Citation: Anbang Du,  Yuanfan Wang,  Zhihong Wei,  Dongxu Zhang,  Li Li,  Weiqing Yang,  Qianlu Sun,  Lili Zhao,  Weigao Xu,  Yuxi Tian. 不同层数石墨烯的光热显微成像[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230402. doi: 10.3866/PKU.WHXB202304027 shu

不同层数石墨烯的光热显微成像

  • Received Date: 14 April 2023
    Revised Date: 2 June 2023
    Accepted Date: 6 June 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22073046, 22173044, 62011530133), the National Key R&D Program of China (2020YFA0406104), the Fundamental Research Funds for the Central Universities (020514380256, 020514380278) and the State Key Laboratory of Analytical Chemistry for Life Science (SKLACL2217), the Natural Science Foundation of Jiangsu Province (BK20220121), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_0096).

  • 二维层状材料(石墨烯、二维过渡金属硫族化合物等)因具有独特的物理性质,引起了研究学者们的广泛关注,极大促进了化学、材料科学和凝聚态物理学的发展。开发能够探究层状材料中层数依赖的光学、电学、力学和热学特性的新技术一直是二维材料领域最活跃的研究方向之一。光热显微镜利用光激发后非辐射跃迁产生的热效应,可实现在单个颗粒或单分子水平上成像与检测,并实时捕捉微观尺度热弛豫和热传输过程。本文对比研究了石墨烯薄片在不同光热介质(空气、甘油)中随厚度变化的光热特性,发现了在两种介质中光热信号强度与样品厚度之间均存在非线性依赖关系。相比于空气介质,甘油介质中光热信号强度具有更高的对比度,且随着厚度增加表现出非单调变化。该研究提供了不同介质环境中不同层数石墨烯光吸收和热弛豫特征的细节信息,相关研究结论将为层状材料及其异质结的热学性质研究提供依据。
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. E.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896

    2. [2]

      (2) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 2010, 10, 1271. doi: 10.1021/nl903868w

    3. [3]

      (3) Wang, X.; Du, K.; Liu, Y. Y. F.; Hu, P.; Zhang, J.; Zhang, Q.; Owen, M. H. S.; Lu, X.; Gan, C. K.; Sengupta, P.; et al. 2D Mater. 2016, 3, 031009. doi: 10.1088/2053-1583/3/3/031009

    4. [4]

      (4) Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H.; et al. Nature 2017, 546, 270. doi: 10.1038/nature22391

    5. [5]

      (5) Li, L. K.; Kim, J.; Jin, C.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z.; Chen, L.; Zhang, Z.; Yang, F.; et al. Nat. Nanotechnol. 2017, 12, 21. doi: 10.1038/nnano.2016.171

    6. [6]

      (6) Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.; Liang, J.; Zhang, Z.; Zhang, Z.; et al. Nature 2019, 570, 91. doi: 10.1038/s41586-019-1226-z

    7. [7]

      (7) Fang, S.; Duan, S.; Wang, X.; Chen, S.; Li, L.; Li, H.; Jiang, B.; Liu, C.; Wang, N.; Zhang, L.; et al. Nat. Photon. 2023, 17, 531. doi: 10.1038/s41566-023-01181-5

    8. [8]

    9. [9]

      (9) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849

    10. [10]

      (10) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201. doi: 10.1038/nature04235

    11. [11]

      (11) Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820. doi: 10.1038/nature08105

    12. [12]

      (12) Ju, L.; Wang, L.; Cao, T.; Taniguchi, T.; Watanabe, K.; Louie, S. G.; Rana, F.; Park, J.; Hone, J.; Wang, F.; et al. Science 2017, 358, 907. doi: 10.1126/science.aam9175

    13. [13]

      (13) Cai, L.; Yu, G. Adv. Mater. 2021, 33, 2004974. doi: 10.1002/adma.202004974

    14. [14]

      (14) Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Nature 2020, 583, 821. doi: 10.1038/s41586-020-2393-7

    15. [15]

      (15) Lin, M.; Feng, M.; Wu, J.; Ran, F.; Chen, T.; Luo, W.; Wu, H.; Han, W.; Zhang, X.; Liu, X.; et al. Research 2022, 2022, 9819373. doi: 10.34133/2022/9819373

    16. [16]

      (16) Liu, M.; Wang, L.; Yu, G. Adv. Sci. 2022, 9, 2103170. doi: 10.1002/advs.202103170

    17. [17]

      (17) Xiao, Y.; Liu, J.; Fu, L. Matter 2020, 3, 1142. doi: 10.1016/j.matt.2020.07.001

    18. [18]

      (18) Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Nat. Mater. 2012, 11, 764. doi: 10.1038/Nmat3386

    19. [19]

      (19) No, Y. S.; Choi, H. K.; Kim, J. S.; Kim, H.; Yu, Y. J.; Choi, C. G.; Choi, J. S. Sci. Rep. 2018, 8, 571. doi: 10.1038/s41598-017-19084-1

    20. [20]

      (20) Ohta, T.; Bostwick, A.; McChesney, J. L.; Seyller, T.; Horn, K.; Rotenberg, E. Phys. Rev. Lett. 2007, 98, 206802. doi: 10.1103/PhysRevLett.98.206802

    21. [21]

      (21) Lu, X.; Chen, X.; Dubey, S.; Yao, Q.; Li, W.; Wang, X.; Xiong, Q.; Srivastava, A. Nat. Nanotechnol. 2019, 14, 426. doi: 10.1038/s41565-019-0394-1

    22. [22]

      (22) Seyler, K. L.; Rivera, P.; Yu, H.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J.; Yao, W.; Xu, X. Nature 2019, 567, 66. doi: 10.1038/s41586-019-0957-1

    23. [23]

      (23) Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Sun, Z.; Watanabe, K.; Taniguchi, T.; Kis, A. Nat. Nanotechnol. 2019, 14, 1104. doi: 10.1038/s41565-019-0559-y

    24. [24]

      (24) Yu, H.; Wang, Y.; Tong, Q.; Xu, X.; Yao, W. Phys. Rev. Lett. 2015, 115, 187002. doi: 10.1103/PhysRevLett.115.187002

    25. [25]

    26. [26]

    27. [27]

      (27) Bandurin, D. A.; Monch, E.; Kapralov, K.; Phinney, I. Y.; Lindner, K.; Liu, S.; Edgar, J. H.; Dmitriev, I. A.; Jarillo-Herrero, P.; Svintsov, D.; et al. Nat. Phys. 2022, 18, 462. doi: 10.1038/s41567-021-01494-8

    28. [28]

      (28) Ni, G. X.; Wang, L.; Goldflam, M. D.; Wagner, M.; Fei, Z.; McLeod, A. S.; Liu, M. K.; Keilmann, F.; Ozyilmaz, B.; Neto, A. H. C.; et al. Nat. Photon. 2016, 10, 244. doi: 10.1038/Nphoton.2016.45

    29. [29]

      (29) Tian, Y.; Tian, H.; Wu, Y. L.; Zhu, L. L.; Tao, L. Q.; Zhang, W.; Shu, Y.; Xie, D.; Yang, Y.; Wei, Z. Y.; et al. Sci. Rep. 2015, 5, 10582. doi: 10.1038/srep10582

    30. [30]

      (30) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589

    31. [31]

      (31) Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray, A.; Park, C.; Fransson, E.; Zhong, Y.; et al. Nature 2021, 597, 660. doi: 10.1038/s41586-021-03867-8

    32. [32]

      (32) Kong, Y.; Li, X.; Wang, L.; Zhang, Z.; Feng, X.; Liu, J.; Chen, C.; Tong, L.; Zhang, J. ACS Nano 2022, 16, 11338. doi: 10.1021/acsnano.2c04984

    33. [33]

      (33) Zhang, Y.; Lv, Q.; Wang, H.; Zhao, S.; Xiong, Q.; Lv, R.; Zhang, X. Science 2022, 378, 169. doi: 10.1126/science.abq0883

    34. [34]

      (34) Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H. S.; Jeong, H. Y.; Chhowalla, M. Nature 2022, 610, 61. doi: 10.1038/s41586-022-05134-w

    35. [35]

      (35) Ergoktas, M. S.; Soleymani, S.; Kakenov, N.; Wang, K. Y.; Smith, T. B.; Bakan, G.; Balci, S.; Principi, A.; Novoselov, K. S.; Ozdemir, S. K.; et al. Science 2022, 376, 184. doi: 10.1126/science.abn6528

    36. [36]

      (36) Adhikari, S.; Spaeth, P.; Kar, A.; Baaske, M. D.; Khatua, S.; Orrit, M. ACS Nano 2020, 14, 16414. doi: 10.1021/acsnano.0c07638

    37. [37]

      (37) Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P. V.; Orrit, M. Science 2010, 330, 353. doi: 10.1126/science.1195475

    38. [38]

      (38) Yang, W.; Wei, Z.; Nie, Y.; Tian, Y. J. Phys. Chem. Lett. 2022, 13, 9618. doi: 10.1021/acs.jpclett.2c02228

    39. [39]

      (39) Xu, W.; Liu, W.; Schmidt, J. F.; Zhao, W.; Lu, X.; Raab, T.; Diederichs, C.; Gao, W.; Seletskiy, D. V.; Xiong, Q. Nature 2017, 541, 62. doi: 10.1038/nature20601

    40. [40]

      (40) Li, H.; Li, H.; Wang, X.; Nie, Y.; Liu, C.; Dai, Y.; Ling, J.; Ding, M.; Ling, X.; Xie, D.; et al. Nano Lett. 2021, 21, 6773. doi: 10.1021/acs.nanolett.1c01356

    41. [41]

      (41) Yang, W.; Li, M.; Xie, M.; Nie, Y.; Du, A.; Tian, Y. Rev. Sci. Instrum. 2021, 92, 083701. doi: 10.1063/5.0048239

    42. [42]

      (42) Yang, W.; Li, M.; Xie, M.; Tian, Y. J. Phys. Chem. Lett. 2023, 14, 3506. doi: 10.1021/acs.jpclett.3c00491

    43. [43]

      (43) Li, H.; Wu, J. M. T.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Zhang, Q. H.; Zhang, H. ACS Nano 2013, 7, 10344. doi: 10.1021/nn4047474

    44. [44]

      (44) Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Nano Lett. 2007, 7, 238. doi: 10.1021/nl061702a

    45. [45]

      (45) Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C. K.; Shen, Z.; Thong, J. T. L. Small 2010, 6, 195. doi: 10.1002/smll.200901173

    46. [46]

      (46) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401

    47. [47]

      (47) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photon. 2010, 4, 611. doi: 10.1038/Nphoton.2010.186

    48. [48]

      (48) Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Walker, A. R. H.; Gundlach, D. J.; Nguyen, N. V. Carbon 2016, 99, 348. doi: 10.1016/j.carbon.2015.12.007

    49. [49]

      (49) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965

    50. [50]

      (50) Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Chem. Sci. 2010, 1, 343. doi: 10.1039/c0sc00210k

    51. [51]

      (51) Ding, T.; Hou, L.; Meer, H. V. D.; Alivisatos, A. P.; Orrit, M. J. Phys. Chem. Lett. 2016, 7, 2524. doi: 10.1021/acs.jpclett.6b00964

    52. [52]

      (52) Ghosh, S.; Bao, W.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Nat. Mater. 2010, 9, 555. doi: 10.1038/Nmat2753

    53. [53]

      (53) Li, H.; Ying, H.; Chen, X.; Nika, D. L.; Cocemasov, A. I.; Cai, W.; Balandin, A. A.; Chen, S. Nanoscale 2014, 6, 13402. doi: 10.1039/c4nr04455j

    54. [54]

      (54) Gao, J.; Si, C.; Yang, Y. R.; Cao, B. Y.; Wang, X. D. ECS J. Solid State Sci. Technol. 2020, 9, 093005. doi: 10.1149/2162-8777/aba7fb

    55. [55]

      (55) Ouyang, T.; Chen, Y.; Xie, Y.; Stocks, G. M.; Zhong, J. Appl. Phys. Lett. 2011, 99, 233101. doi: 10.1063/1.3665184

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    11. [11]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(84)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return