Citation: Ke Zhao,  Zhen Liu,  Luyao Liu,  Changyuan Yu,  Jingshun Pan,  Xuguang Huang. Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230402. doi: 10.3866/PKU.WHXB202304029 shu

Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions

  • Corresponding author: Changyuan Yu,  Jingshun Pan,  Xuguang Huang, 
  • Received Date: 17 April 2023
    Revised Date: 22 May 2023
    Accepted Date: 23 May 2023

    Fund Project: The project was supported by the Shenzhen-HK-Macao Science and Technology Plan C (SGDX2020110309520303), the National Key Research and Development Program of China (2021YFB2900900) and the National Natural Science Foundation of China (62105379).

  • Lead ions (Pb2+) are among the most prevalent toxic heavy-metal pollutants in daily human life, particularly in children and pregnant women. Although atomic absorption spectroscopy is the most commonly used method owing to its accuracy and reliability, it requires complex sample preparation and expensive equipment. Therefore, efficient detection of Pb2+ is currently the focus of optical sensing research. In this study, we develop a reflective fiber-optic interferometric sensor to detect trace levels of lead ions. The sensor is composed of a single-mode fiber, no-core fiber (NCF), and thin-core fiber (TCF). When light from the broadband light source is transmitted to the sensor via ports 1 and 2 of the fiber optic circulator, the light diverges and propagates forward in the NCF. Owing to the fiber-core mismatch of different optical fibers, the beams can excite the core and cladding modes in the TCF. When the beams are reflected back into the NCF, the core and cladding modes can effectively interfere in the NCF due to their optical path differences. Subsequently, the light signal is recorded by an optical spectrum analyzer through port 3 of the circulator. The TCF’s cladding is partially etched and coated with a functionalized hydrogel-sensing film made of 2-hydroxyethyl methacrylate (2-HEMA) as the recognition monomer. The oxygen atoms in the 2-HEMA are specifically matched with Pb2+ to form “-O-Pb-O-” cross-linked structures. Therefore, the absorption of Pb2+ by the hydrogel can change the effective refractive index of a new cladding of the TCF, formed by the sensing film and the TCF’s original cladding, thereby the Pb2+ concentration is detected by the change of the optical signal. Owing to the trace levels of the detected Pb2+ in aqueous solutions (in the ppt range), we employ an equation system to eliminate temperature interference and ensure accurate detection results under environmental temperature fluctuations. Additionally, for the same sensing length, the concentration sensitivity of fiber-optic sensors with reflective structures is twice that of the transmission structures, and the reflective structure is convenient for real-time remote detection. The experimental results show that the optimal sensitivity of the sensor is 1.926×109 nm∙mol−1∙L, and its detection limit can reach 2.0×10−11 mol∙L−1 (4.14 ppt, 1 ng∙L−1 = 1 ppt), which is far lower than the standard (10 ppb, 1 μg∙L−1 = 1 ppb) set by the World Health Organization. Moreover, the sensor exhibits good stability, specificity, and a wide detection range. Consequently, the designed reflective fiber optic sensor can provide broad prospects for environmental and human health monitoring.
  • 加载中
    1. [1]

      (1) Jan, A. T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. M. R. Int. J. Mol. Sci. 2015, 16, 29592. doi: 10.3390/ijms161226183

    2. [2]

      (2) Lentini, P.; Zanoli, L.; Granata, A.; Santo Signorelli, S.; Castellino, P.; Dell'Aquila, R. Mol. Med. Rep. 2017, 15, 3413. doi: 10.3892/mmr.2017.6389

    3. [3]

      (3) Lee, M.; Lee, H.; Warren, J. R.; Herd, P. SSM-Popul. Health 2022, 17, 101037. doi: 10.1016/j.ssmph.2022.101037

    4. [4]

      (4) Bui, L. T. M.; Shadbegian, R.; Marquez, A.; Klemick, H.; Guignet, D. Environ. Int. 2022, 166, 107354. doi: 10.1016/j.envint.2022.107354

    5. [5]

      (5) O'Meara, T.; Gibbs, E.; Thrush, S. F. Methods Ecol. Evol. 2018, 9, 245. doi: 10.1111/2041-210x.12894

    6. [6]

      (6) Järup, L. Br. Med. Bull. 2003, 68, 167. doi: 10.1093/bmb/ldg032

    7. [7]

      (7) Zhang, L.; Ni, Z.; Cui, L.; Li, J.; He, J.; Jiang, Z.; Huang, X. Mar. Pollut. Bull. 2021, 173, 113153. doi: 10.1016/j.marpolbul.2021.113153

    8. [8]

      (8) Chaikhan, P.; Udnan, Y.; Ampiah-Bonney, R. J.; Chaiyasith, W. C. Anal. Sci. 2021, 37, 1015. doi: 10.2116/analsci.20P383

    9. [9]

      (9) Du, X.; Liu, Y.; Wang, F.; Zhao, D.; Gleeson, H. F.; Luo, D. ACS Appl. Mater. Interfaces 2021, 13, 22361. doi: 10.1021/acsami.1c02585

    10. [10]

      (10) Wang, J.; Liu, Z.; Li, Y.; Yang, C.; Ma, X.; Li, H.; Sun, C. Anal. Bioanal. Chem. 2022, 414, 6581. doi: 10.1007/s00216-022-04218-w

    11. [11]

      (11) Ji, J.; Wu, H.; Wang, D.; Liu, D.; Chen, X.; Feng, S. Anal. Methods 2022, 14, 643. doi: 10.1039/D1AY01852C

    12. [12]

      (12) Pathak, P.; Hwang, J.-H.; Li, R. H. T.; Rodriguez, K. L.; Rex, M. M.; Lee, W. H.; Cho, H. J. Sens. Actuators B 2021, 344, 130263. doi: 10.1016/j.snb.2021.130263

    13. [13]

      (13) Liu, J.; Xu, Z.; Yang, M.; Zhang, S.; Tang, A. Electroanalysis 2022, 34, 1621. doi: 10.1002/elan.202200043

    14. [14]

      (14) Amirjani, A.; Kamani, P.; Hosseini, H. R. M.; Sadrnezhaad, S. K. Anal. Chim. Acta 2022, 1220, 340030. doi: 10.1016/j.aca.2022.340030

    15. [15]

      (15) Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Opt. Laser Technol. 2021, 140, 107082. doi: 10.1016/j.optlastec.2021.107082

    16. [16]

    17. [17]

      (17) Peng, Y.; Qin, S.; Zhang, S.; Zhao, Y. Opt. Lasers Eng. 2023, 167, 107611. doi: 10.1016/j.optlaseng.2023.107611

    18. [18]

      (18) Zhao, L.; Hao, S.; Chen, Y.; Zhao, E.; Xing, C.; Fan, J.; Tang, J. Opt. Laser Technol. 2023, 157, 108670. doi: 10.1016/j.optlastec.2022.108670

    19. [19]

      (19) Kumar, S.; Singh, R.; Kaushik, B. K.; Chen, N.-K.; Yang, Q. S.; Zhang, X. IEEE Sens. J. 2019, 19, 7399. doi: 10.1109/JSEN.2019.2916818

    20. [20]

      (20) Du, X.; Zhai, J.; Li, X.; Zhang, Y.; Li, N.; Xie, X. ACS Sens. 2021, 6, 1990. doi: 10.1021/acssensors.1c00756

    21. [21]

      (21) Chauhan, G. S.; Chauhan, S.; Sen, U.; Garg, D. Desalination 2009, 243, 95. doi: 10.1016/j.desal.2008.04.017

    22. [22]

      (22) Elgueta, E.; Rivas, B. L.; Mancisidor, A.; Nunez, D.; Dahrouch, M. Polym. Bull. 2019, 76, 6503. doi: 10.1007/s00289-019-02697-z

    23. [23]

      (23) Li, G.; Liu, Z.; Feng, J.; Zhou, G.; Huang, X. Opt. Laser Technol. 2022, 145, 107453. doi: 10.1016/j.optlastec.2021.107453

    24. [24]

      (24) Wang, S.-Y.; Tsai, M.-H.; Lo, S.-F.; Tsai, M.-J. Bioresour. Technol. 2008, 99, 7027. doi: 10.1016/j.biortech.2008.01.014

    25. [25]

      (25) Zhang, A.; Liu, Z.; Tu, Q.; Ma, Q.; Zeng, H.; Deng, Z.; Jiang, R.; Mo, Z.; Liu, J.; Xia, C.; et al. Sens. Actuators B 2022, 365, 131941. doi: 10.1016/j.snb.2022.131941

    26. [26]

      (26) Wang, G.; Sun, D.; Liang, L.; Wang, G.; Ma, J. Opt. Laser Technol. 2023, 161, 109171. doi: 10.1016/j.optlastec.2023.109171

    27. [27]

      (27) Liu, Z.; Li, G.; Zhang, A.; Zhou, G.; Huang, X. Opt. Express 2021, 29, 22992. doi: 10.1364/OE.434687

    28. [28]

      (28) Viet Nguyen, L.; Hwang, D.; Moon, S.; Seung Moon, D.; Chung, Y. Opt. Express 2008, 16, 11369. doi: 10.1364/OE.16.011369

    29. [29]

      (29) Chen, C.; Feng, W. Opt. Laser Technol. 2022, 152, 108183. doi: 10.1016/j.optlastec.2022.108183

    30. [30]

      (30) Dong, Z.; Zhang, G.; Jin, Y.; Zhou, J.; Guan, J.; Tong, Z.; Wei, Z.; Tan, C.; Wang, F.; Meng, H. Opt. Express 2022, 30, 1152. doi: 10.1364/OE.442377

    31. [31]

      (31) Liu, S.; Meng, H.; Deng, S.; Wei, Z.; Wang, F.; Tan, C. IEEE Sens. Lett. 2018, 2, 5000904. doi: 10.1109/LSENS.2018.2849750

    32. [32]

      (32) Huang, G.; Li, Y.; Chen, C.; Yue, Z.; Zhai, W.; Li, M.; Yang, B. J. Phys. D: Appl. Phys. 2020, 53, 325102. doi: 10.1088/1361-6463/ab89cc

    33. [33]

      (33) Denizli, A.; Garipcan, B.; Karabakan, A.; Senöz, H. Mater. Sci. Eng. C 2005, 25, 448. doi: 10.1016/j.msec.2004.12.001

    34. [34]

      (34) Ramos-Jacques, A. L.; Lujan-Montelongo, J. A.; Silva-Cuevas, C.; Cortez-Valadez, M.; Estevez, M.; Hernandez-Martínez, A. R. Eur. Polym. J. 2018, 101, 262. doi: 10.1016/j.eurpolymj.2018.02.032

    35. [35]

      (35) Tanan, W.; Saengsuwan, S. J. Environ. Chem. Eng. 2020, 8, 103469. doi: 10.1016/j.jece.2019.103469

    36. [36]

      (36) Liu, S.; Qin, L.; Ni, Z.; Chen, M. Anal. Methods 2017, 9, 5791. doi: 10.1039/c7ay01887h

    37. [37]

      (37) Zhang, Y.-n.; Zhang, L.; Han, B.; Gao, P.; Wu, Q.; Zhang, A. Sens. Actuators, B 2018, 272, 331. doi: 10.1016/j.snb.2018.05.168

    38. [38]

      (38) Behbahani, M.; Rabiee, G.; Bagheri, S.; Amini, M. M. Microchem. J. 2022, 183, 107951. doi: 10.1016/j.microc.2022.107951

    39. [39]

      (39) Knihnicki, P.; Skrzypek, A.; Jakubowska, M.; Porada, R.; Rokicińska, A.; Kuśtrowski, P.; Kościelniak, P.; Kochana, J. Molecules 2022, 27, 4608. doi: 10.3390/molecules27144608

    40. [40]

      (40) Pereira, D.; Bierlich, J.; Kobelke, J.; Ferreira, M. S. Optics Laser Technology 2022, 156, 108540. doi: 10.1016/j.optlastec.2022.108540

    41. [41]

      (41) Chanajaree, R.; Ratanatawanate, C.; Ruangchaithaweesuk, S.; Lee, V. S.; Wittayanarakul, K. J. Mol. Liq. 2021, 343, 117629. doi: 10.1016/j.molliq.2021.117629

    42. [42]

      (42) Sagong, H. Y.; Son, M. H.; Park, S. W.; Kim, J. S.; Li, T.; Jung, Y. K. Anal. Chim. Acta 2022, 1230, 340403. doi: 10.1016/j.aca.2022.340403

    43. [43]

      (43) Niazy, B.; Ghasemzadeh, H.; Vanashi, A. K.; Afraz, S. React. Funct. Polym. 2022, 175, 105266. doi: 10.1016/j.reactfunctpolym.2022.105266

    44. [44]

      (44) Zhu, G.; Xiao, H.; Guo, Q.; Song, B.; Zheng, G.; Zhang, Z.; Zhao, J.; Okoli, C. P. Ecotoxicol. Environ. Saf. 2018, 151, 266. doi: 10.1016/j.ecoenv.2018.01.011

    45. [45]

      (45) Megertu, D. G.; Bayissa, L. D. Environ. Sci. Pollut. Res. 2020, 27, 17175. doi: 10.1007/s11356-020-08297-z

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    3. [3]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(1)
  • Abstract views(378)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return