Citation: Yue-Zhou Zhu,  Kun Wang,  Shi-Sheng Zheng,  Hong-Jia Wang,  Jin-Chao Dong,  Jian-Feng Li. Application and Development of Electrochemical Spectroscopy Methods[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230404. doi: 10.3866/PKU.WHXB202304040 shu

Application and Development of Electrochemical Spectroscopy Methods

  • Corresponding author: Shi-Sheng Zheng,  Jian-Feng Li, 
  • Received Date: 24 April 2023
    Revised Date: 19 May 2023
    Accepted Date: 22 May 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2020YFB1505800) and the National Natural Science Foundation of China (21925404, 22075099, 21991151).

  • The theoretical and experimental technologies used for electrochemical characterization methods, which are essential for determining surface structures and elucidating electrochemical reaction mechanisms, have been significantly improved after more than two centuries of development. Traditional chemical methods like cyclic voltammetry (CV) can provide the exact electrochemical reaction rate in different potential ranges, which is beneficial for identifying the electrochemical performance of electrocatalytic materials. However, traditional chemical methods alone are often inadequate when it comes to achieving a deep understanding of reaction mechanisms. In this regard, spectroscopic methods, which are powerful tools to identify the active sites and intermediate species during electrochemical reactions, are widely applied to elucidate the electrochemical mechanism at a molecular or even atomic level. In this review, three molecular-vibration-spectroscopy-based electrochemical characterization technologies, viz., infrared (IR) spectroscopy, surface-enhanced Raman spectroscopy (SERS), and sum frequency generation (SFG) spectroscopy, are comprehensively reviewed and discussed. IR, SERS, and SFG are all non-destructive spectroscopic techniques with ultra-high surface sensitivity and are indispensable when detecting surface species during electrochemical reactions. Consequently, researchers have strived to combine these spectroscopic techniques with basic electrochemical instruments. In fundamental electrochemical research, detecting electrochemical reactions in model single-crystal systems and determining the structure of interfacial water molecules have been two major research topics in recent years. Single-crystal surfaces are important in fundamental electrochemical research because of their defined atom arrays and energy states, serving as model systems to help bridge experimental results and theoretical calculations. Meanwhile, the structure of interfacial water influences most electrochemical reaction processes, and as such, probing interfacial water structures is a challenging but valuable target in fundamental electrochemical research. Additionally, the application of electrochemical spectroscopic methods to analyze fuel cells has become important, and this review covers recent SERS studies of oxygen reduction reactions (ORR) and hydrogen oxidation reactions (HOR) in hydrogen fuel cells. Concurrently, electrochemical IR and SFG studies on the electrooxidation of small organic molecules are discussed. Finally, owing to the significance of lithium-ion batteries, studies of electrochemical spectroscopic methods on solid electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) are becoming increasingly important and are introduced here. In conclusion, recent advances and the future developments of electrochemical spectroscopy methods are summarized in this review article.
  • 加载中
    1. [1]

      (1) Bruckenstein, S.; Miller, B. Acc. Chem. Res. 1977, 10, 54. doi:10.1021/ar50110a004

    2. [2]

      (2) Andrieux, C. P.; Hapiot, P.; Saveant, J. M. J. Phys. Chem. 1988, 92, 5992. doi:10.1021/j100332a031

    3. [3]

      (3) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. J. Chem. Educ. 2018, 95, 197. doi:10.1021/acs.jchemed.7b00361

    4. [4]

      (4) Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li, M.; Barman, K.; Sigman, M. S.; White, H. S.; Minteer, S. D. Chem. Sci. 2019, 10, 6404. doi:10.1039/C9SC01545K

    5. [5]

      (5) McKenzie, E. C. R.; Hosseini, S.; Petro, A. G. C.; Rudman, K. K.; Gerroll, B. H. R.; Mubarak, M. S.; Baker, L. A.; Little, R. D. Chem. Rev. 2022, 122, 3292. doi:10.1021/acs.chemrev.1c00471

    6. [6]

      (6) Mattson, J. S.; Smith, C. A. Science 1973, 181, 1055. doi:10.1126/science.181.4104.1055

    7. [7]

      (7) Mattson, J. S.; Jones, T. T. Anal. Chem. 1976, 48, 2164. doi:10.1021/ac50008a028

    8. [8]

      (8) Saji, T.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 2235. doi:10.1021/ja00449a034

    9. [9]

      (9) Cooley, J.; Lewis, P.; Welch, P. IEEE Trans. Audio Electroacoust. 1967, 15, 76. doi:10.1109/TAU.1967.1161903

    10. [10]

      (10) Clarke, J. S.; Kuhn, A. T.; Orville-Thomas, W. J.; Stedman, M. J. Electroanal. Chem. Interfacial Electrochem. 1974, 49, 199. doi:10.1016/S0022-0728(74)80227-5

    11. [11]

      (11) Bewick, A.; Kunimatsu, K. Surf. Sci. 1980, 101, 131. doi:10.1016/0039-6028(80)90604-4

    12. [12]

      (12) Bewick, A. J. Electroanal. Chem. Interfacial Electrochem. 1983, 150, 481. doi:10.1016/S0022-0728(83)80228-9

    13. [13]

      (13) Ye, J. Y.; Jiang, Y. X.; Sheng, T.; Sun, S. G. Nano Energy 2016, 29, 414. doi:10.1016/j.nanoen.2016.06.023

    14. [14]

      (14) Li, H.; Jiang, K.; Zou, S.-Z.; Cai, W.-B. Chin. J. Catal. 2022, 43, 2772. doi:10.1016/S1872-2067(22)64095-6

    15. [15]

      (15) Ma, X. Y.; Zhang, W. Y.; Ye, K.; Jiang, K.; Cai, W. B. Anal. Chem. 2022, 94, 11337. doi:10.1021/acs.analchem.2c02092

    16. [16]

      (16) Raman, C. V.; Krishnan, K.S. Nature 1928, 121, 501. doi:10.1038/121501c0

    17. [17]

      (17) Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun. 2007, 3514. doi:10.1039/B616986D

    18. [18]

      (18) Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Chem. Phys. Lett. 2000, 318, 131. doi:10.1016/S0009-2614(99)01451-7

    19. [19]

      (19) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Nature 2010, 464, 392. doi:10.1038/nature08907

    20. [20]

    21. [21]

      (21) Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.; Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; et al. Nat. Protocols 2013, 8, 52. doi:10.1038/nprot.2012.141

    22. [22]

      (22) De, R.; Dietzek-Ivanšić, B. Chem.-Eur. J. 2022, 28, e202200407. doi:10.1002/chem.202200407

    23. [23]

      (23) Sun, S. G.; Clavilier, J.; Bewick, A. J. Electroanal. Chem. Interfacial Electrochem. 1988, 240, 147. doi:10.1016/0022-0728(88)80319-X

    24. [24]

      (24) Sun, S. G.; Yang, Y. Y. J. Electroanal. Chem. 1999, 467, 121. doi:10.1016/S0022-0728(99)00032-7

    25. [25]

      (25) Sun, S. G.; Lin, Y. Electrochim. Acta 1996, 41, 693. doi:10.1016/0013-4686(95)00358-4

    26. [26]

      (26) Sun, S. G.; Lin, Y. Electrochim. Acta 1998, 44, 1153. doi:10.1016/S0013-4686(98)00218-7

    27. [27]

      (27) Orts, J. M.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A.; Clavilier, J. J. Electroanal. Chem. Interfacial Electrochem. 1990, 290, 119. doi:10.1016/0022-0728(90)87424-I

    28. [28]

      (28) Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. Langmuir 2006, 22, 10457. doi:10.1021/la0615995

    29. [29]

      (29) Schnaidt, J.; Heinen, M.; Denot, D.; Jusys, Z.; Behm, R. J. J. Electroanal. Chem. 2011, 661, 250. doi:10.1016/j.jelechem.2011.08.011

    30. [30]

      (30) Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2019, 4, 60. doi:10.1038/s41560-018-0292-z

    31. [31]

      (31) Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2020, 142, 715. doi:10.1021/jacs.9b12803

    32. [32]

      (32) Su, M.; Dong, J.-C.; Le, J.-B.; Zhao, Y.; Yang, W.-M.; Yang, Z.-L.; Attard, G.; Liu, G.-K.; Cheng, J.; Wei, Y.-M.; et al. Angew. Chem. Int. Ed. 2020, 59, 23554. doi:10.1002/anie.202010431

    33. [33]

      (33) Liu, B.; Blaszczyk, A.; Mayor, M.; Wandlowski, T. ACS Nano 2011, 5, 5662. doi:10.1021/nn201307g

    34. [34]

      (34) Wang, X.; Zhong, J. H.; Zhang, M.; Liu, Z.; Wu, D.Y.; Ren, B. Anal. Chem. 2016, 88, 915. doi:10.1021/acs.analchem.5b03588

    35. [35]

      (35) Wen, B. Y.; Yi, J.; Wang, Y. H.; Madasamy, K.; Zhang, H.; Kathiresan, M.; Li, J. F.; Tian, Z. Q. Electrochem. Commun. 2016, 72, 131. doi:10.1016/j.elecom.2016.08.026

    36. [36]

      (36) Martín Sabanés, N.; Ohto, T.; Andrienko, D.; Nagata, Y.; Domke, K. F. Angew. Chem. Int. Ed. 2017, 56, 9796. doi:10.1002/anie.201704460

    37. [37]

      (37) Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57, 11257. doi:10.1002/anie.201805464

    38. [38]

      (38) Tadjeddine, A.; Peremans, A. J. Electroanal. Chem. 1996, 409, 115. doi:10.1016/0022-0728(96)04508-1

    39. [39]

      (39) Braunschweig, B.; Wieckowski, A. J. Electroanal. Chem. 2014, 716, 136. doi:10.1016/j.jelechem.2013.10.019

    40. [40]

      (40) Yang, S.; Noguchi, H.; Uosaki, K. J. Phys. Chem. C 2015, 119, 26056. doi:10.1021/acs.jpcc.5b10086

    41. [41]

      (41) Willard, A. P.; Reed, S. K.; Madden, P. A.; Chandler, D. Faraday Discuss. 2009, 141, 423. doi:10.1039/B805544K

    42. [42]

      (42) Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D. Proc. Natl. Acad. Sci. 2013, 110, 4200. doi:10.1073/pnas.1301596110

    43. [43]

      (43) Osawa, M.; Ataka, K.-I.; Yoshii, K.; Yotsuyanagi, T. J. Electron. Spectrosc. Relat. Phenom. 1993, 64-65, 371. doi:10.1016/0368-2048(93)80099-8

    44. [44]

      (44) Ataka, K.-I.; Yotsuyanagi, T.; Osawa, M. J. Phys. Chem. 1996, 100, 10664. doi:10.1021/jp953636z

    45. [45]

      (45) Wandlowski, T.; Ataka, K.; Pronkin, S.; Diesing, D. Electrochim. Acta 2004, 49, 1233. doi:10.1016/j.electacta.2003.06.002

    46. [46]

      (46) Osawa, M. Advances in Electrochemical Science and Engineering; Alkire, R. C., Kolb, D. M., Lipkowski, J., Ross, P. N., Eds.; Wiley:Hoboken, NJ, USA, 2006; pp. 269-314. doi:10.1002/9783527616817.ch8

    47. [47]

      (47) Osawa, M.; Tsushima, M.; Mogami, H.; Samjeské, G.; Yamakata, A. J. Phys. Chem. C 2008, 112, 4248. doi:10.1021/jp710386g

    48. [48]

      (48) Garcia-Araez, N.; Rodriguez, P.; Navarro, V.; Bakker, H. J.; Koper, M. T. M. J. Phys. Chem. C 2011, 115, 21249. doi:10.1021/jp206539a

    49. [49]

      (49) Gardner, A. M.; Saeed, K. H.; Cowan, A. J. Phys. Chem. Chem. Phys. 2019, 21, 12067. doi:10.1039/C9CP02225B

    50. [50]

      (50) Wang, Y. H.; Li, S.; Zhou, R. Y.; Zheng, S.; Zhang, Y. J.; Dong, J. C.; Yang, Z. L.; Pan, F.; Tian, Z. Q.; Li, J. F. Nat. Protocols 2023, 18, 883. doi:10.1038/s41596-022-00782-8

    51. [51]

      (51) Zhang, Y. J.; Su, Z. F.; Li, J. F.; Lipkowski, J. J. Phys. Chem. C 2020, 124, 13240. doi:10.1021/acs.jpcc.0c03453

    52. [52]

      (52) Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. Nat. Mater. 2019, 18, 697. doi:10.1038/s41563-019-0356-x

    53. [53]

      (53) Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S.; Zheng, J.; Yang, Z. L.; et al. Nature 2021, 600, 81. doi:10.1038/s41586-021-04068-z

    54. [54]

      (54) Du, Q.; Freysz, E.; Shen, Y. R. Phys. Rev. Lett. 1994, 72, 238. doi:10.1103/PhysRevLett.72.238

    55. [55]

      (55) Becraft, K. A.; Moore, F. G.; Richmond, G. L. Phys. Chem. Chem. Phys. 2004, 6, 1880. doi:10.1039/B313513F

    56. [56]

      (56) Schultz, Z. D.; Shaw, S. K.; Gewirth, A. A. J. Am. Chem. Soc. 2005, 127, 15916. doi:10.1021/ja0543393

    57. [57]

      (57) Noguchi, H.; Okada, T.; Uosaki, K. Faraday Discuss. 2009, 140, 125. doi:10.1039/B803640C

    58. [58]

      (58) Tong, Y.; Lapointe, F.; Thämer, M.; Wolf, M.; Campen, R. K. Angew. Chem. Int. Ed. 2017, 56, 4211. doi:10.1002/anie.201612183

    59. [59]

      (59) McGuire, J. A.; Shen, Y. R. Science 2006, 313, 1945. doi:10.1126/science.1131536

    60. [60]

      (60) Nihonyanagi, S.; Kusaka, R.; Inoue, K. I.; Adhikari, A.; Yamaguchi, S.; Tahara, T. J. Chem. Phys. 2015, 143, 124707. doi:10.1063/1.4931485

    61. [61]

      (61) Singh, P. C.; Inoue, K. I.; Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Angew. Chem. Int. Ed. 2016, 55, 10621. doi:10.1002/anie.201603676

    62. [62]

      (62) Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Chem. Rev. 2017, 117, 10665. doi:10.1021/acs.chemrev.6b00728

    63. [63]

      (63) Eftekhari-Bafrooei, A.; Borguet, E. J. Phys. Chem. Lett. 2011, 2, 1353. doi:10.1021/jz200194e

    64. [64]

    65. [65]

    66. [66]

    67. [67]

      (67) Samjeské, G.; Miki, A.; Ye, S.; Yamakata, A.; Mukouyama, Y.; Okamoto, H.; Osawa, M. J. Phys. Chem. B 2005, 109, 23509. doi:10.1021/jp055220j

    68. [68]

      (68) Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Angew. Chem. Int. Ed. 2006, 45, 981. doi:10.1002/anie.200502172

    69. [69]

      (69) Grozovski, V.; Vidal-Iglesias, F. J.; Herrero, E.; Feliu, J. M. ChemPhysChem 2011, 12, 1641. doi:10.1002/cphc.201100257

    70. [70]

      (70) Cuesta, A.; Cabello, G.; Osawa, M.; Gutiérrez, C. ACS Catal. 2012, 2, 728. doi:10.1021/cs200661z

    71. [71]

      (71) Liu, S. X.; Liao, L. W.; Tao, Q.; Chen, Y. X.; Ye, S. Phys. Chem. Chem. Phys. 2011, 13, 9725. doi:10.1039/C0CP01728K

    72. [72]

      (72) Yang, Y. Y.; Ren, J.; Li, Q. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. ACS Catal. 2014, 4, 798. doi:10.1021/cs401198t

    73. [73]

    74. [74]

    75. [75]

      (75) Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.; Cheng, J.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2019, 58, 16062. doi:10.1002/anie.201908907

    76. [76]

      (76) Sun, Y. L.; A, Y. L.; Yue, M. F.; Chen, H. Q.; Ze, H.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q.; Fang, P. P.; Li, J. F. Anal. Chem. 2022, 94, 4779. doi:10.1021/acs.analchem.1c05566

    77. [77]

      (77) Ze, H.; Chen, X.; Wang, X. T.; Wang, Y. H.; Chen, Q. Q.; Lin, J. S.; Zhang, Y. J.; Zhang, X. G.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2021, 143, 1318. doi:10.1021/jacs.0c12755

    78. [78]

      (78) Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi:10.1038/nmat3313

    79. [79]

      (79) Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2021, 60, 5708. doi:10.1002/anie.202015571

    80. [80]

      (80) Lin, X. M.; Wang, X. T.; Deng, Y. L.; Chen, X.; Chen, H. N.; Radjenovic, P. M.; Zhang, X. G.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q.; et al. Nano Lett. 2022, 22, 5544. doi:10.1021/acs.nanolett.2c01744

    81. [81]

      (81) Dong, J. N.; Qian, Z. X.; Xu, P.; Yue, M. F.; Zhou, R. Y.; Wang, Y. J.; Nan, Z. A.; Huang, S.; Dong, Q.; Li, J. F.; et al. Chem. Sci. 2022, 13, 5639. doi:10.1039/D2SC01043G

    82. [82]

      (82) Peng, C. K.; Lin, Y. C.; Chiang, C. L.; Qian, Z. X.; Huang, Y. C.; Dong, C. L.; Li, J. F.; Chen, C. T.; Hu, Z. W.; Chen, S. Y.; et al. Nat. Commun. 2023, 14, 529. doi:10.1038/s41467-023-36317-2

    83. [83]

      (83) Chen, J.; Liu, G.; Zhu, Y. Z.; Su, M.; Yin, P.; Wu, X. J.; Lu, Q.; Tan, C.; Zhao, M.; Liu, Z.; et al. J. Am. Chem. Soc. 2020, 142, 7161. doi:10.1021/jacs.0c01649

    84. [84]

      (84) Chen, H. Q.; Ze, H.; Yue, M. F.; Wei, D. Y.; A, Y. L.; Wu, Y. F.; Dong, J. C.; Zhang, Y. J.; Zhang, H.; Tian, Z. Q.; et al. Angew. Chem. Int. Ed. 2022, 61, e202117834. doi:10.1002/anie.202117834

    85. [85]

      (85) Li, J.; Wang, S.; Yue, M. F.; Xing, S. M.; Zhang, Y. J.; Dong, J. C.; Zhang, H.; Chen, Z.; Li, J. F. ACS Catal. 2023, 13, 849. doi:10.1021/acscatal.2c05802

    86. [86]

      (86) Peremans, A.; Tadjeddine, A. Phys. Rev. Lett. 1994, 73, 3010. doi:10.1103/PhysRevLett.73.3010

    87. [87]

      (87) Kutz, R. B.; Braunschweig, B.; Mukherjee, P.; Behrens, R. L.; Dlott, D. D.; Wieckowski, A. J. Catal. 2011, 278, 181. doi:10.1016/j.jcat.2010.11.018

    88. [88]

      (88) Liu, Y.; Yu, W.; Raciti, D.; Gracias, D. H.; Wang, C. J. Phys. Chem. C 2019, 123, 426. doi:10.1021/acs.jpcc.8b08547

    89. [89]

      (89) Tong, Y.; Cai, K.; Wolf, M.; Campen, R. K. Catal. Today 2016, 260, 66. doi:10.1016/j.cattod.2015.08.015

    90. [90]

      (90) Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysChem 2017, 18, 3266. doi:10.1002/cphc.201700736

    91. [91]

      (91) Neri, G.; Donaldson, P. M.; Cowan, A. J. J. Am. Chem. Soc. 2017, 139, 13791. doi:10.1021/jacs.7b06898

    92. [92]

      (92) Huang-fu, Z. C.; Song, Q. T.; He, Y. H.; Wang, J. J.; Ye, J. Y.; Zhou, Z. Y.; Sun, S. G.; Wang, Z. H. Phys. Chem. Chem. Phys. 2019, 21, 25047. doi:10.1039/C9CP04346B

    93. [93]

    94. [94]

    95. [95]

      (95) Gao, F.; Tian, X. D.; Lin, J. S.; Dong, J. C.; Lin, X. M.; Li, J. F. Nano Res. 2023, 16, 4855. doi:10.1007/s12274-021-4044-1

    96. [96]

      (96) Li, J. T.; Chen, S. R.; Fan, X. Y.; Huang, L.; Sun, S. G. Langmuir 2007, 23, 13174. doi:10.1021/la701168x

    97. [97]

      (97) Li, J. T.; Chen, S. R.; Ke, F. S.; Wei, G. Z.; Huang, L.; Sun, S. G. J. Electroanal. Chem. 2010, 649, 171. doi:10.1016/j.jelechem.2010.03.032

    98. [98]

      (98) Yang , J.; Solomatin, N.; Kraytsberg, A.; Ein-Eli , Y. ChemistrySelect 2016, 1, 572. doi:10.1002/slct.201600119

    99. [99]

      (99) Li, X.; Qiao, Y.; Guo, S.; Jiang, K.; Ishida, M.; Zhou, H. Adv. Mater. 2019, 31, 1807825. doi:10.1002/adma.201807825

    100. [100]

      (100) Qiao, Y.; Yang, H.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. Nat. Energy 2021, 6, 653. doi:10.1038/s41560-021-00839-0

    101. [101]

      (101) Chen, D.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi:10.1021/acs.nanolett.9b00179

    102. [102]

      (102) Horowitz, Y.; Han, H. L.; Ralston, W. T.; de Araujo, J. R.; Kreidler, E.; Brooks, C.; Somorjai, G. A. Adv. Energy Mater. 2017, 7, 1602060. doi:10.1002/aenm.201602060

    103. [103]

      (103) Horowitz, Y.; Han, H. L.; Soto, F. A.; Ralston, W. T.; Balbuena, P. B.; Somorjai, G. A. Nano Lett. 2018, 18, 1145. doi:10.1021/acs.nanolett.7b04688

    104. [104]

      (104) Ge, A.; Zhou, D.; Inoue, K. I.; Chen, Y.; Ye, S. J. Phys. Chem. C 2020, 124, 17538. doi:10.1021/acs.jpcc.0c06390

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    7. [7]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    11. [11]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

Metrics
  • PDF Downloads(6)
  • Abstract views(443)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return