Citation:
Ke Qiu, Fengmei Wang, Mochou Liao, Kerun Zhu, Jiawei Chen, Wei Zhang, Yongyao Xia, Xiaoli Dong, Fei Wang. A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries[J]. Acta Physico-Chimica Sinica,
;2024, 40(3): 230403.
doi:
10.3866/PKU.WHXB202304036
-
Near-neutral zinc-air batteries show great promise for long-cycle applications in ambient air owing to their impressive deposition/stripping compatibility with zinc anodes and greater chemical stability towards CO2 in ambient air compared to batteries with traditional alkaline electrolytes. However, the inherent water volatilization of liquid electrolytes and the flexibility of electrolytes required for wearable devices severely limit the practical application of this system. In this study, a fumed SiO2-based composite hydrogel polymer electrolyte (SiO2-HPE) was prepared for application in near-neutral zinc-air batteries. The design of the SiO2-HPE was carried out considering the following three aspects. Firstly, it is widely acknowledged that the polyacrylamide polymer skeleton is beneficial to excellent ionic conductivity and the mechanical strength of the SiO2-HPE. Secondly, fumed SiO2 bearing multiple silicon hydroxyl groups is a suitable option as a water-retaining additive. Thirdly, the near-neutral liquid electrolyte (1 mol·kg-1 Zn(OTf)2) absorbed in the SiO2-HPE is stable towards CO2 in ambient air. In conclusion, these three aspects of the electrolyte design contribute to the practical application of the SiO2-HPE. Raman spectroscopy and scanning electron microscopy revealed that the synthesized SiO2-HPE exhibited a high degree of polymerization, plentiful surface pores, and a uniform distribution of elements. According to the infrared and Raman spectra, the abundant hydroxyl groups located on the surface of the SiO2 particles enhanced water molecule binding by altering the hydrogen bond network within the SiO2-HPE. This conclusion was further confirmed by thermogravimetry and differential scanning calorimetry. After exposure to ambient air (30% relative humidity) for 96 h, the SiO2-HPE exhibited a water retention capacity of 49.52%, which is 6.23% and 1.73% higher than those for 1 mol·kg-1 Zn(OTf)2 and the HPE (hydrogel polymer electrolyte without SiO2). Moreover, owing to the dynamic recombination of the hydrogen bonds between the silicon hydroxyl groups and the gel skeleton, SiO2-HPE exhibited a higher mechanical strength and modulus than HPE under tensile and compressive conditions, respectively. This further rendered it an ideal electrolyte for flexible zinc-air batteries. The near-neutral zinc-air battery assembled with the SiO2-HPE exhibited a cycle life of up to 200 h under 30% relative humidity, far exceeding those of 1 mol·kg-1 Zn(OTf)2 and the HPE. Based on such remarkable performance, the flexible near-neutral zinc-air battery device assembled by the SiO2-HPE has shown a satisfactory performance under special conditions, such as bending and cutting, and can be used as a power supply for different electronic devices, making it a promising next-generation electrochemical energy storage device. Overall, this work provides new insight into the development of flexible zinc-air battery devices with long-term stability in ambient air.
-
-
-
[1]
(1) Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Adv. Mater. 2017, 29, 1604685. doi:10.1002/adma.201604685
-
[2]
(2) Liu, J. N.; Zhao, C. X.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Energy Environ. Sci. 2022, 15, 4542. doi:10.1039/d2ee02440c
-
[3]
-
[4]
-
[5]
(5) Liu, X.; Fan, X.; Liu, B.; Ding, J.; Deng, Y.; Han, X.; Zhong, C.; Hu, W. Adv. Mater. 2021, 33, 2006461. doi:10.1002/adma.202006461
-
[6]
(6) Wu, W. F.; Yan, X.; Zhan, Y. Chem. Eng. J. 2023, 451, 138608. doi:10.1016/j.cej.2022.138608
-
[7]
(7) Liu, Q.; Liu, R.; He, C.; Xia, C.; Guo, W.; Xu, Z. L.; Xia, B. Y. eScience 2022, 2, 453. doi:10.1016/j.esci.2022.08.004
-
[8]
(8) Cheng, H. H.; Tan, C. S. J. Power Sources 2006, 162, 1431. doi:10.1016/j.jpowsour.2006.07.046
-
[9]
(9) Li, Y.; Gong, M.; Liang, Y.; Feng, J.; Kim, J. E.; Wang, H.; Hong, G.; Zhang, B.; Dai, H. Nat. Commun. 2013, 4, 1805. doi:10.1038/ncomms2812
-
[10]
(10) Sun, W.; Wang, F.; Zhang, B.; Zhang, M.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C.; et al. Science 2021, 371, 46. doi:10.1126/science.abb9554
-
[11]
(11) Wang, C.; Li, J.; Zhou, Z.; Pan, Y.; Yu, Z.; Pei, Z.; Zhao, S.; Wei, L.; Chen, Y. EnergyChem 2021, 3, 100055. doi:10.1016/j.enchem.2021.100055
-
[12]
(12) Li, Y.; Fu, J.; Zhong, C.; Wu, T.; Chen, Z.; Hu, W.; Amine, K.; Lu, J. Adv. Energy Mater. 2019, 9, 1802605. doi:10.1002/aenm.201802605
-
[13]
(13) Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Energy Environ. Sci. 2017, 10, 2056. doi:10.1039/c7ee01913k
-
[14]
-
[15]
-
[16]
-
[17]
(17) Li, M.; Liu, B.; Fan, X.; Liu, X.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. ACS Appl. Energy Mater. 2019, 11, 28909. doi:10.1021/acsami.9b09086
-
[18]
(18) Li, H.; Liu, Z.; Liang, G.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Tang, Z.; Wang, Y.; et al. ACS Nano 2018, 12, 3140. doi:10.1021/acsnano.7b09003
-
[19]
(19) Huang, Y.; Liu, J.; Wang, J.; Hu, M.; Mo, F.; Liang, G.; Zhi, C. Angew. Chem. Int. Ed. 2018, 57, 9810. doi:10.1002/anie.201805618
-
[20]
(20) Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2015, 44, 7484. doi:10.1039/c5cs00303b
-
[21]
(21) Fan, X.; Liu, J.; Song, Z.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. Nano Energy 2019, 56, 454. doi:10.1016/j.nanoen.2018.11.057
-
[22]
(22) Song, Z.; Ding, J.; Liu, B.; Liu, X.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Adv. Mater. 2020, 32, 1908127. doi:10.1002/adma.201908127
-
[23]
(23) Li, H.; Lv, T.; Li, N.; Yao, Y.; Liu, K.; Chen, T. Nanoscale 2017, 9, 18474. doi:10.1039/C7NR07424G
-
[24]
(24) Tan, M. J.; Li, B.; Chee, P.; Ge, X.; Liu, Z.; Zong, Y.; Loh, X. J. J. Power Sources 2018, 400, 566. doi:10.1016/j.jpowsour.2018.08.066
-
[25]
-
[26]
(26) Zhao, Q.; Qiao, K.; Yao, Y. J.; Chen, Z.; Chen, D. C.; Gao, Y. F. J. Inorg. Mater. 2021, 36, 161. doi:10.15541/jim20200376
-
[27]
(27) Qin, Y.; Li, H.; Han, C.; Mo, F.; Wang, X. Adv. Mater. 2022, 34, 2207118. doi:10.1002/adma.202207118
-
[28]
(28) Yang, Y.; Liang, S.; Lu, B.; Zhou, J. Energy Environ. Sci. 2022, 15, 1192. doi:10.1039/D1EE03268B
-
[29]
(29) Zhang, Q.; Ma, Y.; Lu, Y.; Li, L.; Wan, F.; Zhang, K.; Chen, J. Nat. Commun. 2020, 11, 4463. doi:10.1038/s41467-020-18284-0
-
[30]
(30) Du, H.; Wang, K.; Sun, T.; Shi, J.; Zhou, X.; Cai, W.; Tao, Z. Chem. Eng. J. 2022, 427, 131705. doi:10.1016/j.cej.2021.131705
-
[31]
(31) Huang, S.; He, S.; Li, Y.; Wang, S.; Hou, X. Chem. Eng. J. 2023, 464, 142607. doi:10.1016/j.cej.2023.142607
-
[32]
(32) Zhang, Y.; Wu, D.; Huang, F.; Cai, Y.; Li, Y.; Ke, H.; Lv, P.; Wei, Q. Adv. Funct. Mater. 2022, 32, 2203204. doi:10.1002/adfm.202203204
-
[33]
(33) Huang, Y.; Zhong, M.; Shi, F.; Liu, X.; Tang, Z.; Wang, Y.; Huang, Y.; Hou, H.; Xie, X.; Zhi, C. Angew. Chem. Int. Ed. 2017, 56, 9141. doi:10.1002/anie.201705212
-
[1]
-
-
-
[1]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[2]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[3]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[4]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[5]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[6]
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
-
[7]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[8]
Haoxiang Zhang , Zhihan Zhao , Yongchen Jin , Zhiqiang Niu , Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084
-
[9]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[10]
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
-
[11]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[12]
Ziliang KANG , Jiamin ZHANG , Hong AN , Xiaohua LIU , Yang CHEN , Jinping LI , Libo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282
-
[13]
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
-
[14]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[15]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[16]
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
-
[17]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[18]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[19]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[20]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[1]
Metrics
- PDF Downloads(12)
- Abstract views(703)
- HTML views(91)