Citation: Ying Li, Yushen Zhao, Kai Chen, Xu Liu, Tingfeng Yi, Li-Feng Chen. Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230500. doi: 10.3866/PKU.WHXB202305007
-
Li-ion batteries (LIBs) have been considered as one of the most promising power sources for electric vehicles, portable electronics and electrical equipment because of their long cycle life and high energy density. The free-standing electrodes without binder, current collector and conductive agent can effectively obtain lager energy density as compared to the traditional electrodes where the addition of inactive components is required. In addition, the free-standing electrode plays an important role in developing flexible electronic devices. Currently, conventional graphite is still the main commercial anode material, but its theoretical specific capacity is limited, and the rate performance is poor. In recent years, the high temperature pyrolytic hard carbon has attracted wide attention due to its higher theoretical specific capacity and more defects than graphite carbon. Moreover, polymer polyacrylonitrile (PAN) can be used as the raw material for preparation of free-standing anodes without any conductive additives or binders by electrospinning technique. Meanwhile, it is beneficial to reduce the production cost and simplify the manufacturing procedures of electrode. However, PAN-based hard carbon anode materials also have certain problems, such as low conductivity, poor rate performance, unsatisfactory cycling stability, and inferior initial Coulombic efficiency (CE). In addition, soft carbon has advantages of high carbon yield, good conductivity, superior cycling stability, high initial CE and relatively low price, but its specific capacity is generally lower than that of hard carbon materials. Based on above analysis, carbon anode materials with good electrochemical performance can be obtained by combining hard carbon and soft carbon, but the specific capacity of carbon materials is still low. Tin (Sn), as an anode material for LIBs, has a high theoretical specific capacity (994 mAh·g-1) and a low lithium alloying voltage. Nonetheless, the practical use of Sn anode has been limited by its huge volume change (theoretically ∼260%) during the repeated alloying-dealloying process, resulting in large pulverization and cracking, which triggers the rapid capacity fading. Hence, in order to increase the specific capacity of carbon anode materials of LIBs, the C-Sn composite film with uniform Sn nanoparticles embedded in N-doped carbon nanofibers was prepared by electrospinning method following by a low-temperature carbonization process. The film was directly used as a free-standing electrode for LIBs and exhibited good electrochemical performance, and the introduction of Sn significantly improved the electrochemical properties of the carbon nanofiber film. The formed fibrous structure after Sn was uniformly coated with carbon can promote the conduction of ions and electrons, and effectively buffers the volume change of Sn nanoparticles during cycling, thus effectively preventing pulverization and agglomeration. The C-Sn-2 electrode with a Sn content of about 25.6% has the highest specific capacity and best rate performance among all samples. The electrochemical test results show that, the charge (discharge) capacity reaches 412.7 (413.5) mAh·g-1 at a current density of 2 A·g-1 even after 1000 cycles. Density functional theory (DFT) calculations show that N-doped amorphous carbon has good affinity with lithium, which is conducive to anchoring the SnxLiy alloy formed after alloying reaction on the carbon surface, thereby relieving the volume change of Sn during charge-discharge. This article provides a feasible strategy for the design of high-performance lithium storage materials.
-
-
[1]
(1) Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Resour. Conserv. Recy. 2021, 168, 105249. doi:10.1016/j.resconrec.2020.105249
-
[2]
(2) Lin, J.; Liu, X.; Li, S.; Zhang, C.; Yang, S. Int. J. Heat Mass Trans. 2021, 167, 120834. doi:10.1016/j.ijheatmasstransfer.2020.120834
-
[3]
(3) Zhang, L. S.; Gao, X. L.; Liu, X. H.; Zhang, Z. J.; Cao, R.; Cheng, H. C.; Wang, M. Y.; Yan, X. Y.; Yang, S. C. Rare Met. 2022, 41, 1477. doi:10.1007/s12598-021-01925-8
-
[4]
(4) Sun, Y.; Shi, X. L.; Yang, Y. L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z. G. Adv. Funct. Mater. 2022, 32, 2201584. doi:10.1002/adfm.202201584
-
[5]
(5) Khossossi, N.; Luo, W.; Haman, Z.; Singh, D.; Essaoudi, I.; Ainane, A.; Ahuja, R. Nano Energy 2022, 96, 107066. doi:10.1016/j.nanoen.2022.107066
-
[6]
(6) Kuznetsov, O. A.; Mohanty, S.; Pigos, E.; Chen, G.; Cai, W.; Harutyunyan, A. R. Energy Storage Mater. 2023, 54, 266. doi:10.1016/j.ensm.2022.10.023
-
[7]
(7) Zhou, W.; Chen, J.; Xu, X.; Han, X.; Chen, M.; Yang, L.; Hirano, S.-I. J. Colloid Interface Sci. 2022, 612, 679. doi:10.1016/j.jcis.2022.01.011
-
[8]
(8) Wang, S.; Tang, C.; Huang, Y.; Gong, J. Chin. Chem. Lett. 2022, 33, 3802. doi:10.1016/j.cclet.2021.11.037
-
[9]
-
[10]
(10) Garcia-Gil, A.; Biswas, S.; McNulty, D.; Roy, A.; Ryan, K. M.; Nicolosi, V.; Holmes, J. D. Adv. Mater. Interfaces 2022, 9, 2201170. doi:10.1002/admi.202201170
-
[11]
(11) Xu, G. L.; Gong, Y. D.; Miao, C.; Wang, Q.; Nie, S. Q.; Xin, Y.; Wen, M. Y.; Liu, J.; Xiao, W. Rare Met. 2022, 41, 3421. doi:10.1007/s12598-022-02073-3
-
[12]
-
[13]
(13) Wang, G.; Li, Y.; Jiao, S.; Li, J.; Peng, B.; Shi, L.; Zhang, G. J. Mater. Chem. A 2020, 8, 24774. doi:10.1039/D0TA08535A
-
[14]
(14) Lyu, Z.; Koh, J. J.; Lim, G. J. H.; Zhang, D.; Xiong, T.; Zhang, L.; Liu, S.; Duan, J.; Ding, J.; Wang, J.; et al. Interdiscip. Mater. 2022, 1, 507. doi:10.1002/idm2.12027
-
[15]
(15) Wang, S.; Li, L.; Zheng, S.; Das, P.; Shi, X.; Ma, J.; Liu, Y.; Zhu, Y.; Lu, Y.; Wu, Z. S.; et al. Natl. Sci. Rev. 2023, 10, nwac271. doi:10.1093/nsr/nwac271
-
[16]
(16) Lyu, Z.; Lim, G. J. H.; Koh, J. J.; Li, Y.; Ma, Y.; Ding, J.; Wang, J.; Hu, Z.; Wang, J.; Chen, W.; et al. Joule 2021, 5, 89. doi:10.1016/j.joule.2020.11.010
-
[17]
(17) Sun, J. L.; Ma, L.; Sun, H. C.; Xu, Y. H.; Li, J. L.; Mai, W. J.; Liu, B. T. Chem. Eng. J. 2023, 455, 140902. doi:10.1016/j.cej.2022.140902
-
[18]
(18) Wang, C.; Sheng, L. Z.; Jiang, M. H.; Lin, X. R.; Wang, Q.; Guo, M. Q.; Wang, G.; Zhou, X. M.; Zhang, X.; Shi, J. Y.; et al. J. Power Sources 2023, 555, 232405. doi:10.1016/j.jpowsour.2022.232405
-
[19]
(19) Li, J.; Zou, P.; Wang, R.; Yang, C. IOP Conf. Ser.:Earth Environ. Sci. 2019, 300, 042021. doi:10.1088/1755-1315/300/4/042021
-
[20]
(20) Kim, J.-C.; Kim, D.-W. Chem-Asian J. 2014, 9, 3313. doi:10.1002/asia.201402849
-
[21]
(21) Wang, P.; Zhu, K.; Ye, K.; Gong, Z.; Liu, R.; Cheng, K.; Wang, G.; Yan, J.; Cao, D. J. Colloid Interface Sci. 2020, 561, 203. doi:10.1016/j.jcis.2019.11.091
-
[22]
(22) Yan, X.; Liang, S.; Shi, H.; Hu, Y.; Liu, L.; Xu, Z. J. Colloid Interface Sci. 2021, 583, 535. doi:10.1016/j.jcis.2020.09.025
-
[23]
(23) Tomboc, G. M.; Wang, Y.; Wang, H.; Li, J.; Lee, K. Energy Storage Mater. 2021, 39, 21. doi:10.1016/j.ensm.2021.04.009
-
[24]
(24) Yang, C.; Ren, J.; Zheng, M.; Zhang, M.; Zhong, Z.; Liu, R.; Huang, J.; Lan, J.; Yu, Y.; Yang, X. Electrochim. Acta 2020, 359, 136898. doi:10.1016/j.electacta.2020.136898
-
[25]
(25) Duan, Y. S.; Du, S. L.; Tao, H. C.; Yang, X. L. Ionics 2021, 27, 1403. doi:10.1007/s11581-021-03906-4
-
[26]
-
[27]
(27) Liu, T.; Peng, N.; Zhang, X.; Zheng, R.; Xia, M.; Yu, H.; Shui, M.; Xie, Y.; Shu, J. Nano Energy 2021, 79, 105460. doi:10.1016/j.nanoen.2020.105460
-
[28]
(28) Liu, Y. C.; Fan, L. Z.; Jiao, L. F. J. Mater. Chem. A 2017, 5, 1698. doi:10.1039/c6ta09961k
-
[29]
(29) Zhao, W.; Hu, X.; Ci, S.; Chen, J.; Wang, G.; Xu, Q.; Wen, Z. Small 2019, 15, e1904054. doi:10.1002/smll.201904054
-
[30]
(30) Chen, C.; Lu, Y.; Ge, Y.; Zhu, J.; Jiang, H.; Li, Y.; Hu, Y.; Zhang, X. Energy Technol. 2016, 4, 1440. doi:10.1002/ente.201600205
-
[31]
(31) Huang, Q. Y.; Hu, J. B.; Zhang, M.; Li, M. X.; Li, T.; Yuan, G. M.; Liu, Y.; Zhang, X.; Cheng, X. W. Chin. Chem. Lett. 2022, 33, 1091. doi:10.1016/j.cclet.2021.06.088
-
[32]
(32) Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. J. Energy Storage 2023, 61, 106716. doi:10.1016/j.est.2023.106716
-
[33]
(33) Fan, B.; Liu, J.; Xu, Y.; Tang, Q.; Zhang, Y.; Chen, X.; Hu, A. J. Alloys Compd. 2021, 857, 157920. doi:10.1016/j.jallcom.2020.157920
-
[34]
(34) Wu, K.; Feng, Y.; Huang, J.; Bai, C.; He, M. Chem. Phys. Lett. 2020, 756, 137832. doi:10.1016/j.cplett.2020.137832
-
[35]
(35) Li, J.; Wang, G.; Yu, L.; Gao, J.; Li, Y.; Zeng, S.; Zhang, G. ACS Appl. Mater. Interfaces 2021, 13, 13139. doi:10.1021/acsami.0c21883
-
[36]
-
[37]
(37) Chen, C.; Li, G.; Zhu, J.; Lu, Y.; Jiang, M.; Hu, Y.; Shen, Z.; Zhang, X. Carbon 2017, 120, 380. doi:10.1016/j.carbon.2017.05.072
-
[38]
(38) Wang, Z.; Bai, J.; Xu, H.; Chen, G.; Kang, S.; Li, X. J. Colloid Interface Sci. 2020, 577, 329. doi:10.1016/j.jcis.2020.05.035
-
[39]
(39) Zhuo, R.; Quan, W.; Huang, X.; He, Q.; Sun, Z.; Zhang, Z.; Wang, J. Nanotechnology 2021, 32, 145402. doi:10.1088/1361-6528/abd4a1
-
[40]
(40) Zhang, X.; Wang, C.; Dong, X.; Liang, J.; Gao, D.; Yang, W.; Zhang, Z. J. Solid State Chem. 2020, 290, 121543. doi:10.1016/j.jssc.2020.121543
-
[41]
(41) Ying, H.; Zhang, S.; Meng, Z.; Sun, Z.; Han, W.-Q. J. Mater. Chem. A 2017, 5, 8334. doi:10.1039/c7ta01480e
-
[42]
(42) Feng, Y.; Wu, K.; Dong, H.; Huang, X.; Bai, C.; Ke, J.; Xiong, D.; He, M. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 602, 125069. doi:10.1016/j.colsurfa.2020.125069
-
[43]
(43) Bi, H.; Li, X.; Chen, J. J.; Zhang, L. X.; Bie, L. J. J. Mater. Sci.-Mater. Electron. 2020, 31, 22224. doi:10.1007/s10854-020-04723-7
-
[44]
(44) Zhang, L.; Liu, J.; Wang, W.; Li, D.; Wang, C.; Wang, P.; Zhu, K.; Li, Z. Mater. Chem. Phys. 2021, 260, 124199. doi:10.1016/j.matchemphys.2020.124199
-
[45]
(45) Kang, Y.; Zhang, Y.-H.; Shi, Q.; Shi, H.; Xue, D.; Shi, F.-N. J. Colloid Interface Sci. 2021, 585, 705. doi:10.1016/j.jcis.2020.10.050
-
[46]
(46) Yang, Q.; Xia, Y.; Wu, G. H.; Li, M. Z.; Wan, S. Y.; Rao, P. G.; Wang, Z. L. J. Alloys Compd. 2021, 859, 8. doi:10.1016/j.jallcom.2020.157799
-
[47]
(47) Ding, S.; Cheng, W.; Zhang, L.; Du, G.; Hao, X.; Nie, G.; Xu, B.; Zhang, M.; Su, Q.; Serra, C. A. J. Colloid Interface Sci. 2021, 589, 308. doi:10.1016/j.jcis.2020.12.086
-
[48]
(48) Lu, X.; Luo, F.; Ji, Y.; Zhang, W.; Tian, Q.; Sui, Z.; Yang, L. J. Alloys Compd. 2021, 863, 158743. doi:10.1016/j.jallcom.2021.158743
-
[49]
(49) Zhu, J.; Zhang, Z.; Ding, X.; Cao, J. P.; Hu, G. J. Colloid Interface Sci. 2021, 587, 367. doi:10.1016/j.jcis.2020.12.030
-
[50]
(50) Gao, S. S.; Tang, Y. K.; Wang, L.; Liu, L.; Sun, Z. P.; Wang, S.; Zhao, H. Y.; Kong, L. B.; Jia, D. Z. ACS Sustain. Chem. Eng. 2018, 6, 3255. doi:10.1021/acssuschemeng.7b03421
-
[51]
(51) Zhang, B.; Yu, Y.; Xu, Z.-L.; Abouali, S.; Akbari, M.; He, Y.-B.; Kang, F.; Kim, J.-K. Adv. Energy Mater. 2014, 4, 1301448. doi:10.1002/aenm.201301448
-
[52]
(52) Jin, J.; Shi, Z.-Q.; Wang, C.-Y. Electrochim. Acta 2014, 141, 302. doi:10.1016/j.electacta.2014.07.079
-
[53]
(53) Xing, B. L.; Zhang, C. T.; Liu, Q. R.; Zhang, C. X.; Huang, G. X.; Guo, H.; Cao, J. L.; Cao, Y. J.; Yu, J. L.; Chen, Z. F. J. Alloys Compd. 2019, 795, 91. doi:10.1016/j.jallcom.2019.04.300
-
[54]
(54) Wang, Y. X.; Chou, S. L.; Kim, J. H.; Liu, H. K.; Dou, S. X. Electrochim. Acta 2013, 93, 213. doi:10.1016/j.electacta.2013.01.092
-
[55]
(55) He, L.; Zhou, P.; Wang, L.; Zhang, M.; Huang, Q.; Su, Z.; Wang, X.; Xu, P.; Song, W.; Zou, R. J. Alloys Compd. 2022, 909, 164758. doi:10.1016/j.jallcom.2022.164758
-
[56]
(56) Lee, J.; Lee, N. E.; Lee, S. Y.; Cheon, S.; Cho, S. O. Mater. Today Sustain. 2023, 22, 100370. doi:10.1016/j.mtsust.2023.100370
-
[57]
(57) Schulze, M. C.; Belson, R. M.; Kraynak, L. A.; Prieto, A. L. Energy Storage Mater. 2020, 25, 572. doi:10.1016/j.ensm.2019.09.025
-
[58]
(58) Ding, K.; Lee, J.; Lee, L. Y. S.; Wong, K. Y. J. Electroanal. Chem. 2022, 905, 115965. doi:10.1016/j.jelechem.2021.115965
-
[59]
(59) Liu, X. Q.; Zhu, S. L.; Liang, Y. Q.; Li, Z. Y.; Wu, S. L.; Luo, S. Y.; Chang, C. T.; Cui, Z. D. J. Alloys Compd. 2022, 892, 162083. doi:10.1016/j.jallcom.2021.162083
-
[60]
(60) Toh, C.-T.; Zhang, H.; Lin, J.; Mayorov, A. S.; Wang, Y.-P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z.; et al. Nature 2020, 577, 199. doi:10.1038/s41586-019-1871-2
-
[1]
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[3]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[4]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[5]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[6]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[7]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[8]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[9]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[10]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[11]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[12]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[13]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[14]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[15]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[16]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[17]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[18]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[19]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[20]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(442)
- HTML views(35)