Citation: Yajuan Xing, Hui Xue, Jing Sun, Niankun Guo, Tianshan Song, Jiawen Sun, Yi-Ru Hao, Qin Wang. Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230404. doi: 10.3866/PKU.WHXB202304046
-
Owing to the increasingly serious environmental problems, there is an urgent need for clean energy with a high energy density and low carbon emissions. As such, electrocatalytic water decomposition has attracted significant interest as an efficient hydrogen production method. The electrolysis of water has two important half-reactions: the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Among these two reactions, OER is considered to be the crucial and rate-determining step due to its slower kinetic process and higher overpotential compared to HER. Although noble metal oxides such as IrO2 and RuO2 have excellent OER properties under alkaline conditions, their high cost and scarcity limit their commercial application. Therefore, it is of significant interest to develop alternative OER electrodes with excellent catalytic activity, extremely low overpotential, high durability, and low cost. Ni2P has attracted interest as an electrocatalyst and has improved activity after combination with a cocatalyst. The improved activity is due to heterojunction formation changing the electronic structure and charge transport at the active site. To this end, a novel highly efficient Cu3P/Ni2P heterojunction catalyst has been successfully constructed, in which Cu3P functions solely as a cocatalyst to enhance the electrocatalytic activity by regulating the electron transfer and surface reconstruction of Ni2P. Consequently, Cu3P/Ni2P exhibits superior OER activity and has an ultra-low overpotential of 213 mV at a current density of 10 mA·cm-2 and a small Tafel slope of 62 mV·dec-1 in 1 mol·L-1 KOH. Additionally, this peculiar self-supporting electrode possesses excellent electrochemical stability and long-term durability at a current density of 10 mA·cm-2 in an alkaline medium. Through a combination of experimental results and theoretical calculations, it has been shown that the Cu3P cocatalyst effectively tailors the electronic structure of the Ni center. This results in charge redistribution and a lower reaction energy barrier, thereby significantly improving the OER catalytic activity. In addition, the abundant grain boundaries and lattice distortions induced by the Cu3P cocatalyst promote surface reconstruction to form Ni5O(OH)9, providing an efficient active site for OER. This work constructed a novel heterojunction electrocatalyst by introducing a cocatalyst, offering an avenue for the optimization of the electrocatalytic performance of transition metal phosphide.
-
-
[1]
(1) Zhang, Y.-C.; Afzal, N.; Pan, L.; Zhang, X.; Zou, J.-J. Adv. Sci. 2019, 6, 1900053. doi:10.1002/advs.201900053
-
[2]
-
[3]
(3) De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506. doi:10.1126/science.aav3506
-
[4]
(4) Morales-Guio, C. G.; Stern, L.-A.; Hu, X. Chem. Soc. Rev. 2014, 43, 6555. doi:10.1039/C3CS60468C
-
[5]
-
[6]
(6) Yang, J.; Li, W. H.; Tan, S.; Xu, K.; Wang, Y.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2021, 60, 19085. doi:10.1002/anie.202107123
-
[7]
(7) Sun, M.; Müllen, K.; Yin, M. Chem. Soc. Rev. 2016, 45, 1513. doi:10.1039/C5CS00754B
-
[8]
(8) Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S.-Z. Angew. Chem. Int. Ed. 2018, 57, 7568. doi:10.1002/anie.201710556
-
[9]
(9) Tian, D.; Denny, S. R.; Li, K.; Wang, H.; Kattel, S.; Chen, J. G. Chem. Soc. Rev. 2021, 50, 12338. doi:10.1039/D1CS00590A
-
[10]
(10) Li, R.; Li, Y.; Yang, P.; Ren, P.; Wang, D.; Lu, X.; Xu, R.; Li, Y.; Xue, J.; Zhang, J.; et al. Appl. Catal. B 2022, 318, 121834. doi:10.1016/j.apcatb.2022.121834
-
[11]
(11) Liu, P.; Rodriguez, J. A. J. Am. Chem. Soc. 2005, 127, 14871. doi:10.1021/ja0540019
-
[12]
(12) Liu, X.; Huang, J.; Li, T.; Chen, W.; Chen, G.; Han, L.; Ostrikov, K. J. Mater. Chem. A 2022, 10, 13448. doi:10.1039/D2TA03181G
-
[13]
(13) Sun, T.; Zhang, S.; Xu, L.; Wang, D.; Li, Y. Chem. Commun. 2018, 54, 12101. doi:10.1039/C8CC06566G
-
[14]
(14) Hu, X.; Luo, G.; Guo, X.; Zhao, Q.; Wang, R.; Huang, G.; Jiang, B.; Xu, C.; Pan, F. Sci. Bull. 2021, 66, 708. doi:10.1016/j.scib.2020.11.009
-
[15]
(15) Jiang, X.; Yue, X.; Li, Y.; Wei, X.; Zheng, Q.; Xie, F.; Lin, D.; Qu, G. Chem. Eng. J. 2021, 426, 130718. doi:10.1016/j.cej.2021.130718
-
[16]
(16) Li, A.; Zhang, L.; Wang, F.; Zhang, L.; Li, L.; Chen, H.; Wei, Z. Appl. Catal. B 2022, 310, 121353. doi:10.1016/j.apcatb.2022.121353
-
[17]
(17) Zhang, K.; Zhang, Z.; Shen, H.; Tang, Y.; Liang, Z.; Zou, R. Sci. China Mater. 2022, 65, 1522. doi:10.1007/s40843-021-1947-8
-
[18]
(18) Xue, Z.; Li, X.; Liu, Q.; Cai, M.; Liu, K.; Liu, M.; Ke, Z.; Liu, X.; Li, G. Adv. Mater. 2019, 31, 1900430. doi:10.1002/adma.201900430
-
[19]
(19) Wang, L.; Song, L.; Yang, Z.; Chang, Y.-M.; Hu, F.; Li, L.; Li, L.; Chen, H.-Y.; Peng, S. Adv. Funct. Mater. 2023, 33, 2210322. doi:10.1002/adfm.202210322
-
[20]
(20) Tang, Y.-J.; Zou, Y.; Zhu, D. J. Mater. Chem. A 2022, 10, 12438. doi:10.1039/D2TA02620A
-
[21]
(21) Wang, H.-Y.; Ren, J.-T.; Wang, L.; Sun, M.-L.; Yang, H.-M.; Lv, X.-W.; Yuan, Z.-Y. J. Energy Chem. 2022, 75, 66. doi:10.1016/j.jechem.2022.08.019
-
[22]
(22) Wang, Y.; Zheng, X.; Wang, D. Nano Res. 2022, 15, 1730. doi:10.1007/s12274-021-3794-0
-
[23]
(23) Chen, T.; Li, B.; Song, K.; Wang, C.; Ding, J.; Liu, E.; Chen, B.; He, F. J. Mater. Chem. A 2022, 10, 22750. doi:10.1039/D2TA04879E
-
[24]
(24) Zhu, Y. P.; Guo, C.; Zheng, Y.; Qiao, S.-Z. Acc. Chem. Res. 2017, 50, 915. doi:10.1021/acs.accounts.6b00635
-
[25]
(25) Li, C.; Yuan, Q.; Ni, B.; He, T.; Zhang, S.; Long, Y.; Gu, L.; Wang, X. Nat. Commun. 2018, 9, 3702. doi:10.1038/s41467-018-06043-1
-
[26]
(26) Zhang, Y.-C.; Han, C.; Gao, J.; Pan, L.; Wu, J.; Zhu, X.-D.; Zou, J.-J. ACS Catal. 2021, 11, 12485. doi:10.1021/acscatal.1c03260
-
[27]
(27) Zhang, Z.; Luo, Z.; Chen, B.; Wei, C.; Zhao, J.; Chen, J.; Zhang, X.; Lai, Z.; Fan, Z.; Tan, C.; et al. Adv. Mater. 2016, 28, 8712. doi:10.1002/adma.201603075
-
[28]
(28) Zhao, W.-Y.; Ni, B.; Yuan, Q.; He, P.-L.; Gong, Y.; Gu, L.; Wang, X. Adv. Energy Mater. 2017, 7, 1601593. doi:10.1002/aenm.201601593
-
[29]
(29) Shi, Y.; Ma, Z.-R.; Xiao, Y.-Y.; Yin, Y.-C.; Huang, W.-M.; Huang, Z.-C.; Zheng, Y.-Z.; Mu, F.-Y.; Huang, R.; Shi, G.-Y.; et al. Nat. Commun. 2021, 12, 3021. doi:10.1038/s41467-021-23306-6
-
[30]
-
[31]
(31) Xu, X.; He, Y.; Huang, W.; Cao, A.; Kang, L.; Liu, J. ACS Appl. Mater. Interfaces 2022, 14, 17520. doi:10.1021/acsami.2c02418
-
[32]
(32) Han, B.; Du, X.; Li, J.; Wang, H.; Liu, G.; Li, J. Appl. Surf. Sci. 2022, 604, 154617. doi:10.1016/j.apsusc.2022.154617
-
[33]
(33) Han, Q.; Luo, Y.; Li, J.; Du, X.; Sun, S.; Wang, Y.; Liu, G.; Chen, Z. Appl. Catal. B 2022, 304, 120937. doi:10.1016/j.apcatb.2021.120937
-
[34]
(34) Hou, C.-C.; Chen, Q.-Q.; Wang, C.-J.; Liang, F.; Lin, Z.; Fu, W.-F.; Chen, Y. ACS Appl. Mater. Interfaces 2016, 8, 23037. doi:10.1021/acsami.6b06251
-
[35]
(35) Wang, H.; Zhou, T.; Li, P.; Cao, Z.; Xi, W.; Zhao, Y.; Ding, Y. ACS Sustain. Chem. Eng. 2018, 6, 380. doi:10.1021/acssuschemeng.7b02654
-
[36]
(36) Chung, D. Y.; Lopes, P. P.; Farinazzo Bergamo Dias Martins, P.; He, H.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y.; et al. Nat. Energy 2020, 5, 222. doi:10.1038/s41560-020-0576-y
-
[37]
(37) Chen, J.; Li, X.; Ma, B.; Zhao, X.; Chen, Y. Nano Res. 2022, 15, 2935. doi:10.1007/s12274-021-3915-9
-
[38]
(38) Zhang, X.; Wu, A.; Wang, D.; Jiao, Y.; Yan, H.; Jin, C.; Xie, Y.; Tian, C. Appl. Catal. B 2023, 328, 122474. doi:10.1016/j.apcatb.2023.122474
-
[39]
(39) Li, D.; Zhou, C.; Xing, Y.; Shi, X.; Ma, W.; Li, L.; Jiang, D.; Shi, W. Chem. Commun. 2021, 57, 8158. doi:10.1039/D1CC00535A
-
[1]
-
-
[1]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[2]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[3]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[4]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[5]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[6]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[7]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[8]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[9]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[10]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[11]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[12]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[13]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[14]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[15]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[16]
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
-
[17]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[18]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[19]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[20]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(377)
- HTML views(34)