Citation:
Ke Zhao, Zhen Liu, Luyao Liu, Changyuan Yu, Jingshun Pan, Xuguang Huang. Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions[J]. Acta Physico-Chimica Sinica,
;2024, 40(4): 230402.
doi:
10.3866/PKU.WHXB202304029
-
Lead ions (Pb2+) are among the most prevalent toxic heavy-metal pollutants in daily human life, particularly in children and pregnant women. Although atomic absorption spectroscopy is the most commonly used method owing to its accuracy and reliability, it requires complex sample preparation and expensive equipment. Therefore, efficient detection of Pb2+ is currently the focus of optical sensing research. In this study, we develop a reflective fiber-optic interferometric sensor to detect trace levels of lead ions. The sensor is composed of a single-mode fiber, no-core fiber (NCF), and thin-core fiber (TCF). When light from the broadband light source is transmitted to the sensor via ports 1 and 2 of the fiber optic circulator, the light diverges and propagates forward in the NCF. Owing to the fiber-core mismatch of different optical fibers, the beams can excite the core and cladding modes in the TCF. When the beams are reflected back into the NCF, the core and cladding modes can effectively interfere in the NCF due to their optical path differences. Subsequently, the light signal is recorded by an optical spectrum analyzer through port 3 of the circulator. The TCF’s cladding is partially etched and coated with a functionalized hydrogel-sensing film made of 2-hydroxyethyl methacrylate (2-HEMA) as the recognition monomer. The oxygen atoms in the 2-HEMA are specifically matched with Pb2+ to form “-O-Pb-O-” cross-linked structures. Therefore, the absorption of Pb2+ by the hydrogel can change the effective refractive index of a new cladding of the TCF, formed by the sensing film and the TCF’s original cladding, thereby the Pb2+ concentration is detected by the change of the optical signal. Owing to the trace levels of the detected Pb2+ in aqueous solutions (in the ppt range), we employ an equation system to eliminate temperature interference and ensure accurate detection results under environmental temperature fluctuations. Additionally, for the same sensing length, the concentration sensitivity of fiber-optic sensors with reflective structures is twice that of the transmission structures, and the reflective structure is convenient for real-time remote detection. The experimental results show that the optimal sensitivity of the sensor is 1.926×109 nm∙mol−1∙L, and its detection limit can reach 2.0×10−11 mol∙L−1 (4.14 ppt, 1 ng∙L−1 = 1 ppt), which is far lower than the standard (10 ppb, 1 μg∙L−1 = 1 ppb) set by the World Health Organization. Moreover, the sensor exhibits good stability, specificity, and a wide detection range. Consequently, the designed reflective fiber optic sensor can provide broad prospects for environmental and human health monitoring.
-
-
-
[1]
(1) Jan, A. T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. M. R. Int. J. Mol. Sci. 2015, 16, 29592. doi: 10.3390/ijms161226183
-
[2]
(2) Lentini, P.; Zanoli, L.; Granata, A.; Santo Signorelli, S.; Castellino, P.; Dell'Aquila, R. Mol. Med. Rep. 2017, 15, 3413. doi: 10.3892/mmr.2017.6389
-
[3]
(3) Lee, M.; Lee, H.; Warren, J. R.; Herd, P. SSM-Popul. Health 2022, 17, 101037. doi: 10.1016/j.ssmph.2022.101037
-
[4]
(4) Bui, L. T. M.; Shadbegian, R.; Marquez, A.; Klemick, H.; Guignet, D. Environ. Int. 2022, 166, 107354. doi: 10.1016/j.envint.2022.107354
-
[5]
(5) O'Meara, T.; Gibbs, E.; Thrush, S. F. Methods Ecol. Evol. 2018, 9, 245. doi: 10.1111/2041-210x.12894
-
[6]
(6) Järup, L. Br. Med. Bull. 2003, 68, 167. doi: 10.1093/bmb/ldg032
-
[7]
(7) Zhang, L.; Ni, Z.; Cui, L.; Li, J.; He, J.; Jiang, Z.; Huang, X. Mar. Pollut. Bull. 2021, 173, 113153. doi: 10.1016/j.marpolbul.2021.113153
-
[8]
(8) Chaikhan, P.; Udnan, Y.; Ampiah-Bonney, R. J.; Chaiyasith, W. C. Anal. Sci. 2021, 37, 1015. doi: 10.2116/analsci.20P383
-
[9]
(9) Du, X.; Liu, Y.; Wang, F.; Zhao, D.; Gleeson, H. F.; Luo, D. ACS Appl. Mater. Interfaces 2021, 13, 22361. doi: 10.1021/acsami.1c02585
-
[10]
(10) Wang, J.; Liu, Z.; Li, Y.; Yang, C.; Ma, X.; Li, H.; Sun, C. Anal. Bioanal. Chem. 2022, 414, 6581. doi: 10.1007/s00216-022-04218-w
-
[11]
(11) Ji, J.; Wu, H.; Wang, D.; Liu, D.; Chen, X.; Feng, S. Anal. Methods 2022, 14, 643. doi: 10.1039/D1AY01852C
-
[12]
(12) Pathak, P.; Hwang, J.-H.; Li, R. H. T.; Rodriguez, K. L.; Rex, M. M.; Lee, W. H.; Cho, H. J. Sens. Actuators B 2021, 344, 130263. doi: 10.1016/j.snb.2021.130263
-
[13]
(13) Liu, J.; Xu, Z.; Yang, M.; Zhang, S.; Tang, A. Electroanalysis 2022, 34, 1621. doi: 10.1002/elan.202200043
-
[14]
(14) Amirjani, A.; Kamani, P.; Hosseini, H. R. M.; Sadrnezhaad, S. K. Anal. Chim. Acta 2022, 1220, 340030. doi: 10.1016/j.aca.2022.340030
-
[15]
(15) Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Opt. Laser Technol. 2021, 140, 107082. doi: 10.1016/j.optlastec.2021.107082
-
[16]
-
[17]
(17) Peng, Y.; Qin, S.; Zhang, S.; Zhao, Y. Opt. Lasers Eng. 2023, 167, 107611. doi: 10.1016/j.optlaseng.2023.107611
-
[18]
(18) Zhao, L.; Hao, S.; Chen, Y.; Zhao, E.; Xing, C.; Fan, J.; Tang, J. Opt. Laser Technol. 2023, 157, 108670. doi: 10.1016/j.optlastec.2022.108670
-
[19]
(19) Kumar, S.; Singh, R.; Kaushik, B. K.; Chen, N.-K.; Yang, Q. S.; Zhang, X. IEEE Sens. J. 2019, 19, 7399. doi: 10.1109/JSEN.2019.2916818
-
[20]
(20) Du, X.; Zhai, J.; Li, X.; Zhang, Y.; Li, N.; Xie, X. ACS Sens. 2021, 6, 1990. doi: 10.1021/acssensors.1c00756
-
[21]
(21) Chauhan, G. S.; Chauhan, S.; Sen, U.; Garg, D. Desalination 2009, 243, 95. doi: 10.1016/j.desal.2008.04.017
-
[22]
(22) Elgueta, E.; Rivas, B. L.; Mancisidor, A.; Nunez, D.; Dahrouch, M. Polym. Bull. 2019, 76, 6503. doi: 10.1007/s00289-019-02697-z
-
[23]
(23) Li, G.; Liu, Z.; Feng, J.; Zhou, G.; Huang, X. Opt. Laser Technol. 2022, 145, 107453. doi: 10.1016/j.optlastec.2021.107453
-
[24]
(24) Wang, S.-Y.; Tsai, M.-H.; Lo, S.-F.; Tsai, M.-J. Bioresour. Technol. 2008, 99, 7027. doi: 10.1016/j.biortech.2008.01.014
-
[25]
(25) Zhang, A.; Liu, Z.; Tu, Q.; Ma, Q.; Zeng, H.; Deng, Z.; Jiang, R.; Mo, Z.; Liu, J.; Xia, C.; et al. Sens. Actuators B 2022, 365, 131941. doi: 10.1016/j.snb.2022.131941
-
[26]
(26) Wang, G.; Sun, D.; Liang, L.; Wang, G.; Ma, J. Opt. Laser Technol. 2023, 161, 109171. doi: 10.1016/j.optlastec.2023.109171
-
[27]
(27) Liu, Z.; Li, G.; Zhang, A.; Zhou, G.; Huang, X. Opt. Express 2021, 29, 22992. doi: 10.1364/OE.434687
-
[28]
(28) Viet Nguyen, L.; Hwang, D.; Moon, S.; Seung Moon, D.; Chung, Y. Opt. Express 2008, 16, 11369. doi: 10.1364/OE.16.011369
-
[29]
(29) Chen, C.; Feng, W. Opt. Laser Technol. 2022, 152, 108183. doi: 10.1016/j.optlastec.2022.108183
-
[30]
(30) Dong, Z.; Zhang, G.; Jin, Y.; Zhou, J.; Guan, J.; Tong, Z.; Wei, Z.; Tan, C.; Wang, F.; Meng, H. Opt. Express 2022, 30, 1152. doi: 10.1364/OE.442377
-
[31]
(31) Liu, S.; Meng, H.; Deng, S.; Wei, Z.; Wang, F.; Tan, C. IEEE Sens. Lett. 2018, 2, 5000904. doi: 10.1109/LSENS.2018.2849750
-
[32]
(32) Huang, G.; Li, Y.; Chen, C.; Yue, Z.; Zhai, W.; Li, M.; Yang, B. J. Phys. D: Appl. Phys. 2020, 53, 325102. doi: 10.1088/1361-6463/ab89cc
-
[33]
(33) Denizli, A.; Garipcan, B.; Karabakan, A.; Senöz, H. Mater. Sci. Eng. C 2005, 25, 448. doi: 10.1016/j.msec.2004.12.001
-
[34]
(34) Ramos-Jacques, A. L.; Lujan-Montelongo, J. A.; Silva-Cuevas, C.; Cortez-Valadez, M.; Estevez, M.; Hernandez-Martínez, A. R. Eur. Polym. J. 2018, 101, 262. doi: 10.1016/j.eurpolymj.2018.02.032
-
[35]
(35) Tanan, W.; Saengsuwan, S. J. Environ. Chem. Eng. 2020, 8, 103469. doi: 10.1016/j.jece.2019.103469
-
[36]
(36) Liu, S.; Qin, L.; Ni, Z.; Chen, M. Anal. Methods 2017, 9, 5791. doi: 10.1039/c7ay01887h
-
[37]
(37) Zhang, Y.-n.; Zhang, L.; Han, B.; Gao, P.; Wu, Q.; Zhang, A. Sens. Actuators, B 2018, 272, 331. doi: 10.1016/j.snb.2018.05.168
-
[38]
(38) Behbahani, M.; Rabiee, G.; Bagheri, S.; Amini, M. M. Microchem. J. 2022, 183, 107951. doi: 10.1016/j.microc.2022.107951
-
[39]
(39) Knihnicki, P.; Skrzypek, A.; Jakubowska, M.; Porada, R.; Rokicińska, A.; Kuśtrowski, P.; Kościelniak, P.; Kochana, J. Molecules 2022, 27, 4608. doi: 10.3390/molecules27144608
-
[40]
(40) Pereira, D.; Bierlich, J.; Kobelke, J.; Ferreira, M. S. Optics Laser Technology 2022, 156, 108540. doi: 10.1016/j.optlastec.2022.108540
-
[41]
(41) Chanajaree, R.; Ratanatawanate, C.; Ruangchaithaweesuk, S.; Lee, V. S.; Wittayanarakul, K. J. Mol. Liq. 2021, 343, 117629. doi: 10.1016/j.molliq.2021.117629
-
[42]
(42) Sagong, H. Y.; Son, M. H.; Park, S. W.; Kim, J. S.; Li, T.; Jung, Y. K. Anal. Chim. Acta 2022, 1230, 340403. doi: 10.1016/j.aca.2022.340403
-
[43]
(43) Niazy, B.; Ghasemzadeh, H.; Vanashi, A. K.; Afraz, S. React. Funct. Polym. 2022, 175, 105266. doi: 10.1016/j.reactfunctpolym.2022.105266
-
[44]
(44) Zhu, G.; Xiao, H.; Guo, Q.; Song, B.; Zheng, G.; Zhang, Z.; Zhao, J.; Okoli, C. P. Ecotoxicol. Environ. Saf. 2018, 151, 266. doi: 10.1016/j.ecoenv.2018.01.011
-
[45]
(45) Megertu, D. G.; Bayissa, L. D. Environ. Sci. Pollut. Res. 2020, 27, 17175. doi: 10.1007/s11356-020-08297-z
-
[1]
-
-
-
[1]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[2]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[3]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[4]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[5]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[6]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[7]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[8]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[9]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[10]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[11]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[12]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[13]
Xianggui Kong , Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067
-
[14]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[15]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[16]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[17]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[18]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[19]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[20]
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(582)
- HTML views(56)