.1039/d2ta09426f
-
[15]
(15) Chen, Z.; Zhou, H.; Kong, F.; Wang, M. Appl. Catal. B 2022, 309, 121281. doi:10.1016/j.apcatb.2022.121281
-
[16]
(16) Zhong, X.; Hoque, M. A.; Graaf, M. D.; Harper, K. C.; Wang, F.; Genders, J. D.; Stahl, S. S. Org. Process. Res. Dev. 2021, 25, 2601. doi:10.1021/acs.oprd.1c00036
-
[17]
(17) Li, S.; Wang, S.; Wang, Y.; He, J.; Li, K.; Xu, Y.; Wang, M.; Zhao, S.; Li, X.; Zhong, X.; et al. Adv. Funct. Mater. 2023, 33, 2214488. doi:10.1002/adfm.202214488
-
[18]
(18) Li, S.; Li, C.; Li, K.; Sun, X.; Zhong, X.; He, J.; Xu, Z.; Liu, X.; Zhang, J.; Shao, F.; et al. Chem. Eng. J. 2022, 446, 2. doi:10.1016/j.cej.2022.136659
-
[19]
-
[20]
(20) Liang, J.; Gao, X.; Guo, B.; Ding, Y.; Yan, J.; Guo, Z.; Tse, E. C. M.; Liu, J. Angew. Chem. Int. Ed. 2021, 60, 12770. doi:10.1002/anie.202101878
-
[21]
(21) Taffa, D. H.; Balkenhohl, D.; Amiri, M.; Wark, M. Small Struct. 2022, 263, 263. doi:10.1002/sstr.202200263
-
[22]
(22) Chang, G.; Zhou, Y.; Wang, J.; Zhang, H.; Yan, P.; Wu, H. B.; Yu, X. Y. Small 2023, 19, 2206768. doi:10.1002/smll.202206768
-
[23]
(23) Das, A.; Stahl, S. S. Angew. Chem. Int. Ed. 2017, 56, 8892. doi:10.1002/anie.201704921
-
[24]
(24) Ma, Z.; Mahmudov, K. T.; Aliyeva, V. A.; Gurbanov, A. V.; Pombeiro, A. J. L. Coord. Chem. Rev. 2020, 423, 213482. doi:10.1016/j.ccr.2020.213482
-
[25]
(25) Rafiee, M.; Konz, Z. M.; Graaf, M. D.; Koolman, H. F.; Stahl, S. S. ACS Catal. 2018, 8, 673. doi:10.1021/acscatal.8b01640
-
[26]
(26) Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561. doi:10.1021/acs.accounts.9b00544
-
[27]
(27) Goes, S. L.; Mayer, M. N.; Nutting, J. E.; Hoober-Burkhardt, L. E.; Stahl, S. S.; Rafiee, M. J. Chem. Educ. 2021, 98, 600. doi:10.1021/acs.jchemed.0c01244
-
[28]
(28) Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406. doi:10.1038/nature18008
-
[29]
(29) Nutting, J. E.; Mao, K.; Stahl, S. S. J. Am. Chem. Soc. 2021, 143, 10565. doi:10.1021/jacs.1c05224
-
[30]
(30) Wang, H.; Xu, L.; Jingcheng, W.; Wu, J.; Zhou, P.; Tao, S.; Lu, Y.; Wu, X.; Zou, Y. Chin. J. Catal. 2023, 46, 148. doi:10.1016/s1872-2067(22)64203-7
-
[31]
(31) Zhang, Y.; Xie, K.; Zhou, F.; Wang, F.; Xu, Q.; Hu, J.; Ding, H.; Li, P.; Tan, Y.; Li, D.; et al. Adv. Energy Mater. 2022, 12, 29. doi:10.1002/aenm.202201027
-
[32]
(32) Hao, H.; Zhang, Q.-A.; Feng, Z.; Tang, A. Chem. Eng. J. 2022, 450,139170. doi:10.1016/j.cej.2022.138170
-
[33]
(33) Li, X.; Zhang, H.; Hu, Q.; Zhou, W.; Shao, J.; Jiang, X.; Feng, C.; Yang, H.; He, C. Angew. Chem. Int. Ed. 2023, 62, e202300478. doi:10.1002/anie.202300478
-
[34]
(34) Lin, Z.; Richardson, J. J.; Zhou, J.; Caruso, F. Nat. Rev. Chem. 2023, 7, 273. doi:10.1038/s41570-023-00474-1
-
[35]
(35) Liu, D.; Xu, H.; Wang, C.; Ye, C.; Yu, R.; Du, Y. J. Mater. Chem. A 2021, 9, 24670. doi:10.1039/d1ta06438j
-
[36]
(36) Liu, J.; Ji, Y.; Nai, J.; Niu, X.; Luo, Y.; Guo, L.; Yang, S. Energy Environ. Sci. 2018, 11, 1736. doi:10.1039/c8ee00611c
-
[37]
(37) Li, B.; Zeng, H. C. Chem. Mater. 2019, 31, 5320. doi:10.1021/acs.chemmater.9b02070
-
[38]
(38) Li, Y.; Ma, W.; Yang, H.; Tian, Q.; Xu, Q.; Han, B. Chem. Commun. 2022, 58, 6833. doi:10.1039/d2cc01163h
-
[39]
(39) Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. Adv. Energy Mater. 2018, 8, 1800584. doi:10.1002/aenm.201800584
-
[40]
(40) Wei, K.; Wang, X.; Jiao, X.; Li, C.; Chen, D.; Lin, Y. Appl. Surf. Sci. 2021, 550, 149323. doi:10.1016/j.apsusc.2021.149323
-
[41]
(41) Liu, Y.; Li, X.; Sun, Q.; Wang, Z.; Huang, W. H.; Guo, X.; Fan, Z.; Ye, R.; Zhu, Y.; Chueh, C. C.; et al. Small 2022, 18, 26. doi:10.1002/smll.202201076
-
[42]
(42) Li, C. F.; Xie, L. J.; Zhao, J. W.; Gu, L. F.; Tang, H. B.; Zheng, L.; Li, G. R. Angew. Chem. Int. Ed. 2022, 61, e202116934. doi:10.1002/anie.202116934
-
[43]
(43) Rinawati, M.; Wang, Y.-X.; Chen, K.-Y.; Yeh, M.-H. Chem. Eng. J 2021, 423, 130204. doi:10.1016/j.cej.2021.130204
-
[44]
(44) Wang, Y.; Liu, B.; Shen, X.; Arandiyan, H.; Zhao, T.; Li, Y.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A.; et al. Adv. Energy Mater. 2021, 11, 16. doi:10.1002/aenm.202003759
-
[45]
(45) Zhu, J.; Qian, J.; Peng, X.; Xia, B.; Gao, D. Nanomicro. Lett. 2023, 15, 30. doi:10.1007/s40820-022-01011-3
-
[46]
(46) Xu, X.; Song, F.; Hu, X. Nat. Commun. 2016, 7, 12324. doi:10.1038/ncomms12324
-
[47]
(47) Guo, C.; Chen, Q.; Zhong, J.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Ind. Eng. Chem. Res. 2023, 62, 4356. doi:10.1021/acs.iecr.2c04643
-
[48]
(48) Liu, X.; Xia, F.; Guo, R.; Huang, M.; Meng, J.; Wu, J.; Mai, L. Adv. Funct. Mater. 2021, 31, 31. doi:10.1002/adfm.202101792
-
[49]
(49) Wu, Y.; Yang, J.; Tu, T.; Li, W.; Zhang, P.; Zhou, Y.; Li, J.; Li, J.; Sun, S. Angew. Chem. Int. Ed. 2021, 60, 26829. doi:10.1002/ange.202112447
-
[1]
-
-
-
[1]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[2]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[3]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[4]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[5]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[6]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[7]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[8]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[9]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[10]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[11]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[12]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[13]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[14]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[15]
Hongdao LI , Shengjian ZHANG , Hongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411
-
[16]
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388
-
[17]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[18]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[19]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[20]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(528)
- HTML views(43)