Citation: Yixuan Wang,  Canhui Zhang,  Xingkun Wang,  Jiarui Duan,  Kecheng Tong,  Shuixing Dai,  Lei Chu,  Minghua Huang. 构筑高效耐腐蚀的碳铠甲层包覆Co9Se8电催化剂用于海水基锌空气电池[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230500. doi: 10.3866/PKU.WHXB202305004 shu

构筑高效耐腐蚀的碳铠甲层包覆Co9Se8电催化剂用于海水基锌空气电池

  • Corresponding author: Xingkun Wang,  Minghua Huang, 
  • Received Date: 8 May 2023
    Revised Date: 26 July 2023
    Accepted Date: 27 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52261145700, 22279124) and the Natural Science Foundation of Shandong Province (ZR2022ZD30).

  • 得益于较高的理论能量密度、环境友好性和丰富的海水储量,海水基锌-空气电池(S-ZABs)被认为是一种极具应用前景的储能和能源转换装置,是解决能源短缺和环境污染问题的能源装置之一。然而对于S-ZABs而言,构筑在海水中具有高耐氯离子腐蚀性与高性能的阴极氧还原反应电催化剂仍然具有挑战性。因此,我们通过高温硒化策略,在氮掺杂介孔碳材料上设计了超薄碳铠甲层封装的Co9Se8纳米颗粒高效ORR电催化剂(命名为NMC-Co9Se8)。外部的超薄碳铠甲层不仅可以改善催化过程中的电子转移过程,抑制纳米颗粒的团聚,而且可以作为盔甲保护内部活性位点免受Cl-吸附和腐蚀。得益于这种独特的结构,NMC-Co9Se8在0.1 mol·L-1 KOH海水电解质中表现出优异的ORR性能,其起始电位为0.904 V,半波电位为0.860 V。更重要的是,基于NMC-Co9Se8催化剂的S-ZABs可提供172.4 mW·cm-2的功率密度和超过150 h的优异长期放电稳定性,均高于基于Pt/C的S-ZABs性能。这项工作为开发用于海水基锌-空气电池和其他能源转换技术具有耐氯离子腐蚀且高效的ORR催化剂提供了新思路。
  • 加载中
    1. [1]

      (1) Wang, Y.; Wu, J.; Tang, S.; Yang, J.; Ye, C.; Chen, J.; Lei, Y.; Wang, D. Angew. Chem. Int. Ed. 2023, 62, 202219191. doi:10.1002/anie.202219191

    2. [2]

      (2) Yao, H.; Wang, X.; Li, K.; Li, C.; Zhang, C.; Zhou, J.; Cao, Z.; Wang, H.; Gu, M.; Huang, M.; et al. Appl. Catal. B-Environ. 2022, 312, 121378. doi:10.1016/j.apcatb.2022.121378

    3. [3]

      (3) Zhou, J.; Han, Z.; Wang, X.; Gai, H.; Chen, Z.; Guo, T.; Hou, X.; Xu, L.; Hu, X.; Huang, M.; et al. Adv. Funct. Mater. 2021, 31, 2102066. doi:10.1002/adfm.202102066

    4. [4]

      (4) Zhu, P.; Xiong, X.; Wang, D. Nano Res. 2022, 15, 5792. doi:10.1007/s12274-022-4265-y

    5. [5]

      (5) Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Yu, J.; Chen, X.; Li, B. Q.; Zhang, Q. Adv. Mater. 2021, 33, 2008606. doi:10.1002/adma.202008606

    6. [6]

      (6) Han, A.; Wang, X.; Tang, K.; Zhang, Z.; Ye, C.; Kong, K.; Hu, H.; Zheng, L.; Jiang, P.; Zhao, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 19262. doi:10.1002/anie.202105186

    7. [7]

      (7) Jing, H.; Zhu, P.; Zheng, X.; Zhang, Z.; Wang, D.; Li, Y. Adv. Powder Mater. 2022, 1, 100013. doi:10.1016/j.apmate.2021.10.004

    8. [8]

      (8) Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Nano Res. 2022, 15, 3082. doi:10.1007/s12274-021-3966-y

    9. [9]

      (9) Xiong, Y.; Li, H.; Liu, C.; Zheng, L.; Liu, C.; Wang, J. O.; Liu, S.; Han, Y.; Gu, L.; Qian, J.; et al. Adv. Mater. 2022, 34, 2110653. doi:10.1002/adma.202110653

    10. [10]

      (10) Zhang, C.; Wang, X.; Song, K.; Chen, K.; Dai, S.; Wang, H.; Huang, M. Nano Res. 2023, 16, 1. doi:10.1007/s12274-023-5578-1

    11. [11]

      (11) Zhang, J.; Zhou, Q.; Tang, Y.; Zhang, L.; Li, Y. Chem. Sci. 2019, 10, 8924. doi:10.1039/c9sc04221k

    12. [12]

      (12) Wang, T.; Wu, J.; Liu, Y.; Cui, X.; Ding, P.; Deng, J.; Zha, C.; Coy, E.; Li, Y. Energy Storage Mater. 2019, 16, 24. doi:10.1016/j.ensm.2018.04.020

    13. [13]

    14. [14]

      (14) Zhang, Y. X.; Zhang, S.; Huang, H.; Liu, X.; Li, B.; Lee, Y.; Wang, X.; Bai, Y.; Sun, M.; Wu, Y.; et al. J. Am. Chem. Soc. 2023, 145, 4819. doi:10.1021/jacs.2c13886

    15. [15]

      (15) Pan, Y.; Li, M.; Mi, W.; Wang, M.; Li, J.; Zhao, Y.; Ma, X.; Wang, B.; Zhu, W.; Cui, Z.; et al. Nano Res. 2022, 15, 7976. doi:10.1007/s12274-022-4502-4

    16. [16]

      (16) Yu, Y.; Xia, F.; Wang, C.; Wu, J.; Fu, X.; Ma, D.; Lin, B.; Wang, J.; Yue, Q.; Kang, Y. Nano Res. 2022, 15, 7868. doi:10.1007/s12274-022-4432-1

    17. [17]

      (17) Li, W. H.; Yang, J.; Wang, D. Angew. Chem. Int. Ed. 2022, 61, 202213318. doi:10.1002/anie.202213318

    18. [18]

      (18) Cai, C.; Liu, K.; Zhu, Y.; Li, P.; Wang, Q.; Liu, B.; Chen, S.; Li, H.; Zhu, L.; Li, H.; et al. Angew. Chem. Int. Ed. 2022, 61, 202113664. doi:10.1002/anie.202113664

    19. [19]

      (19) Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; et al. Nature 2019, 574, 81. doi:10.1038/s41586-019-1603-7

    20. [20]

      (20) Zhou, M.; Guo, J.; Zhao, B.; Li, C.; Zhang, L.; Fang, J. J. Am. Chem. Soc. 2021, 143, 15891. doi:10.1021/jacs.1c08644

    21. [21]

      (21) Liu, Z.; Du, Y.; Yu, R.; Zheng, M.; Hu, R.; Wu, J.; Xia, Y.; Zhuang, Z.; Wang, D. Angew. Chem. Int. Ed. 2022, 62, 202212653. doi:10.1002/anie.202212653

    22. [22]

      (22) Yu, J.; Li, B. Q.; Zhao, C. X.; Zhang, Q. Energy Environ. Sci. 2020, 13, 3253. doi:10.1039/d0ee01617a

    23. [23]

      (23) Yu, J.; Zhao, C. X.; Liu, J. N.; Li, B. Q.; Tang, C.; Zhang, Q. Green Chem. Eng. 2020, 1, 117. doi:10.1016/j.gce.2020.09.013

    24. [24]

      (24) Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X. Energy Environ. Sci. 2016, 9, 123. doi:10.1039/c5ee03316k

    25. [25]

    26. [26]

      (26) Zang, Y.; Liu, T.; Wei, P.; Li, H.; Wang, Q.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2022, 134, 202209629. doi:10.1002/anie.202209629

    27. [27]

      (27) Zheng, X.; Yang, J.; Xu, Z.; Wang, Q.; Wu, J.; Zhang, E.; Dou, S.; Sun, W.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, 202205946. doi:10.1002/anie.202205946

    28. [28]

      (28) Kim, S.; Ji, S.; Yang, H.; Son, H.; Choi, H.; Kang, J.; Li, O. L. Appl. Catal. B-Environ. 2022, 310, 121361. doi:10.1016/j.apcatb.2022.121361

    29. [29]

      (29) Suh, D. H.; Park, S. K.; Nakhanivej, P.; Kim, Y.; Hwang, S. M.; Park, H. S. J. Power Sources 2017, 372, 31. doi:10.1016/j.jpowsour.2017.10.056

    30. [30]

      (30) Ren, W.; Wang, Y.; Zhang, Z.; Tan, Q.; Zhong, Z.; Su, F. J. Mater. Chem. A 2016, 4, 552. doi:10.1039/C5TA07487H

    31. [31]

      (31) Huang, S.; Zhao, Z.; Wei, Z.; Wang, M.; Chen, Y.; Wang, X.; Shao, F.; Zhong, X.; Li, X.; Wang, J. Green Chem. 2022, 24, 6945. doi:10.1039/D2GC02161G

    32. [32]

      (32) Jiang, X.; Yan, X.; Hu, X.; Feng, R.; Li, T.; Wang, L. Sep. Purif. Technol. 2022, 297, 121400. doi:10.1016/j.seppur.2022.121400

    33. [33]

      (33) Du, C.; Li, P.; Zhuang, Z.; Fang, Z.; He, S.; Feng, L.; Chen, W. Coord. Chem. Rev. 2022, 466, 214604. doi:10.1016/j.ccr.2022.214604

    34. [34]

      (34) Jhong, H. P.; Chang, S. T.; Huang, H. C.; Wang, K. C.; Lee, J. F.; Yasuzawa, M.; Wang, C. Catal. Sci. Technol. 2019, 9, 3426. doi:10.1039/C9CY00854C

    35. [35]

      (35) Li, K.; Cheng, R.; Xue, Q.; Meng, P.; Zhao, T.; Jiang, M.; Guo, M.; Li, H.; Fu, C. Chem. Eng. J. 2022, 450, 137991. doi:10.1016/j.cej.2022.137991

    36. [36]

      (36) Nekooi, P.; Akbari, M.; Amini, M. K. Int. J. Hydrog. Energy 2010, 35, 6392. doi:10.1016/j.ijhydene.2010.03.134

    37. [37]

      (37) Meng, T.; Qin, J.; Wang, S.; Zhao, D.; Mao, B.; Cao, M. J. Mater. Chem. A 2017, 5, 7001. doi:10.1039/c7ta01453h

    38. [38]

      (38) Wu, R.; Xue, Y.; Liu, B.; Zhou, K.; Wei, J.; Chan, S. H. J. Power Sources 2016, 330, 132. doi:10.1016/j.jpowsour.2016.09.001

    39. [39]

      (39) Chen, K.; Wang, X.; Zhang, C.; Xu, R.; Wang, H.; Chu, L.; Huang, M. Mater. Today Energy 2022, 30, 101150. doi:10.1016/j.mtener.2022.101150

    40. [40]

      (40) Yuan, Q.; Zhao, J.; Mok, D. H.; Zheng, Z.; Ye, Y.; Liang, C.; Zhou, L.; Back, S.; Jiang, K. Nano Lett. 2022, 22, 1257. doi:10.1021/acs.nanolett.1c04420

    41. [41]

      (41) Jin, H.; Xu, Z.; Hu, Z. Y.; Yin, Z.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S.; Dong, S.; Liu, J.; et al. Nat. Commun. 2023, 14, 1518. doi:10.1038/s41467-023-37268-4

    42. [42]

      (42) Deng, J.; Ren, P.; Deng, D.; Bao, X. Angew. Chem. Int. Ed. 2015, 54, 2100. doi:10.1002/anie.201409524

    43. [43]

      (43) Song, X. R.; Wang, X.; Yu, S. X.; Cao, J.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Adv. Mater. 2015, 27, 3285. doi:10.1002/adma.201405634

    44. [44]

      (44) Wang, X.; Kong, D.; Huang, Z. X.; Wang, Y.; Yang, H. Y. Small 2017, 13. 1603980. doi:10.1002/smll.201603980

    45. [45]

      (45) Xia, C.; Qiu, Y.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z.; Kim, J. Y.; Cullen, D. A.; Zheng, D.; et al. Nat. Chem. 2021, 13, 887. doi:10.1038/s41557-021-00734-x

    46. [46]

      (46) Hu, H.; Zhang, J.; Guan, B.; Lou, X. W. Angew. Chem. Int. Ed. 2016, 55, 9514. doi:10.1002/anie.201603852

    47. [47]

      (47) Hou, L.; Sun, X.; Guo, L.; Meng, X.; Wei, J.; Yuan, C. Energy Technol. 2019, 8, 1901319. doi:10.1002/ente.201901319

    48. [48]

      (48) Zhou, X.; Gao, J.; Hu, Y.; Jin, Z.; Hu, K.; Reddy, K. M.; Yuan, Q.; Lin, X.; Qiu, H. J. Nano Lett. 2022, 22, 3392. doi:10.1021/acs.nanolett.2c00658

    49. [49]

      (49) Ba, E. C. T.; Dumont, M. R.; Martins, P. S.; da Silva Pinheiro, B.; da Cruz, M. P. M.; Barbosa, J. W. Diam. Relat. Mat. 2022, 122, 108818. doi:10.1016/j.diamond.2021.108818

    50. [50]

      (50) Song, J.; Chen, Y.; Huang, H.; Wang, J.; Huang, S. C.; Liao, Y. F.; Fetohi, A. E.; Hu, F.; Chen, H. Y.; Li, L.; et al. Adv. Sci. 2022, 9, 2104522. doi:10.1002/advs.202104522

    51. [51]

      (51) Sheng, J.; Sun, S.; Jia, G.; Zhu, S.; Li, Y. ACS Nano 2022, 16, 15994. doi:10.1021/acsnano.2c03565

    52. [52]

      (52) Wang, J.; Li, H.; Liu, S.; Hu, Y.; Zhang, J.; Xia, M.; Hou, Y.; Tse, J.; Zhang, J.; Zhao, Y. Angew. Chem. Int. Ed. 2021, 60, 181. doi:10.1002/anie.202009991

    53. [53]

      (53) Wang, X.; Zhou, X.; Li, C.; Yao, H.; Zhang, C.; Zhou, J.; Xu, R.; Chu, L.; Wang, H.; Gu, M.; et al. Adv. Mater. 2022, 34, 2204021. doi:10.1002/adma.202204021

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    14. [14]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    15. [15]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(0)
  • Abstract views(414)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return