Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting
- Corresponding author: Luhua Jiang, luhuajiang@qust.edu.cn
Citation: Huasen Lu, Shixu Song, Qisen Jia, Guangbo Liu, Luhua Jiang. Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230403. doi: 10.3866/PKU.WHXB202304035
(1) Grossmann, W. D.; Grossmann, I.; Steininger, K. W. Renew. Sust. Energ. Rev. 2014, 32, 983. doi: 10.1016/j.rser.2014.01.003
(2) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0
(3) Khaselev, O.; Turner, J. A. Science 1998, 280 (5362), 425. doi: 10.1126/science.280.5362.425
(4) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11 (7), 3026. doi: 10.1021/nl201766h
(5) Hisatomi, T.; Domen, K. Faraday Discuss. 2017, 198 (0), 11. doi: 10.1039/C6FD00221H
(6) Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; et al. Energy Environ. Sci. 2013, 6 (7), 1983. doi: 10.1039/C3EE40831K
(7) Huang, Q.; Ye, Z.; Xiao, X. J. Mater. Chem. A 2015, 3 (31), 15824. doi: 10.1039/C5TA03594E
(8) Bagal, I. V.; Chodankar, N. R.; Hassan, M. A.; Waseem, A.; Johar, M. A.; Kim, D.-H.; Ryu, S.-W. Int. J. Hydrog. Energy 2019, 44 (39), 21351. doi: 10.1016/j.ijhydene.2019.06.184
(9) de Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. J. Electrochem. Soc. 2000, 147 (2), 486. doi: 10.1149/1.1393221
(10) Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; et al. J. Mater. Res. 2010, 25 (1), 3. doi: 10.1557/JMR.2010.0020
(11) Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Nat. Mater. 2011, 10 (6), 456. doi: 10.1038/nmat3017
(12) Toe, C. Y.; Scott, J.; Amal, R.; Ng, Y. H. J. Photochem. Photobiol. C 2019, 40, 191. doi: 10.1016/j.jphotochemrev.2018.10.001
(13) Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32 (1), 33. doi: 10.1016/j.progsolidstchem.2004.08.001
(14) Tench, D.; Warren, L. F. J. Electrochem. Soc. 1983, 130 (4), 869. doi: 10.1149/1.2119838
(15) Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Adv. Mater. 2003, 15 (10), 822. doi: 10.1002/adma.200304840
(16) Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Phys. Rev. B 2007, 75 (12), 125420. doi: 10.1103/PhysRevB.75.125420
(17) Aveline, A.; Bonilla, I. R. Sol. Energy Mater. 1981, 5 (2), 211. doi: 10.1016/0165-1633(81)90033-2
(18) Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. J. Vac. Sci. Technol. A 1990, 8 (3), 1403. doi: 10.1116/1.576890
(19) Qin, C.; Chen, X.; Liang, R.; Jiang, N.; Zheng, Z.; Ye, Z.; Zhu, L. ACS Appl. Energy Mater. 2022, 5 (11), 14410. doi: 10.1021/acsaem.2c02974
(20) Eisermann, S.; Kronenberger, A.; Laufer, A.; Bieber, J.; Haas, G.; Lautenschläger, S.; Homm, G.; Klar, P. J.; Meyer, B. K. Phys. Status Solidi A-Appl. Mat. 2012, 209 (3), 531. doi: 10.1002/pssa.201127493
(21) Jeong, S.; Aydil, E. S. J. Vac. Sci. Technol. A 2010, 28 (6), 1338. doi: 10.1116/1.3491036
(22) Das, C.; Ananthoju, B.; Dhara, A. K.; Aslam, M.; Sarkar, S. K.; Balasubramaniam, K. R. Adv. Mater. Interfaces 2017, 4 (17), 1700271. doi: 10.1002/admi.201700271
(23) Liu, H.; Nguyen, V. H.; Roussel, H.; Gélard, I.; Rapenne, L.; Deschanvres, J.-L.; Jiménez, C.; Muñoz-Rojas, D. Adv. Mater. Interfaces 2019, 6 (3), 1801364. doi: 10.1002/admi.201801364
(24) Güneri, E.; Aker, D.; Henry, J.; Billur, C. A.; Saatçi, B. Phase Transitions 2022, 95 (10), 679. doi: 10.1080/01411594.2022.2104161
(25) Aref, A. A.; Xiong, L.; Yan, N.; Abdulkarem, A. M.; Yu, Y. Mater. Chem. Phys. 2011, 127 (3), 433. doi: 10.1016/j.matchemphys.2011.02.029
(26) Liu, M.; Xue, D. J. Phys. Chem. C 2008, 112 (16), 6346. doi: 10.1021/jp800803s
(27) Luo, C.; Xue, D. Langmuir 2006, 22 (24), 9914. doi: 10.1021/la062193v
(28) Xiong, L.; Yu, H.; Yang, G.; Qiu, M.; Chen, J.; Yu, Y. Thin Solid Films 2010, 518 (23), 6738. doi: 10.1016/j.tsf.2010.05.117
(29) Luo, J.; Steier, L.; Son, M.-K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Nano Lett. 2016, 16 (3), 1848. doi: 10.1021/acs.nanolett.5b04929
(30) Jiang, D.; Zhang, Y.; Li, X. Chin. J. Catal. 2019, 40 (1), 105. doi: 10.1016/S1872-2067(18)63164-X
(31) Zhang, Z.; Song, R.; Cao, T.; Huang, W. J. Energy Chem. 2016, 25 (6), 1086. doi: 10.1016/j.jechem.2016.09.012
(32) Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mücklich, F.; Pierson, J. F. J. Appl. Phys. 2014, 115 (7), 073505. doi: 10.1063/1.4865957
(33) Musa, A. O.; Akomolafe, T.; Carter, M. J. Sol. Energy Mater. Sol. Cells 1998, 51 (3), 305. doi: 10.1016/S0927-0248(97)00233-X
(34) Visibile, A.; Wang, R. B.; Vertova, A.; Rondinini, S.; Minguzzi, A.; Ahlberg, E.; Busch, M. Chem. Mater. 2019, 31 (13), 4787. doi: 10.1021/acs.chemmater.9b01122
(35) Nolan, M.; Elliott, S. D. Chem. Mater. 2008, 20 (17), 5522. doi: 10.1021/cm703395k
(36) Tseng, C. C.; Hsieh, J. H.; Liu, S. J.; Wu, W. Thin Solid Films 2009, 518 (5), 1407. doi: 10.1016/j.tsf.2009.09.116
(37) Chen, D.; Liu, Z.; Guo, Z.; Yan, W.; Xin, Y. J. Mater. Chem. A 2018, 6 (41), 20393. doi: 10.1039/C8TA07503D
(38) Li, X.; Liu, B.; Chen, Y.; Fan, X.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W. Nanotechnology 2018, 29 (50), 505603. doi: 10.1088/1361-6528/aae569
(39) Shinde, P. S.; Fontenot, P. R.; Donahue, J. P.; Waters, J. L.; Kung, P.; McNamara, L. E.; Hammer, N. I.; Gupta, A.; Pan, S. J. Mater. Chem. A 2018, 6 (20), 9569. doi: 10.1039/C8TA01771A
(40) Würfel, U.; Cuevas, A.; Würfel, P. IEEE J. Photovoltaics 2015, 5 (1), 461. doi: 10.1109/JPHOTOV.2014.2363550
(41) Yang, W.-Y.; Rhee, S.-W. Appl. Phys. Lett. 2007, 91 (23), 232907. doi: 10.1063/1.2822403
(42) Zhou, M.; Guo, Z.; Liu, Z. Appl. Catal. B 2020, 260, 118213. doi: 10.1016/j.apcatb.2019.118213
(43) Wei, Y.; Chang, X.; Wang, T.; Li, C.; Gong, J. Small 2017, 13 (39), 1702007. doi: 10.1002/smll.201702007
(44) Pan, L.; Liu, Y.; Yao, L.; Dan, R.; Sivula, K.; Grätzel, M.; Hagfeldt, A. Nat. Commun. 2020, 11 (1), 318. doi: 10.1038/s41467-019-13987-5
(45) Liu, G.; Lu, H.; Xu, Y.; Quan, Q.; Lv, H.; Cui, X.; Chen, J.; Jiang, L.; Behm, R. J. Chem. Eng. J. 2023, 455, 140875. doi:10.1016/j.cej.2022.140875
(46) Gou, L.; Murphy, C. J. Nano Lett. 2003, 3 (2), 231. doi: 10.1021/nl0258776
(47) Cao, M.; Hu, C.; Wang, Y.; Guo, Y.; Guo, C.; Wang, E. Chem. Commun. 2003, No. 15, 1884. doi: 10.1039/B304505F
(48) Kim, M. H.; Lim, B.; Lee, E. P.; Xia, Y. J. Mater. Chem. 2008, 18 (34), 4069. doi: 10.1039/B805913F
(49) Kuo, C. H.; Chen, C. H.; Huang, M. H. Adv. Funct. Mater. 2007, 17 (18), 3773. doi: 10.1002/adfm.200700356
(50) Lin, C.-Y.; Lai, Y.-H.; Mersch, D.; Reisner, E. Chem. Sci. 2012, 3 (12), 3482. doi: 10.1039/C2SC20874A
(51) Zhang, Z.; Dua, R.; Zhang, L.; Zhu, H.; Zhang, H.; Wang, P. ACS Nano 2013, 7 (2), 1709. doi: 10.1021/nn3057092
(52) Lai, T.-H.; Tsao, C.-W.; Fang, M.-J.; Wu, J.-Y.; Chang, Y.-P.; Chiu, Y.-H.; Hsieh, P.-Y.; Kuo, M.-Y.; Chang, K.-D.; Hsu, Y.-J. ACS Appl. Mater. Interfaces 2022, 14 (36), 40771. doi: 10.1021/acsami.2c07145
(53) Pande, K. P.; Hsu, Y. S.; Borrego, J. M.; Ghandhi, S. K. Appl. Phys. Lett. 1978, 33 (8), 717. doi: 10.1063/1.90513
(54) George, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem. 1996, 100 (31), 13121. doi: 10.1021/jp9536763
(55) Li, Y.; Zhong, X.; Luo, K.; Shao, Z. J. Mater. Chem. A 2019, 7 (26), 15593. doi: 10.1039/C9TA04822G
(56) Li, J.; Li, W.; Deng, G.; Qin, Y.; Wang, H.; Wang, Y.; Xue, S. Ionics 2023, 29 (2), 685. doi: 10.1007/s11581-022-04827-6
(57) Yilmaz, M.; Handoko, A. D.; Parkin, I. P.; Sankar, G. J. Catal. 2020, 389, 483. doi: 10.1016/j.jcat.2020.06.021
(58) Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.; Liu, Y.; Zhao, Y.; Pang, S.; An, H.; et al. Nature 2022, 610 (7931), 296. doi: 10.1038/s41586-022-05183-1
(59) Borgwardt, M.; Omelchenko, S. T.; Favaro, M.; Plate, P.; Höhn, C.; Abou-Ras, D.; Schwarzburg, K.; van de Krol, R.; Atwater, H. A.; Lewis, N. S.; et al. Nat. Commun. 2019, 10 (1), 2106. doi: 10.1038/s41467-019-10143-x
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459