Citation:
Yinjie Xu, Suiqin Li, Lihao Liu, Jiahui He, Kai Li, Mengxin Wang, Shuying Zhao, Chun Li, Zhengbin Zhang, Xing Zhong, Jianguo Wang. Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals[J]. Acta Physico-Chimica Sinica,
;2024, 40(3): 230501.
doi:
10.3866/PKU.WHXB202305012
-
Conventional oxidation methods of sterol intermediates using the heavy metal chromium as an oxidant has critical drawbacks, such as high toxicity and environmental pollution. Electrocatalytic oxidation (ECO), on the other hand, is considered a promising alternative to conventional processes owing to its high efficiency, eco-friendliness, and controllability. However, ECO currently faces two major challenges: low current densities and reduced space-time yields. In this study, a single-step solvothermal method was employed to synthesize self-supported nickel-iron metal-organic framework (NiFe-MOF) nanosheet electrocatalysts on graphite felt. Various analytical techniques were employed to comprehensively characterize the synthesized NiFe-MOF, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and Brunauer-Emmett-Teller (BET) analysis Furthermore, we implemented a synergistic electrocatalytic strategy by combining the NiFe-MOF catalyst with aminoxyl radicals, i.e., 4-acetamido-2,2,6,6-tetramethyl-1-piperidine-N-oxyl (ACT), to enhance the performance of the ECO reaction. According to the results of structural characterization, the synthesized NiFe-MOF exhibited an amorphous nanosheet structure with a high specific surface area and microporosity. Moreover, we successfully achieved continuous flow with enhanced mass transfer during the electrocatalytic oxidation of 19-hydroxy-4-androstene-3,17-dione (1a) at a current density of 100 mA·cm-2. The optimal reaction conditions for the ECO reaction were as follows: 100 mmol·L-1 concentration of 1a, 10% (molar fraction) of ACT, a 1 mol·L-1 Na2CO3/acetonitrile electrolyte (6: 4), room temperature, pH 12.5, and a flow rate of 225 mL·min-1. Under these conditions, the conversion and selectivity of the reaction reached outstanding levels of 99 and 98%, respectively. Moreover, the space-time yield was calculated to be as high as 15.88 kg·m-3·h-1, with a remarkable 35-fold increase compared to that achieved in a batch reactor. The NiFe-MOF/ACT synergistic system demonstrated a high conversion rate for ECO even after 10 reaction cycles. To assess the system’s efficacy in converting other sterols, we conducted an analysis of substrate expansion, which yielded conversion rates exceeding 95%. The SEM, TEM, and XPS results of the catalyst obtained before and after the reaction indicated that the alkaline electrolyte could effectively reconstitute the NiFe-MOF structure, leading to a significant improvement in its performance. By leveraging a ten-fold increased surface area of the NiFe-MOF and constructing a continuous flow electroreactor for ECO with a constant current, we achieved a remarkable space-time yield of 12.99 kg·m-3·h-1. Thus, we developed a synergistic electrocatalytic oxidation strategy based on NiFe-MOF/ACT, and this study not only provides valuable insights for realizing the selective oxidation of sterols but also contributes to the advancement of sustainable and efficient chemical processes.
-
-
-
[1]
(1) Peng, H.; Wang, Y.; Jiang, K.; Chen, X.; Zhang, W.; Zhang, Y.; Deng, Z.; Qu, X. Angew. Chem. Int. Ed. 2021, 60, 5414. doi:10.1002/anie.202015462
-
[2]
(2) Bansal, R.; Singh, R. Med. Res. Rev. 2018, 38, 1126. doi:10.1002/med.21458
-
[3]
(3) Disha; Nayak, M.; Kumari, P.; Patel, M.; Kumar, P. Trends Anal. Chem. 2022, 150, 116571. doi:10.1016/j.trac.2022.116571
-
[4]
(4) Grainger, W. S.; Parish, E. J. Steroids 2015, 101, 103. doi:10.1016/j.steroids.2015.06.005
-
[5]
(5) Su, B.-M.; Zhao, H.-R.; Xu, L.; Xu, X. Q.; Wang, L. C.; Lin, J.; Lin, W. ACS Sustain. Chem. Eng. 2022, 10, 3373. doi:10.1021/acssuschemeng.2c00411
-
[6]
(6) Hilario-Martínez, J. C.; Murillo, F.; García-Méndez, J.; Dzib, E.; Sandoval-Ramírez, J.; Muñoz-Hernández, M. Á.; Bernès, S.; Kürti, L.; Duarte, F.; Merino, G.; et al. Chem. Sci. 2020, 11, 12764. doi:10.1039/d0sc01701a
-
[7]
(7) Tang, D.; Lu, G.; Shen, Z.; Hu, Y.; Yao, L.; Li, B.; Zhao, G.; Peng, B.; Huang, X. J. Energy Chem. 2023, 77, 80. doi:10.1016/j.jechem.2022.10.038
-
[8]
(8) Waldie, K. M.; Flajslik, K. R.; McLoughlin, E.; Chidsey, C. E.; Waymouth, R. M. J. Am. Chem. Soc. 2017, 139, 738. doi:10.1021/jacs.6b09705
-
[9]
-
[10]
(10) Han, C.; Lyu, Y.; Wang, S.; Liu, B.; Zhang, Y.; Lu, J.; Du, H. Carbon Energy 2023, 5, e339. doi:10.1002/cey2.339
-
[11]
-
[12]
(12) You, B.; Liu, X.; Liu, X.; Sun, Y. ACS Catal. 2017, 7, 4564. doi:10.1021/acscatal.7b00876
-
[13]
(13) Li, R.; Kuang, P.; Wang, L.; Tang, H.; Yu, J. Chem. Eng. J. 2022, 431, 134137. doi:10.1016/j.cej.2021.134137
-
[14]
(14) Feng, Y.; Yang, K.; Smith, R. L.; Qi, X. J. Mater. Chem. A 2023, 11, 6375. doi:10.1039/d2ta09426f
-
[15]
(15) Chen, Z.; Zhou, H.; Kong, F.; Wang, M. Appl. Catal. B 2022, 309, 121281. doi:10.1016/j.apcatb.2022.121281
-
[16]
(16) Zhong, X.; Hoque, M. A.; Graaf, M. D.; Harper, K. C.; Wang, F.; Genders, J. D.; Stahl, S. S. Org. Process. Res. Dev. 2021, 25, 2601. doi:10.1021/acs.oprd.1c00036
-
[17]
(17) Li, S.; Wang, S.; Wang, Y.; He, J.; Li, K.; Xu, Y.; Wang, M.; Zhao, S.; Li, X.; Zhong, X.; et al. Adv. Funct. Mater. 2023, 33, 2214488. doi:10.1002/adfm.202214488
-
[18]
(18) Li, S.; Li, C.; Li, K.; Sun, X.; Zhong, X.; He, J.; Xu, Z.; Liu, X.; Zhang, J.; Shao, F.; et al. Chem. Eng. J. 2022, 446, 2. doi:10.1016/j.cej.2022.136659
-
[19]
-
[20]
(20) Liang, J.; Gao, X.; Guo, B.; Ding, Y.; Yan, J.; Guo, Z.; Tse, E. C. M.; Liu, J. Angew. Chem. Int. Ed. 2021, 60, 12770. doi:10.1002/anie.202101878
-
[21]
(21) Taffa, D. H.; Balkenhohl, D.; Amiri, M.; Wark, M. Small Struct. 2022, 263, 263. doi:10.1002/sstr.202200263
-
[22]
(22) Chang, G.; Zhou, Y.; Wang, J.; Zhang, H.; Yan, P.; Wu, H. B.; Yu, X. Y. Small 2023, 19, 2206768. doi:10.1002/smll.202206768
-
[23]
(23) Das, A.; Stahl, S. S. Angew. Chem. Int. Ed. 2017, 56, 8892. doi:10.1002/anie.201704921
-
[24]
(24) Ma, Z.; Mahmudov, K. T.; Aliyeva, V. A.; Gurbanov, A. V.; Pombeiro, A. J. L. Coord. Chem. Rev. 2020, 423, 213482. doi:10.1016/j.ccr.2020.213482
-
[25]
(25) Rafiee, M.; Konz, Z. M.; Graaf, M. D.; Koolman, H. F.; Stahl, S. S. ACS Catal. 2018, 8, 673. doi:10.1021/acscatal.8b01640
-
[26]
(26) Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561. doi:10.1021/acs.accounts.9b00544
-
[27]
(27) Goes, S. L.; Mayer, M. N.; Nutting, J. E.; Hoober-Burkhardt, L. E.; Stahl, S. S.; Rafiee, M. J. Chem. Educ. 2021, 98, 600. doi:10.1021/acs.jchemed.0c01244
-
[28]
(28) Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406. doi:10.1038/nature18008
-
[29]
(29) Nutting, J. E.; Mao, K.; Stahl, S. S. J. Am. Chem. Soc. 2021, 143, 10565. doi:10.1021/jacs.1c05224
-
[30]
(30) Wang, H.; Xu, L.; Jingcheng, W.; Wu, J.; Zhou, P.; Tao, S.; Lu, Y.; Wu, X.; Zou, Y. Chin. J. Catal. 2023, 46, 148. doi:10.1016/s1872-2067(22)64203-7
-
[31]
(31) Zhang, Y.; Xie, K.; Zhou, F.; Wang, F.; Xu, Q.; Hu, J.; Ding, H.; Li, P.; Tan, Y.; Li, D.; et al. Adv. Energy Mater. 2022, 12, 29. doi:10.1002/aenm.202201027
-
[32]
(32) Hao, H.; Zhang, Q.-A.; Feng, Z.; Tang, A. Chem. Eng. J. 2022, 450,139170. doi:10.1016/j.cej.2022.138170
-
[33]
(33) Li, X.; Zhang, H.; Hu, Q.; Zhou, W.; Shao, J.; Jiang, X.; Feng, C.; Yang, H.; He, C. Angew. Chem. Int. Ed. 2023, 62, e202300478. doi:10.1002/anie.202300478
-
[34]
(34) Lin, Z.; Richardson, J. J.; Zhou, J.; Caruso, F. Nat. Rev. Chem. 2023, 7, 273. doi:10.1038/s41570-023-00474-1
-
[35]
(35) Liu, D.; Xu, H.; Wang, C.; Ye, C.; Yu, R.; Du, Y. J. Mater. Chem. A 2021, 9, 24670. doi:10.1039/d1ta06438j
-
[36]
(36) Liu, J.; Ji, Y.; Nai, J.; Niu, X.; Luo, Y.; Guo, L.; Yang, S. Energy Environ. Sci. 2018, 11, 1736. doi:10.1039/c8ee00611c
-
[37]
(37) Li, B.; Zeng, H. C. Chem. Mater. 2019, 31, 5320. doi:10.1021/acs.chemmater.9b02070
-
[38]
(38) Li, Y.; Ma, W.; Yang, H.; Tian, Q.; Xu, Q.; Han, B. Chem. Commun. 2022, 58, 6833. doi:10.1039/d2cc01163h
-
[39]
(39) Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. Adv. Energy Mater. 2018, 8, 1800584. doi:10.1002/aenm.201800584
-
[40]
(40) Wei, K.; Wang, X.; Jiao, X.; Li, C.; Chen, D.; Lin, Y. Appl. Surf. Sci. 2021, 550, 149323. doi:10.1016/j.apsusc.2021.149323
-
[41]
(41) Liu, Y.; Li, X.; Sun, Q.; Wang, Z.; Huang, W. H.; Guo, X.; Fan, Z.; Ye, R.; Zhu, Y.; Chueh, C. C.; et al. Small 2022, 18, 26. doi:10.1002/smll.202201076
-
[42]
(42) Li, C. F.; Xie, L. J.; Zhao, J. W.; Gu, L. F.; Tang, H. B.; Zheng, L.; Li, G. R. Angew. Chem. Int. Ed. 2022, 61, e202116934. doi:10.1002/anie.202116934
-
[43]
(43) Rinawati, M.; Wang, Y.-X.; Chen, K.-Y.; Yeh, M.-H. Chem. Eng. J 2021, 423, 130204. doi:10.1016/j.cej.2021.130204
-
[44]
(44) Wang, Y.; Liu, B.; Shen, X.; Arandiyan, H.; Zhao, T.; Li, Y.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A.; et al. Adv. Energy Mater. 2021, 11, 16. doi:10.1002/aenm.202003759
-
[45]
(45) Zhu, J.; Qian, J.; Peng, X.; Xia, B.; Gao, D. Nanomicro. Lett. 2023, 15, 30. doi:10.1007/s40820-022-01011-3
-
[46]
(46) Xu, X.; Song, F.; Hu, X. Nat. Commun. 2016, 7, 12324. doi:10.1038/ncomms12324
-
[47]
(47) Guo, C.; Chen, Q.; Zhong, J.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Ind. Eng. Chem. Res. 2023, 62, 4356. doi:10.1021/acs.iecr.2c04643
-
[48]
(48) Liu, X.; Xia, F.; Guo, R.; Huang, M.; Meng, J.; Wu, J.; Mai, L. Adv. Funct. Mater. 2021, 31, 31. doi:10.1002/adfm.202101792
-
[49]
(49) Wu, Y.; Yang, J.; Tu, T.; Li, W.; Zhang, P.; Zhou, Y.; Li, J.; Li, J.; Sun, S. Angew. Chem. Int. Ed. 2021, 60, 26829. doi:10.1002/ange.202112447
-
[1]
-
-
-
[1]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[2]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[3]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[4]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[5]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[6]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[7]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[8]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[9]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[10]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[11]
Hongdao LI , Shengjian ZHANG , Hongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411
-
[12]
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388
-
[13]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[14]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[15]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[16]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[17]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[18]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[19]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[20]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(499)
- HTML views(43)