Citation: Ke Qiu,  Fengmei Wang,  Mochou Liao,  Kerun Zhu,  Jiawei Chen,  Wei Zhang,  Yongyao Xia,  Xiaoli Dong,  Fei Wang. A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230403. doi: 10.3866/PKU.WHXB202304036 shu

A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries

  • Corresponding author: Yongyao Xia,  Xiaoli Dong,  Fei Wang, 
  • Received Date: 20 April 2023
    Revised Date: 16 May 2023
    Accepted Date: 17 May 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2021YFA1201900) and the Science and Technology Commission of Shanghai Municipality (21511103300).

  • Near-neutral zinc-air batteries show great promise for long-cycle applications in ambient air owing to their impressive deposition/stripping compatibility with zinc anodes and greater chemical stability towards CO2 in ambient air compared to batteries with traditional alkaline electrolytes. However, the inherent water volatilization of liquid electrolytes and the flexibility of electrolytes required for wearable devices severely limit the practical application of this system. In this study, a fumed SiO2-based composite hydrogel polymer electrolyte (SiO2-HPE) was prepared for application in near-neutral zinc-air batteries. The design of the SiO2-HPE was carried out considering the following three aspects. Firstly, it is widely acknowledged that the polyacrylamide polymer skeleton is beneficial to excellent ionic conductivity and the mechanical strength of the SiO2-HPE. Secondly, fumed SiO2 bearing multiple silicon hydroxyl groups is a suitable option as a water-retaining additive. Thirdly, the near-neutral liquid electrolyte (1 mol·kg-1 Zn(OTf)2) absorbed in the SiO2-HPE is stable towards CO2 in ambient air. In conclusion, these three aspects of the electrolyte design contribute to the practical application of the SiO2-HPE. Raman spectroscopy and scanning electron microscopy revealed that the synthesized SiO2-HPE exhibited a high degree of polymerization, plentiful surface pores, and a uniform distribution of elements. According to the infrared and Raman spectra, the abundant hydroxyl groups located on the surface of the SiO2 particles enhanced water molecule binding by altering the hydrogen bond network within the SiO2-HPE. This conclusion was further confirmed by thermogravimetry and differential scanning calorimetry. After exposure to ambient air (30% relative humidity) for 96 h, the SiO2-HPE exhibited a water retention capacity of 49.52%, which is 6.23% and 1.73% higher than those for 1 mol·kg-1 Zn(OTf)2 and the HPE (hydrogel polymer electrolyte without SiO2). Moreover, owing to the dynamic recombination of the hydrogen bonds between the silicon hydroxyl groups and the gel skeleton, SiO2-HPE exhibited a higher mechanical strength and modulus than HPE under tensile and compressive conditions, respectively. This further rendered it an ideal electrolyte for flexible zinc-air batteries. The near-neutral zinc-air battery assembled with the SiO2-HPE exhibited a cycle life of up to 200 h under 30% relative humidity, far exceeding those of 1 mol·kg-1 Zn(OTf)2 and the HPE. Based on such remarkable performance, the flexible near-neutral zinc-air battery device assembled by the SiO2-HPE has shown a satisfactory performance under special conditions, such as bending and cutting, and can be used as a power supply for different electronic devices, making it a promising next-generation electrochemical energy storage device. Overall, this work provides new insight into the development of flexible zinc-air battery devices with long-term stability in ambient air.
  • 加载中
    1. [1]

      (1) Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Adv. Mater. 2017, 29, 1604685. doi:10.1002/adma.201604685

    2. [2]

      (2) Liu, J. N.; Zhao, C. X.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Energy Environ. Sci. 2022, 15, 4542. doi:10.1039/d2ee02440c

    3. [3]

    4. [4]

    5. [5]

      (5) Liu, X.; Fan, X.; Liu, B.; Ding, J.; Deng, Y.; Han, X.; Zhong, C.; Hu, W. Adv. Mater. 2021, 33, 2006461. doi:10.1002/adma.202006461

    6. [6]

      (6) Wu, W. F.; Yan, X.; Zhan, Y. Chem. Eng. J. 2023, 451, 138608. doi:10.1016/j.cej.2022.138608

    7. [7]

      (7) Liu, Q.; Liu, R.; He, C.; Xia, C.; Guo, W.; Xu, Z. L.; Xia, B. Y. eScience 2022, 2, 453. doi:10.1016/j.esci.2022.08.004

    8. [8]

      (8) Cheng, H. H.; Tan, C. S. J. Power Sources 2006, 162, 1431. doi:10.1016/j.jpowsour.2006.07.046

    9. [9]

      (9) Li, Y.; Gong, M.; Liang, Y.; Feng, J.; Kim, J. E.; Wang, H.; Hong, G.; Zhang, B.; Dai, H. Nat. Commun. 2013, 4, 1805. doi:10.1038/ncomms2812

    10. [10]

      (10) Sun, W.; Wang, F.; Zhang, B.; Zhang, M.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C.; et al. Science 2021, 371, 46. doi:10.1126/science.abb9554

    11. [11]

      (11) Wang, C.; Li, J.; Zhou, Z.; Pan, Y.; Yu, Z.; Pei, Z.; Zhao, S.; Wei, L.; Chen, Y. EnergyChem 2021, 3, 100055. doi:10.1016/j.enchem.2021.100055

    12. [12]

      (12) Li, Y.; Fu, J.; Zhong, C.; Wu, T.; Chen, Z.; Hu, W.; Amine, K.; Lu, J. Adv. Energy Mater. 2019, 9, 1802605. doi:10.1002/aenm.201802605

    13. [13]

      (13) Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Energy Environ. Sci. 2017, 10, 2056. doi:10.1039/c7ee01913k

    14. [14]

    15. [15]

    16. [16]

    17. [17]

      (17) Li, M.; Liu, B.; Fan, X.; Liu, X.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. ACS Appl. Energy Mater. 2019, 11, 28909. doi:10.1021/acsami.9b09086

    18. [18]

      (18) Li, H.; Liu, Z.; Liang, G.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Tang, Z.; Wang, Y.; et al. ACS Nano 2018, 12, 3140. doi:10.1021/acsnano.7b09003

    19. [19]

      (19) Huang, Y.; Liu, J.; Wang, J.; Hu, M.; Mo, F.; Liang, G.; Zhi, C. Angew. Chem. Int. Ed. 2018, 57, 9810. doi:10.1002/anie.201805618

    20. [20]

      (20) Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2015, 44, 7484. doi:10.1039/c5cs00303b

    21. [21]

      (21) Fan, X.; Liu, J.; Song, Z.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. Nano Energy 2019, 56, 454. doi:10.1016/j.nanoen.2018.11.057

    22. [22]

      (22) Song, Z.; Ding, J.; Liu, B.; Liu, X.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Adv. Mater. 2020, 32, 1908127. doi:10.1002/adma.201908127

    23. [23]

      (23) Li, H.; Lv, T.; Li, N.; Yao, Y.; Liu, K.; Chen, T. Nanoscale 2017, 9, 18474. doi:10.1039/C7NR07424G

    24. [24]

      (24) Tan, M. J.; Li, B.; Chee, P.; Ge, X.; Liu, Z.; Zong, Y.; Loh, X. J. J. Power Sources 2018, 400, 566. doi:10.1016/j.jpowsour.2018.08.066

    25. [25]

    26. [26]

      (26) Zhao, Q.; Qiao, K.; Yao, Y. J.; Chen, Z.; Chen, D. C.; Gao, Y. F. J. Inorg. Mater. 2021, 36, 161. doi:10.15541/jim20200376

    27. [27]

      (27) Qin, Y.; Li, H.; Han, C.; Mo, F.; Wang, X. Adv. Mater. 2022, 34, 2207118. doi:10.1002/adma.202207118

    28. [28]

      (28) Yang, Y.; Liang, S.; Lu, B.; Zhou, J. Energy Environ. Sci. 2022, 15, 1192. doi:10.1039/D1EE03268B

    29. [29]

      (29) Zhang, Q.; Ma, Y.; Lu, Y.; Li, L.; Wan, F.; Zhang, K.; Chen, J. Nat. Commun. 2020, 11, 4463. doi:10.1038/s41467-020-18284-0

    30. [30]

      (30) Du, H.; Wang, K.; Sun, T.; Shi, J.; Zhou, X.; Cai, W.; Tao, Z. Chem. Eng. J. 2022, 427, 131705. doi:10.1016/j.cej.2021.131705

    31. [31]

      (31) Huang, S.; He, S.; Li, Y.; Wang, S.; Hou, X. Chem. Eng. J. 2023, 464, 142607. doi:10.1016/j.cej.2023.142607

    32. [32]

      (32) Zhang, Y.; Wu, D.; Huang, F.; Cai, Y.; Li, Y.; Ke, H.; Lv, P.; Wei, Q. Adv. Funct. Mater. 2022, 32, 2203204. doi:10.1002/adfm.202203204

    33. [33]

      (33) Huang, Y.; Zhong, M.; Shi, F.; Liu, X.; Tang, Z.; Wang, Y.; Huang, Y.; Hou, H.; Xie, X.; Zhi, C. Angew. Chem. Int. Ed. 2017, 56, 9141. doi:10.1002/anie.201705212

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

Metrics
  • PDF Downloads(7)
  • Abstract views(452)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return