Citation: Huasen Lu,  Shixu Song,  Qisen Jia,  Guangbo Liu,  Luhua Jiang. Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230403. doi: 10.3866/PKU.WHXB202304035 shu

Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting

  • Corresponding author: Luhua Jiang, luhuajiang@qust.edu.cn
  • Received Date: 20 April 2023
    Revised Date: 21 May 2023
    Accepted Date: 23 May 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22179067, 22279069) and the Natural Science Foundation of Shandong Province (ZR2022ZD10).

  • Owing to the growing consumption of non-renewable resources and increased environmental pollution, significant attention has been directed toward developing renewable and environmentally friendly energy sources. Hydrogen has emerged as a clean energy carrier and is considered an ideal chemical for power generation via fuel cells. Using renewable energy to power hydrogen production is an attractive prospect, and hydrogen production through photoelectrochemical water splitting is considered a promising area of interest; consequently, significant research is being conducted on rationally designed photoelectrodes. Generally, a photocathode for hydrogen evolution must have a conduction band that is more negative than the reduction potential of hydrogen. Numerous photocathode materials have been developed based on this premise; these include p-Si, InP, and GaN. Compared with other photocathode materials, Cu-based compounds are advantageous owing to their low preparation costs and diverse chemical states. For example, Cu2O is a non-toxic p-type metal oxide semiconductor material with an appropriate band structure for water splitting and a direct band gap of 1.9–2.2 eV. Furthermore, the production of Cu2O is facile, and the required materials are abundant; thus, it has attracted significant interest as a material for photocathodes. However, Cu2O suffers from rapid recombination of photogenerated carriers and severe photo-corrosion, leading to unsatisfactory efficiency and poor stability. Intrinsically, the poor photo-stability of Cu2O can be attributed to the location of the redox potential of Cu2O within its bandgap, owing to which photoelectrons tend to preferentially reduce Cu2O to Cu rather than reduce water to reduction. Therefore, Cu2O itself is not an ideal hydrogen evolution catalyst. Thus, co-catalysts are necessary to improve its hydrogen evolution activity and photostability. In addition to co-catalysts, combining Cu2O with tailored n-type semiconductors to generate built-in electric fields of p–n junctions has attracted extensive attention owing to its ability of increasing the separation of photogenerated carriers. Similarly, applying a hole transfer layer on the substrate can promote photocarrier separation. Furthermore, considering that water is indispensable for Cu2O reduction, one effective approach to improve the stability of Cu2O is the addition of a protective/passivation layer to isolate Cu2O from water in aqueous electrolytes. In this review, we provide a brief overview of the mechanism of photoelectrochemical water splitting and the band structure of Cu2O; preparation methods of Cu2O photocathodes; strategies to improve the efficiency and stability of Cu2O photocathodes, including the construction of p–n junctions, integration with co-catalysts, and modifications using hole transport layers; advanced photoelectrochemical characterization techniques; and a discussion regarding the direction of future photocathode research.
  • 加载中
    1. [1]

      (1) Grossmann, W. D.; Grossmann, I.; Steininger, K. W. Renew. Sust. Energ. Rev. 2014, 32, 983. doi: 10.1016/j.rser.2014.01.003

    2. [2]

      (2) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0

    3. [3]

      (3) Khaselev, O.; Turner, J. A. Science 1998, 280 (5362), 425. doi: 10.1126/science.280.5362.425

    4. [4]

      (4) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11 (7), 3026. doi: 10.1021/nl201766h

    5. [5]

      (5) Hisatomi, T.; Domen, K. Faraday Discuss. 2017, 198 (0), 11. doi: 10.1039/C6FD00221H

    6. [6]

      (6) Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; et al. Energy Environ. Sci. 2013, 6 (7), 1983. doi: 10.1039/C3EE40831K

    7. [7]

      (7) Huang, Q.; Ye, Z.; Xiao, X. J. Mater. Chem. A 2015, 3 (31), 15824. doi: 10.1039/C5TA03594E

    8. [8]

      (8) Bagal, I. V.; Chodankar, N. R.; Hassan, M. A.; Waseem, A.; Johar, M. A.; Kim, D.-H.; Ryu, S.-W. Int. J. Hydrog. Energy 2019, 44 (39), 21351. doi: 10.1016/j.ijhydene.2019.06.184

    9. [9]

      (9) de Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. J. Electrochem. Soc. 2000, 147 (2), 486. doi: 10.1149/1.1393221

    10. [10]

      (10) Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; et al. J. Mater. Res. 2010, 25 (1), 3. doi: 10.1557/JMR.2010.0020

    11. [11]

      (11) Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Nat. Mater. 2011, 10 (6), 456. doi: 10.1038/nmat3017

    12. [12]

      (12) Toe, C. Y.; Scott, J.; Amal, R.; Ng, Y. H. J. Photochem. Photobiol. C 2019, 40, 191. doi: 10.1016/j.jphotochemrev.2018.10.001

    13. [13]

      (13) Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32 (1), 33. doi: 10.1016/j.progsolidstchem.2004.08.001

    14. [14]

      (14) Tench, D.; Warren, L. F. J. Electrochem. Soc. 1983, 130 (4), 869. doi: 10.1149/1.2119838

    15. [15]

      (15) Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Adv. Mater. 2003, 15 (10), 822. doi: 10.1002/adma.200304840

    16. [16]

      (16) Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Phys. Rev. B 2007, 75 (12), 125420. doi: 10.1103/PhysRevB.75.125420

    17. [17]

      (17) Aveline, A.; Bonilla, I. R. Sol. Energy Mater. 1981, 5 (2), 211. doi: 10.1016/0165-1633(81)90033-2

    18. [18]

      (18) Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. J. Vac. Sci. Technol. A 1990, 8 (3), 1403. doi: 10.1116/1.576890

    19. [19]

      (19) Qin, C.; Chen, X.; Liang, R.; Jiang, N.; Zheng, Z.; Ye, Z.; Zhu, L. ACS Appl. Energy Mater. 2022, 5 (11), 14410. doi: 10.1021/acsaem.2c02974

    20. [20]

      (20) Eisermann, S.; Kronenberger, A.; Laufer, A.; Bieber, J.; Haas, G.; Lautenschläger, S.; Homm, G.; Klar, P. J.; Meyer, B. K. Phys. Status Solidi A-Appl. Mat. 2012, 209 (3), 531. doi: 10.1002/pssa.201127493

    21. [21]

      (21) Jeong, S.; Aydil, E. S. J. Vac. Sci. Technol. A 2010, 28 (6), 1338. doi: 10.1116/1.3491036

    22. [22]

      (22) Das, C.; Ananthoju, B.; Dhara, A. K.; Aslam, M.; Sarkar, S. K.; Balasubramaniam, K. R. Adv. Mater. Interfaces 2017, 4 (17), 1700271. doi: 10.1002/admi.201700271

    23. [23]

      (23) Liu, H.; Nguyen, V. H.; Roussel, H.; Gélard, I.; Rapenne, L.; Deschanvres, J.-L.; Jiménez, C.; Muñoz-Rojas, D. Adv. Mater. Interfaces 2019, 6 (3), 1801364. doi: 10.1002/admi.201801364

    24. [24]

      (24) Güneri, E.; Aker, D.; Henry, J.; Billur, C. A.; Saatçi, B. Phase Transitions 2022, 95 (10), 679. doi: 10.1080/01411594.2022.2104161

    25. [25]

      (25) Aref, A. A.; Xiong, L.; Yan, N.; Abdulkarem, A. M.; Yu, Y. Mater. Chem. Phys. 2011, 127 (3), 433. doi: 10.1016/j.matchemphys.2011.02.029

    26. [26]

      (26) Liu, M.; Xue, D. J. Phys. Chem. C 2008, 112 (16), 6346. doi: 10.1021/jp800803s

    27. [27]

      (27) Luo, C.; Xue, D. Langmuir 2006, 22 (24), 9914. doi: 10.1021/la062193v

    28. [28]

      (28) Xiong, L.; Yu, H.; Yang, G.; Qiu, M.; Chen, J.; Yu, Y. Thin Solid Films 2010, 518 (23), 6738. doi: 10.1016/j.tsf.2010.05.117

    29. [29]

      (29) Luo, J.; Steier, L.; Son, M.-K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Nano Lett. 2016, 16 (3), 1848. doi: 10.1021/acs.nanolett.5b04929

    30. [30]

      (30) Jiang, D.; Zhang, Y.; Li, X. Chin. J. Catal. 2019, 40 (1), 105. doi: 10.1016/S1872-2067(18)63164-X

    31. [31]

      (31) Zhang, Z.; Song, R.; Cao, T.; Huang, W. J. Energy Chem. 2016, 25 (6), 1086. doi: 10.1016/j.jechem.2016.09.012

    32. [32]

      (32) Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mücklich, F.; Pierson, J. F. J. Appl. Phys. 2014, 115 (7), 073505. doi: 10.1063/1.4865957

    33. [33]

      (33) Musa, A. O.; Akomolafe, T.; Carter, M. J. Sol. Energy Mater. Sol. Cells 1998, 51 (3), 305. doi: 10.1016/S0927-0248(97)00233-X

    34. [34]

      (34) Visibile, A.; Wang, R. B.; Vertova, A.; Rondinini, S.; Minguzzi, A.; Ahlberg, E.; Busch, M. Chem. Mater. 2019, 31 (13), 4787. doi: 10.1021/acs.chemmater.9b01122

    35. [35]

      (35) Nolan, M.; Elliott, S. D. Chem. Mater. 2008, 20 (17), 5522. doi: 10.1021/cm703395k

    36. [36]

      (36) Tseng, C. C.; Hsieh, J. H.; Liu, S. J.; Wu, W. Thin Solid Films 2009, 518 (5), 1407. doi: 10.1016/j.tsf.2009.09.116

    37. [37]

      (37) Chen, D.; Liu, Z.; Guo, Z.; Yan, W.; Xin, Y. J. Mater. Chem. A 2018, 6 (41), 20393. doi: 10.1039/C8TA07503D

    38. [38]

      (38) Li, X.; Liu, B.; Chen, Y.; Fan, X.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W. Nanotechnology 2018, 29 (50), 505603. doi: 10.1088/1361-6528/aae569

    39. [39]

      (39) Shinde, P. S.; Fontenot, P. R.; Donahue, J. P.; Waters, J. L.; Kung, P.; McNamara, L. E.; Hammer, N. I.; Gupta, A.; Pan, S. J. Mater. Chem. A 2018, 6 (20), 9569. doi: 10.1039/C8TA01771A

    40. [40]

      (40) Würfel, U.; Cuevas, A.; Würfel, P. IEEE J. Photovoltaics 2015, 5 (1), 461. doi: 10.1109/JPHOTOV.2014.2363550

    41. [41]

      (41) Yang, W.-Y.; Rhee, S.-W. Appl. Phys. Lett. 2007, 91 (23), 232907. doi: 10.1063/1.2822403

    42. [42]

      (42) Zhou, M.; Guo, Z.; Liu, Z. Appl. Catal. B 2020, 260, 118213. doi: 10.1016/j.apcatb.2019.118213

    43. [43]

      (43) Wei, Y.; Chang, X.; Wang, T.; Li, C.; Gong, J. Small 2017, 13 (39), 1702007. doi: 10.1002/smll.201702007

    44. [44]

      (44) Pan, L.; Liu, Y.; Yao, L.; Dan, R.; Sivula, K.; Grätzel, M.; Hagfeldt, A. Nat. Commun. 2020, 11 (1), 318. doi: 10.1038/s41467-019-13987-5

    45. [45]

      (45) Liu, G.; Lu, H.; Xu, Y.; Quan, Q.; Lv, H.; Cui, X.; Chen, J.; Jiang, L.; Behm, R. J. Chem. Eng. J. 2023, 455, 140875. doi:10.1016/j.cej.2022.140875

    46. [46]

      (46) Gou, L.; Murphy, C. J. Nano Lett. 2003, 3 (2), 231. doi: 10.1021/nl0258776

    47. [47]

      (47) Cao, M.; Hu, C.; Wang, Y.; Guo, Y.; Guo, C.; Wang, E. Chem. Commun. 2003, No. 15, 1884. doi: 10.1039/B304505F

    48. [48]

      (48) Kim, M. H.; Lim, B.; Lee, E. P.; Xia, Y. J. Mater. Chem. 2008, 18 (34), 4069. doi: 10.1039/B805913F

    49. [49]

      (49) Kuo, C. H.; Chen, C. H.; Huang, M. H. Adv. Funct. Mater. 2007, 17 (18), 3773. doi: 10.1002/adfm.200700356

    50. [50]

      (50) Lin, C.-Y.; Lai, Y.-H.; Mersch, D.; Reisner, E. Chem. Sci. 2012, 3 (12), 3482. doi: 10.1039/C2SC20874A

    51. [51]

      (51) Zhang, Z.; Dua, R.; Zhang, L.; Zhu, H.; Zhang, H.; Wang, P. ACS Nano 2013, 7 (2), 1709. doi: 10.1021/nn3057092

    52. [52]

      (52) Lai, T.-H.; Tsao, C.-W.; Fang, M.-J.; Wu, J.-Y.; Chang, Y.-P.; Chiu, Y.-H.; Hsieh, P.-Y.; Kuo, M.-Y.; Chang, K.-D.; Hsu, Y.-J. ACS Appl. Mater. Interfaces 2022, 14 (36), 40771. doi: 10.1021/acsami.2c07145

    53. [53]

      (53) Pande, K. P.; Hsu, Y. S.; Borrego, J. M.; Ghandhi, S. K. Appl. Phys. Lett. 1978, 33 (8), 717. doi: 10.1063/1.90513

    54. [54]

      (54) George, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem. 1996, 100 (31), 13121. doi: 10.1021/jp9536763

    55. [55]

      (55) Li, Y.; Zhong, X.; Luo, K.; Shao, Z. J. Mater. Chem. A 2019, 7 (26), 15593. doi: 10.1039/C9TA04822G

    56. [56]

      (56) Li, J.; Li, W.; Deng, G.; Qin, Y.; Wang, H.; Wang, Y.; Xue, S. Ionics 2023, 29 (2), 685. doi: 10.1007/s11581-022-04827-6

    57. [57]

      (57) Yilmaz, M.; Handoko, A. D.; Parkin, I. P.; Sankar, G. J. Catal. 2020, 389, 483. doi: 10.1016/j.jcat.2020.06.021

    58. [58]

      (58) Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.; Liu, Y.; Zhao, Y.; Pang, S.; An, H.; et al. Nature 2022, 610 (7931), 296. doi: 10.1038/s41586-022-05183-1

    59. [59]

      (59) Borgwardt, M.; Omelchenko, S. T.; Favaro, M.; Plate, P.; Höhn, C.; Abou-Ras, D.; Schwarzburg, K.; van de Krol, R.; Atwater, H. A.; Lewis, N. S.; et al. Nat. Commun. 2019, 10 (1), 2106. doi: 10.1038/s41467-019-10143-x

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    9. [9]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(100)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return