Citation: Ying Li,  Yushen Zhao,  Kai Chen,  Xu Liu,  Tingfeng Yi,  Li-Feng Chen. Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230500. doi: 10.3866/PKU.WHXB202305007 shu

Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes

  • Corresponding author: Tingfeng Yi,  Li-Feng Chen, 
  • Received Date: 8 May 2023
    Revised Date: 5 June 2023
    Accepted Date: 20 June 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52374301, U1960107, 22075269, U2230101, GG2090007003), the Anhui Provincial Major Science and Technology Project (202203a05020048), the Fundamental Research Funds for the Central Universities (N2123001, WK2480000007), the Anhui Provincial Hundred Talents Program, the Hefei Innovative Program for Overseas Excellent Scholar (BJ2090007002), USTC Startup Program (KY2090000062, KY2090000098, KY2090000099), the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province (22567627H).

  • Li-ion batteries (LIBs) have been considered as one of the most promising power sources for electric vehicles, portable electronics and electrical equipment because of their long cycle life and high energy density. The free-standing electrodes without binder, current collector and conductive agent can effectively obtain lager energy density as compared to the traditional electrodes where the addition of inactive components is required. In addition, the free-standing electrode plays an important role in developing flexible electronic devices. Currently, conventional graphite is still the main commercial anode material, but its theoretical specific capacity is limited, and the rate performance is poor. In recent years, the high temperature pyrolytic hard carbon has attracted wide attention due to its higher theoretical specific capacity and more defects than graphite carbon. Moreover, polymer polyacrylonitrile (PAN) can be used as the raw material for preparation of free-standing anodes without any conductive additives or binders by electrospinning technique. Meanwhile, it is beneficial to reduce the production cost and simplify the manufacturing procedures of electrode. However, PAN-based hard carbon anode materials also have certain problems, such as low conductivity, poor rate performance, unsatisfactory cycling stability, and inferior initial Coulombic efficiency (CE). In addition, soft carbon has advantages of high carbon yield, good conductivity, superior cycling stability, high initial CE and relatively low price, but its specific capacity is generally lower than that of hard carbon materials. Based on above analysis, carbon anode materials with good electrochemical performance can be obtained by combining hard carbon and soft carbon, but the specific capacity of carbon materials is still low. Tin (Sn), as an anode material for LIBs, has a high theoretical specific capacity (994 mAh·g-1) and a low lithium alloying voltage. Nonetheless, the practical use of Sn anode has been limited by its huge volume change (theoretically ∼260%) during the repeated alloying-dealloying process, resulting in large pulverization and cracking, which triggers the rapid capacity fading. Hence, in order to increase the specific capacity of carbon anode materials of LIBs, the C-Sn composite film with uniform Sn nanoparticles embedded in N-doped carbon nanofibers was prepared by electrospinning method following by a low-temperature carbonization process. The film was directly used as a free-standing electrode for LIBs and exhibited good electrochemical performance, and the introduction of Sn significantly improved the electrochemical properties of the carbon nanofiber film. The formed fibrous structure after Sn was uniformly coated with carbon can promote the conduction of ions and electrons, and effectively buffers the volume change of Sn nanoparticles during cycling, thus effectively preventing pulverization and agglomeration. The C-Sn-2 electrode with a Sn content of about 25.6% has the highest specific capacity and best rate performance among all samples. The electrochemical test results show that, the charge (discharge) capacity reaches 412.7 (413.5) mAh·g-1 at a current density of 2 A·g-1 even after 1000 cycles. Density functional theory (DFT) calculations show that N-doped amorphous carbon has good affinity with lithium, which is conducive to anchoring the SnxLiy alloy formed after alloying reaction on the carbon surface, thereby relieving the volume change of Sn during charge-discharge. This article provides a feasible strategy for the design of high-performance lithium storage materials.
  • 加载中
    1. [1]

      (1) Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Resour. Conserv. Recy. 2021, 168, 105249. doi:10.1016/j.resconrec.2020.105249

    2. [2]

      (2) Lin, J.; Liu, X.; Li, S.; Zhang, C.; Yang, S. Int. J. Heat Mass Trans. 2021, 167, 120834. doi:10.1016/j.ijheatmasstransfer.2020.120834

    3. [3]

      (3) Zhang, L. S.; Gao, X. L.; Liu, X. H.; Zhang, Z. J.; Cao, R.; Cheng, H. C.; Wang, M. Y.; Yan, X. Y.; Yang, S. C. Rare Met. 2022, 41, 1477. doi:10.1007/s12598-021-01925-8

    4. [4]

      (4) Sun, Y.; Shi, X. L.; Yang, Y. L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z. G. Adv. Funct. Mater. 2022, 32, 2201584. doi:10.1002/adfm.202201584

    5. [5]

      (5) Khossossi, N.; Luo, W.; Haman, Z.; Singh, D.; Essaoudi, I.; Ainane, A.; Ahuja, R. Nano Energy 2022, 96, 107066. doi:10.1016/j.nanoen.2022.107066

    6. [6]

      (6) Kuznetsov, O. A.; Mohanty, S.; Pigos, E.; Chen, G.; Cai, W.; Harutyunyan, A. R. Energy Storage Mater. 2023, 54, 266. doi:10.1016/j.ensm.2022.10.023

    7. [7]

      (7) Zhou, W.; Chen, J.; Xu, X.; Han, X.; Chen, M.; Yang, L.; Hirano, S.-I. J. Colloid Interface Sci. 2022, 612, 679. doi:10.1016/j.jcis.2022.01.011

    8. [8]

      (8) Wang, S.; Tang, C.; Huang, Y.; Gong, J. Chin. Chem. Lett. 2022, 33, 3802. doi:10.1016/j.cclet.2021.11.037

    9. [9]

    10. [10]

      (10) Garcia-Gil, A.; Biswas, S.; McNulty, D.; Roy, A.; Ryan, K. M.; Nicolosi, V.; Holmes, J. D. Adv. Mater. Interfaces 2022, 9, 2201170. doi:10.1002/admi.202201170

    11. [11]

      (11) Xu, G. L.; Gong, Y. D.; Miao, C.; Wang, Q.; Nie, S. Q.; Xin, Y.; Wen, M. Y.; Liu, J.; Xiao, W. Rare Met. 2022, 41, 3421. doi:10.1007/s12598-022-02073-3

    12. [12]

    13. [13]

      (13) Wang, G.; Li, Y.; Jiao, S.; Li, J.; Peng, B.; Shi, L.; Zhang, G. J. Mater. Chem. A 2020, 8, 24774. doi:10.1039/D0TA08535A

    14. [14]

      (14) Lyu, Z.; Koh, J. J.; Lim, G. J. H.; Zhang, D.; Xiong, T.; Zhang, L.; Liu, S.; Duan, J.; Ding, J.; Wang, J.; et al. Interdiscip. Mater. 2022, 1, 507. doi:10.1002/idm2.12027

    15. [15]

      (15) Wang, S.; Li, L.; Zheng, S.; Das, P.; Shi, X.; Ma, J.; Liu, Y.; Zhu, Y.; Lu, Y.; Wu, Z. S.; et al. Natl. Sci. Rev. 2023, 10, nwac271. doi:10.1093/nsr/nwac271

    16. [16]

      (16) Lyu, Z.; Lim, G. J. H.; Koh, J. J.; Li, Y.; Ma, Y.; Ding, J.; Wang, J.; Hu, Z.; Wang, J.; Chen, W.; et al. Joule 2021, 5, 89. doi:10.1016/j.joule.2020.11.010

    17. [17]

      (17) Sun, J. L.; Ma, L.; Sun, H. C.; Xu, Y. H.; Li, J. L.; Mai, W. J.; Liu, B. T. Chem. Eng. J. 2023, 455, 140902. doi:10.1016/j.cej.2022.140902

    18. [18]

      (18) Wang, C.; Sheng, L. Z.; Jiang, M. H.; Lin, X. R.; Wang, Q.; Guo, M. Q.; Wang, G.; Zhou, X. M.; Zhang, X.; Shi, J. Y.; et al. J. Power Sources 2023, 555, 232405. doi:10.1016/j.jpowsour.2022.232405

    19. [19]

      (19) Li, J.; Zou, P.; Wang, R.; Yang, C. IOP Conf. Ser.:Earth Environ. Sci. 2019, 300, 042021. doi:10.1088/1755-1315/300/4/042021

    20. [20]

      (20) Kim, J.-C.; Kim, D.-W. Chem-Asian J. 2014, 9, 3313. doi:10.1002/asia.201402849

    21. [21]

      (21) Wang, P.; Zhu, K.; Ye, K.; Gong, Z.; Liu, R.; Cheng, K.; Wang, G.; Yan, J.; Cao, D. J. Colloid Interface Sci. 2020, 561, 203. doi:10.1016/j.jcis.2019.11.091

    22. [22]

      (22) Yan, X.; Liang, S.; Shi, H.; Hu, Y.; Liu, L.; Xu, Z. J. Colloid Interface Sci. 2021, 583, 535. doi:10.1016/j.jcis.2020.09.025

    23. [23]

      (23) Tomboc, G. M.; Wang, Y.; Wang, H.; Li, J.; Lee, K. Energy Storage Mater. 2021, 39, 21. doi:10.1016/j.ensm.2021.04.009

    24. [24]

      (24) Yang, C.; Ren, J.; Zheng, M.; Zhang, M.; Zhong, Z.; Liu, R.; Huang, J.; Lan, J.; Yu, Y.; Yang, X. Electrochim. Acta 2020, 359, 136898. doi:10.1016/j.electacta.2020.136898

    25. [25]

      (25) Duan, Y. S.; Du, S. L.; Tao, H. C.; Yang, X. L. Ionics 2021, 27, 1403. doi:10.1007/s11581-021-03906-4

    26. [26]

    27. [27]

      (27) Liu, T.; Peng, N.; Zhang, X.; Zheng, R.; Xia, M.; Yu, H.; Shui, M.; Xie, Y.; Shu, J. Nano Energy 2021, 79, 105460. doi:10.1016/j.nanoen.2020.105460

    28. [28]

      (28) Liu, Y. C.; Fan, L. Z.; Jiao, L. F. J. Mater. Chem. A 2017, 5, 1698. doi:10.1039/c6ta09961k

    29. [29]

      (29) Zhao, W.; Hu, X.; Ci, S.; Chen, J.; Wang, G.; Xu, Q.; Wen, Z. Small 2019, 15, e1904054. doi:10.1002/smll.201904054

    30. [30]

      (30) Chen, C.; Lu, Y.; Ge, Y.; Zhu, J.; Jiang, H.; Li, Y.; Hu, Y.; Zhang, X. Energy Technol. 2016, 4, 1440. doi:10.1002/ente.201600205

    31. [31]

      (31) Huang, Q. Y.; Hu, J. B.; Zhang, M.; Li, M. X.; Li, T.; Yuan, G. M.; Liu, Y.; Zhang, X.; Cheng, X. W. Chin. Chem. Lett. 2022, 33, 1091. doi:10.1016/j.cclet.2021.06.088

    32. [32]

      (32) Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. J. Energy Storage 2023, 61, 106716. doi:10.1016/j.est.2023.106716

    33. [33]

      (33) Fan, B.; Liu, J.; Xu, Y.; Tang, Q.; Zhang, Y.; Chen, X.; Hu, A. J. Alloys Compd. 2021, 857, 157920. doi:10.1016/j.jallcom.2020.157920

    34. [34]

      (34) Wu, K.; Feng, Y.; Huang, J.; Bai, C.; He, M. Chem. Phys. Lett. 2020, 756, 137832. doi:10.1016/j.cplett.2020.137832

    35. [35]

      (35) Li, J.; Wang, G.; Yu, L.; Gao, J.; Li, Y.; Zeng, S.; Zhang, G. ACS Appl. Mater. Interfaces 2021, 13, 13139. doi:10.1021/acsami.0c21883

    36. [36]

    37. [37]

      (37) Chen, C.; Li, G.; Zhu, J.; Lu, Y.; Jiang, M.; Hu, Y.; Shen, Z.; Zhang, X. Carbon 2017, 120, 380. doi:10.1016/j.carbon.2017.05.072

    38. [38]

      (38) Wang, Z.; Bai, J.; Xu, H.; Chen, G.; Kang, S.; Li, X. J. Colloid Interface Sci. 2020, 577, 329. doi:10.1016/j.jcis.2020.05.035

    39. [39]

      (39) Zhuo, R.; Quan, W.; Huang, X.; He, Q.; Sun, Z.; Zhang, Z.; Wang, J. Nanotechnology 2021, 32, 145402. doi:10.1088/1361-6528/abd4a1

    40. [40]

      (40) Zhang, X.; Wang, C.; Dong, X.; Liang, J.; Gao, D.; Yang, W.; Zhang, Z. J. Solid State Chem. 2020, 290, 121543. doi:10.1016/j.jssc.2020.121543

    41. [41]

      (41) Ying, H.; Zhang, S.; Meng, Z.; Sun, Z.; Han, W.-Q. J. Mater. Chem. A 2017, 5, 8334. doi:10.1039/c7ta01480e

    42. [42]

      (42) Feng, Y.; Wu, K.; Dong, H.; Huang, X.; Bai, C.; Ke, J.; Xiong, D.; He, M. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 602, 125069. doi:10.1016/j.colsurfa.2020.125069

    43. [43]

      (43) Bi, H.; Li, X.; Chen, J. J.; Zhang, L. X.; Bie, L. J. J. Mater. Sci.-Mater. Electron. 2020, 31, 22224. doi:10.1007/s10854-020-04723-7

    44. [44]

      (44) Zhang, L.; Liu, J.; Wang, W.; Li, D.; Wang, C.; Wang, P.; Zhu, K.; Li, Z. Mater. Chem. Phys. 2021, 260, 124199. doi:10.1016/j.matchemphys.2020.124199

    45. [45]

      (45) Kang, Y.; Zhang, Y.-H.; Shi, Q.; Shi, H.; Xue, D.; Shi, F.-N. J. Colloid Interface Sci. 2021, 585, 705. doi:10.1016/j.jcis.2020.10.050

    46. [46]

      (46) Yang, Q.; Xia, Y.; Wu, G. H.; Li, M. Z.; Wan, S. Y.; Rao, P. G.; Wang, Z. L. J. Alloys Compd. 2021, 859, 8. doi:10.1016/j.jallcom.2020.157799

    47. [47]

      (47) Ding, S.; Cheng, W.; Zhang, L.; Du, G.; Hao, X.; Nie, G.; Xu, B.; Zhang, M.; Su, Q.; Serra, C. A. J. Colloid Interface Sci. 2021, 589, 308. doi:10.1016/j.jcis.2020.12.086

    48. [48]

      (48) Lu, X.; Luo, F.; Ji, Y.; Zhang, W.; Tian, Q.; Sui, Z.; Yang, L. J. Alloys Compd. 2021, 863, 158743. doi:10.1016/j.jallcom.2021.158743

    49. [49]

      (49) Zhu, J.; Zhang, Z.; Ding, X.; Cao, J. P.; Hu, G. J. Colloid Interface Sci. 2021, 587, 367. doi:10.1016/j.jcis.2020.12.030

    50. [50]

      (50) Gao, S. S.; Tang, Y. K.; Wang, L.; Liu, L.; Sun, Z. P.; Wang, S.; Zhao, H. Y.; Kong, L. B.; Jia, D. Z. ACS Sustain. Chem. Eng. 2018, 6, 3255. doi:10.1021/acssuschemeng.7b03421

    51. [51]

      (51) Zhang, B.; Yu, Y.; Xu, Z.-L.; Abouali, S.; Akbari, M.; He, Y.-B.; Kang, F.; Kim, J.-K. Adv. Energy Mater. 2014, 4, 1301448. doi:10.1002/aenm.201301448

    52. [52]

      (52) Jin, J.; Shi, Z.-Q.; Wang, C.-Y. Electrochim. Acta 2014, 141, 302. doi:10.1016/j.electacta.2014.07.079

    53. [53]

      (53) Xing, B. L.; Zhang, C. T.; Liu, Q. R.; Zhang, C. X.; Huang, G. X.; Guo, H.; Cao, J. L.; Cao, Y. J.; Yu, J. L.; Chen, Z. F. J. Alloys Compd. 2019, 795, 91. doi:10.1016/j.jallcom.2019.04.300

    54. [54]

      (54) Wang, Y. X.; Chou, S. L.; Kim, J. H.; Liu, H. K.; Dou, S. X. Electrochim. Acta 2013, 93, 213. doi:10.1016/j.electacta.2013.01.092

    55. [55]

      (55) He, L.; Zhou, P.; Wang, L.; Zhang, M.; Huang, Q.; Su, Z.; Wang, X.; Xu, P.; Song, W.; Zou, R. J. Alloys Compd. 2022, 909, 164758. doi:10.1016/j.jallcom.2022.164758

    56. [56]

      (56) Lee, J.; Lee, N. E.; Lee, S. Y.; Cheon, S.; Cho, S. O. Mater. Today Sustain. 2023, 22, 100370. doi:10.1016/j.mtsust.2023.100370

    57. [57]

      (57) Schulze, M. C.; Belson, R. M.; Kraynak, L. A.; Prieto, A. L. Energy Storage Mater. 2020, 25, 572. doi:10.1016/j.ensm.2019.09.025

    58. [58]

      (58) Ding, K.; Lee, J.; Lee, L. Y. S.; Wong, K. Y. J. Electroanal. Chem. 2022, 905, 115965. doi:10.1016/j.jelechem.2021.115965

    59. [59]

      (59) Liu, X. Q.; Zhu, S. L.; Liang, Y. Q.; Li, Z. Y.; Wu, S. L.; Luo, S. Y.; Chang, C. T.; Cui, Z. D. J. Alloys Compd. 2022, 892, 162083. doi:10.1016/j.jallcom.2021.162083

    60. [60]

      (60) Toh, C.-T.; Zhang, H.; Lin, J.; Mayorov, A. S.; Wang, Y.-P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z.; et al. Nature 2020, 577, 199. doi:10.1038/s41586-019-1871-2

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    16. [16]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    17. [17]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(4)
  • Abstract views(441)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return