Citation: Yinjie Xu,  Suiqin Li,  Lihao Liu,  Jiahui He,  Kai Li,  Mengxin Wang,  Shuying Zhao,  Chun Li,  Zhengbin Zhang,  Xing Zhong,  Jianguo Wang. Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230501. doi: 10.3866/PKU.WHXB202305012 shu

Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals

  • Corresponding author: Xing Zhong,  Jianguo Wang, 
  • Received Date: 8 May 2023
    Revised Date: 3 June 2023
    Accepted Date: 7 June 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2022YFA1504200, 2021YFA1500903), the Zhejiang Provincial Natural Science Foundation (LR22B060003), and the National Natural Science Foundation of China (22078293, 21625604, 91934302, 22141001).

  • Conventional oxidation methods of sterol intermediates using the heavy metal chromium as an oxidant has critical drawbacks, such as high toxicity and environmental pollution. Electrocatalytic oxidation (ECO), on the other hand, is considered a promising alternative to conventional processes owing to its high efficiency, eco-friendliness, and controllability. However, ECO currently faces two major challenges: low current densities and reduced space-time yields. In this study, a single-step solvothermal method was employed to synthesize self-supported nickel-iron metal-organic framework (NiFe-MOF) nanosheet electrocatalysts on graphite felt. Various analytical techniques were employed to comprehensively characterize the synthesized NiFe-MOF, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and Brunauer-Emmett-Teller (BET) analysis Furthermore, we implemented a synergistic electrocatalytic strategy by combining the NiFe-MOF catalyst with aminoxyl radicals, i.e., 4-acetamido-2,2,6,6-tetramethyl-1-piperidine-N-oxyl (ACT), to enhance the performance of the ECO reaction. According to the results of structural characterization, the synthesized NiFe-MOF exhibited an amorphous nanosheet structure with a high specific surface area and microporosity. Moreover, we successfully achieved continuous flow with enhanced mass transfer during the electrocatalytic oxidation of 19-hydroxy-4-androstene-3,17-dione (1a) at a current density of 100 mA·cm-2. The optimal reaction conditions for the ECO reaction were as follows: 100 mmol·L-1 concentration of 1a, 10% (molar fraction) of ACT, a 1 mol·L-1 Na2CO3/acetonitrile electrolyte (6: 4), room temperature, pH 12.5, and a flow rate of 225 mL·min-1. Under these conditions, the conversion and selectivity of the reaction reached outstanding levels of 99 and 98%, respectively. Moreover, the space-time yield was calculated to be as high as 15.88 kg·m-3·h-1, with a remarkable 35-fold increase compared to that achieved in a batch reactor. The NiFe-MOF/ACT synergistic system demonstrated a high conversion rate for ECO even after 10 reaction cycles. To assess the system’s efficacy in converting other sterols, we conducted an analysis of substrate expansion, which yielded conversion rates exceeding 95%. The SEM, TEM, and XPS results of the catalyst obtained before and after the reaction indicated that the alkaline electrolyte could effectively reconstitute the NiFe-MOF structure, leading to a significant improvement in its performance. By leveraging a ten-fold increased surface area of the NiFe-MOF and constructing a continuous flow electroreactor for ECO with a constant current, we achieved a remarkable space-time yield of 12.99 kg·m-3·h-1. Thus, we developed a synergistic electrocatalytic oxidation strategy based on NiFe-MOF/ACT, and this study not only provides valuable insights for realizing the selective oxidation of sterols but also contributes to the advancement of sustainable and efficient chemical processes.
  • 加载中
    1. [1]

      (1) Peng, H.; Wang, Y.; Jiang, K.; Chen, X.; Zhang, W.; Zhang, Y.; Deng, Z.; Qu, X. Angew. Chem. Int. Ed. 2021, 60, 5414. doi:10.1002/anie.202015462

    2. [2]

      (2) Bansal, R.; Singh, R. Med. Res. Rev. 2018, 38, 1126. doi:10.1002/med.21458

    3. [3]

      (3) Disha; Nayak, M.; Kumari, P.; Patel, M.; Kumar, P. Trends Anal. Chem. 2022, 150, 116571. doi:10.1016/j.trac.2022.116571

    4. [4]

      (4) Grainger, W. S.; Parish, E. J. Steroids 2015, 101, 103. doi:10.1016/j.steroids.2015.06.005

    5. [5]

      (5) Su, B.-M.; Zhao, H.-R.; Xu, L.; Xu, X. Q.; Wang, L. C.; Lin, J.; Lin, W. ACS Sustain. Chem. Eng. 2022, 10, 3373. doi:10.1021/acssuschemeng.2c00411

    6. [6]

      (6) Hilario-Martínez, J. C.; Murillo, F.; García-Méndez, J.; Dzib, E.; Sandoval-Ramírez, J.; Muñoz-Hernández, M. Á.; Bernès, S.; Kürti, L.; Duarte, F.; Merino, G.; et al. Chem. Sci. 2020, 11, 12764. doi:10.1039/d0sc01701a

    7. [7]

      (7) Tang, D.; Lu, G.; Shen, Z.; Hu, Y.; Yao, L.; Li, B.; Zhao, G.; Peng, B.; Huang, X. J. Energy Chem. 2023, 77, 80. doi:10.1016/j.jechem.2022.10.038

    8. [8]

      (8) Waldie, K. M.; Flajslik, K. R.; McLoughlin, E.; Chidsey, C. E.; Waymouth, R. M. J. Am. Chem. Soc. 2017, 139, 738. doi:10.1021/jacs.6b09705

    9. [9]

    10. [10]

      (10) Han, C.; Lyu, Y.; Wang, S.; Liu, B.; Zhang, Y.; Lu, J.; Du, H. Carbon Energy 2023, 5, e339. doi:10.1002/cey2.339

    11. [11]

    12. [12]

      (12) You, B.; Liu, X.; Liu, X.; Sun, Y. ACS Catal. 2017, 7, 4564. doi:10.1021/acscatal.7b00876

    13. [13]

      (13) Li, R.; Kuang, P.; Wang, L.; Tang, H.; Yu, J. Chem. Eng. J. 2022, 431, 134137. doi:10.1016/j.cej.2021.134137

    14. [14]

      (14) Feng, Y.; Yang, K.; Smith, R. L.; Qi, X. J. Mater. Chem. A 2023, 11, 6375. doi:10.1039/d2ta09426f

    15. [15]

      (15) Chen, Z.; Zhou, H.; Kong, F.; Wang, M. Appl. Catal. B 2022, 309, 121281. doi:10.1016/j.apcatb.2022.121281

    16. [16]

      (16) Zhong, X.; Hoque, M. A.; Graaf, M. D.; Harper, K. C.; Wang, F.; Genders, J. D.; Stahl, S. S. Org. Process. Res. Dev. 2021, 25, 2601. doi:10.1021/acs.oprd.1c00036

    17. [17]

      (17) Li, S.; Wang, S.; Wang, Y.; He, J.; Li, K.; Xu, Y.; Wang, M.; Zhao, S.; Li, X.; Zhong, X.; et al. Adv. Funct. Mater. 2023, 33, 2214488. doi:10.1002/adfm.202214488

    18. [18]

      (18) Li, S.; Li, C.; Li, K.; Sun, X.; Zhong, X.; He, J.; Xu, Z.; Liu, X.; Zhang, J.; Shao, F.; et al. Chem. Eng. J. 2022, 446, 2. doi:10.1016/j.cej.2022.136659

    19. [19]

    20. [20]

      (20) Liang, J.; Gao, X.; Guo, B.; Ding, Y.; Yan, J.; Guo, Z.; Tse, E. C. M.; Liu, J. Angew. Chem. Int. Ed. 2021, 60, 12770. doi:10.1002/anie.202101878

    21. [21]

      (21) Taffa, D. H.; Balkenhohl, D.; Amiri, M.; Wark, M. Small Struct. 2022, 263, 263. doi:10.1002/sstr.202200263

    22. [22]

      (22) Chang, G.; Zhou, Y.; Wang, J.; Zhang, H.; Yan, P.; Wu, H. B.; Yu, X. Y. Small 2023, 19, 2206768. doi:10.1002/smll.202206768

    23. [23]

      (23) Das, A.; Stahl, S. S. Angew. Chem. Int. Ed. 2017, 56, 8892. doi:10.1002/anie.201704921

    24. [24]

      (24) Ma, Z.; Mahmudov, K. T.; Aliyeva, V. A.; Gurbanov, A. V.; Pombeiro, A. J. L. Coord. Chem. Rev. 2020, 423, 213482. doi:10.1016/j.ccr.2020.213482

    25. [25]

      (25) Rafiee, M.; Konz, Z. M.; Graaf, M. D.; Koolman, H. F.; Stahl, S. S. ACS Catal. 2018, 8, 673. doi:10.1021/acscatal.8b01640

    26. [26]

      (26) Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561. doi:10.1021/acs.accounts.9b00544

    27. [27]

      (27) Goes, S. L.; Mayer, M. N.; Nutting, J. E.; Hoober-Burkhardt, L. E.; Stahl, S. S.; Rafiee, M. J. Chem. Educ. 2021, 98, 600. doi:10.1021/acs.jchemed.0c01244

    28. [28]

      (28) Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406. doi:10.1038/nature18008

    29. [29]

      (29) Nutting, J. E.; Mao, K.; Stahl, S. S. J. Am. Chem. Soc. 2021, 143, 10565. doi:10.1021/jacs.1c05224

    30. [30]

      (30) Wang, H.; Xu, L.; Jingcheng, W.; Wu, J.; Zhou, P.; Tao, S.; Lu, Y.; Wu, X.; Zou, Y. Chin. J. Catal. 2023, 46, 148. doi:10.1016/s1872-2067(22)64203-7

    31. [31]

      (31) Zhang, Y.; Xie, K.; Zhou, F.; Wang, F.; Xu, Q.; Hu, J.; Ding, H.; Li, P.; Tan, Y.; Li, D.; et al. Adv. Energy Mater. 2022, 12, 29. doi:10.1002/aenm.202201027

    32. [32]

      (32) Hao, H.; Zhang, Q.-A.; Feng, Z.; Tang, A. Chem. Eng. J. 2022, 450,139170. doi:10.1016/j.cej.2022.138170

    33. [33]

      (33) Li, X.; Zhang, H.; Hu, Q.; Zhou, W.; Shao, J.; Jiang, X.; Feng, C.; Yang, H.; He, C. Angew. Chem. Int. Ed. 2023, 62, e202300478. doi:10.1002/anie.202300478

    34. [34]

      (34) Lin, Z.; Richardson, J. J.; Zhou, J.; Caruso, F. Nat. Rev. Chem. 2023, 7, 273. doi:10.1038/s41570-023-00474-1

    35. [35]

      (35) Liu, D.; Xu, H.; Wang, C.; Ye, C.; Yu, R.; Du, Y. J. Mater. Chem. A 2021, 9, 24670. doi:10.1039/d1ta06438j

    36. [36]

      (36) Liu, J.; Ji, Y.; Nai, J.; Niu, X.; Luo, Y.; Guo, L.; Yang, S. Energy Environ. Sci. 2018, 11, 1736. doi:10.1039/c8ee00611c

    37. [37]

      (37) Li, B.; Zeng, H. C. Chem. Mater. 2019, 31, 5320. doi:10.1021/acs.chemmater.9b02070

    38. [38]

      (38) Li, Y.; Ma, W.; Yang, H.; Tian, Q.; Xu, Q.; Han, B. Chem. Commun. 2022, 58, 6833. doi:10.1039/d2cc01163h

    39. [39]

      (39) Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. Adv. Energy Mater. 2018, 8, 1800584. doi:10.1002/aenm.201800584

    40. [40]

      (40) Wei, K.; Wang, X.; Jiao, X.; Li, C.; Chen, D.; Lin, Y. Appl. Surf. Sci. 2021, 550, 149323. doi:10.1016/j.apsusc.2021.149323

    41. [41]

      (41) Liu, Y.; Li, X.; Sun, Q.; Wang, Z.; Huang, W. H.; Guo, X.; Fan, Z.; Ye, R.; Zhu, Y.; Chueh, C. C.; et al. Small 2022, 18, 26. doi:10.1002/smll.202201076

    42. [42]

      (42) Li, C. F.; Xie, L. J.; Zhao, J. W.; Gu, L. F.; Tang, H. B.; Zheng, L.; Li, G. R. Angew. Chem. Int. Ed. 2022, 61, e202116934. doi:10.1002/anie.202116934

    43. [43]

      (43) Rinawati, M.; Wang, Y.-X.; Chen, K.-Y.; Yeh, M.-H. Chem. Eng. J 2021, 423, 130204. doi:10.1016/j.cej.2021.130204

    44. [44]

      (44) Wang, Y.; Liu, B.; Shen, X.; Arandiyan, H.; Zhao, T.; Li, Y.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A.; et al. Adv. Energy Mater. 2021, 11, 16. doi:10.1002/aenm.202003759

    45. [45]

      (45) Zhu, J.; Qian, J.; Peng, X.; Xia, B.; Gao, D. Nanomicro. Lett. 2023, 15, 30. doi:10.1007/s40820-022-01011-3

    46. [46]

      (46) Xu, X.; Song, F.; Hu, X. Nat. Commun. 2016, 7, 12324. doi:10.1038/ncomms12324

    47. [47]

      (47) Guo, C.; Chen, Q.; Zhong, J.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Ind. Eng. Chem. Res. 2023, 62, 4356. doi:10.1021/acs.iecr.2c04643

    48. [48]

      (48) Liu, X.; Xia, F.; Guo, R.; Huang, M.; Meng, J.; Wu, J.; Mai, L. Adv. Funct. Mater. 2021, 31, 31. doi:10.1002/adfm.202101792

    49. [49]

      (49) Wu, Y.; Yang, J.; Tu, T.; Li, W.; Zhang, P.; Zhou, Y.; Li, J.; Li, J.; Sun, S. Angew. Chem. Int. Ed. 2021, 60, 26829. doi:10.1002/ange.202112447

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(1)
  • Abstract views(356)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return