Citation: Huimin Liu,  Kezhi Li,  Xin Zhang,  Xuemin Yin,  Qiangang Fu,  Hejun Li. SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230402. doi: 10.3866/PKU.WHXB202304026 shu

SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors

  • Corresponding author: Xuemin Yin,  Qiangang Fu, 
  • Received Date: 14 April 2023
    Revised Date: 23 May 2023
    Accepted Date: 24 May 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52125203, 52293371, 52202047), the National Key R&D Program of China (2021YFA0715803), the Natural Science Basic Research Plan in Shaanxi Province (2022JQ-324), the China Postdoctoral Science Foundation (2021M702659), the Young Talent Fund of Association for Science and Technology in Shaanxi, China (20220435), and the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (PF2023004).

  • As technology and society have continued to develop, the demand for energy storage solutions has increased significantly. Indeed, the development of low-cost, low-carbon, environmentally friendly energy conversion and storage systems is required to address the environmental and ecological problems faced by society. Due to their fast charging and discharging speeds, long cycle life and environmentally friendly characteristics, supercapacitors are widely used in many fields, especially in wind power generation systems, communication and transportation. Among all kinds of electrode materials, silicon carbide (SiC) nanomaterials and SiC-derived carbon (SiC-CDC) materials present long life, high power density, and uncomplicated working mechanisms, which hold significant promise as electrode materials for supercapacitors. So far, various strategies and approaches for controlling the microstructure of SiC nanomaterials and SiC-CDC materials have been developed to achieve further improvement from preparation methods to electrochemical properties. As such, this review systematically introduces the common preparation methods of SiC nanomaterials and SiC-CDC, including the template method, chemical vapor deposition (CVD) method, high temperature halogen etching method and high temperature thermal decomposition process for preparing SiC-CDC. Furthermore, the advantages and disadvantages of different preparation methods are discussed. Additionally, the review covers the progress in employing SiC nanomaterials and SiC-CDC materials as supercapacitor electrode materials in detail. However, despite this progress, the commercial application of SiC nanomaterials and SiC-CDC materials as supercapacitor electrodes has been restricted by some problems, in particular their limited conductivity and poor wettability. More importantly, the low energy density of supercapacitors is still a major problem. Thus, current methods and developmental trends of the strategies to improve electrochemical performance such as “highly conductive carbon material composite”, “heteroatomic doping”, “pseudocapacitance composites”, “multi-stage pore structure design”, “chemical activation” are further analyzed with regards to the current challenges. For example, the introduction of heteroatoms and functional group molecules for reactions into SiC and SiC-CDC materials can inhibit the agglomeration of materials (such as particles and nanosheets), improve their conductivity and wettability, and enhance their specific capacitance. Finally, the challenges and opportunities in the application of SiC nanomaterials and their derived carbons in the field of energy storage for supercapacitors are summarized and prospected. As current preparation methods are limited to the laboratory scale, the combination and improvement of different preparation methods and the development of large-scale and low-cost preparation technology are still the directions of the next efforts. This comprehensive review is expected to further advance the research of SiC nanomaterials and SiC-CDC materials.
  • 加载中
    1. [1]

      (1) Armaroli, N.; Balzani, V. Energy Environ. Sci. 2011, 4, 3193. doi: 10.1039/c1ee01249e

    2. [2]

      (2) Gonzalez, A.; Goikolea, E.; Andoni Barrena, J.; Mysyk, R. Renew. Sust. Energ. Rev. 2016, 58, 1189. doi: 10.1016/j.rser.2015.12.249

    3. [3]

      (3) Hou, Z. G.; Zhang, X. Q.; Chen, J. W.; Qian, Y. T.; Chen, L. F.; Lee, P. S. Adv. Energy Mater. 2022, 12, 2104053. doi: 10.1002/aenm.202104053

    4. [4]

      (4) Lv, J. Q.; Zeng, P.; Abbas, S. C.; Guan, X. F.; Luo, P. H.; Chen, D. G.; Wang, Y. B. J. Mater. Chem. A 2019, 7, 16876. doi: 10.1039/c9ta04421c

    5. [5]

      (5) Zhao, H. Y.; Dong, W. X.; Deng, Y.; Chen, L. F.; Zhao, C. F.; Zhang, C. L.; Zhou, J.; Qu, Y. F.; Li, Y. S.; Li, D. J.; et al. Interdiscip. Mater. 2022, 1, 537. doi: 10.1002/idm2.12057

    6. [6]

      (6) Zhang, K. L.; Wang, L.; Cai, W. L.; Chen, L. F.; Wang, D.; Chen, Y. H.; Pan, H. L.; Wang, L. B.; Qian, Y. T. Inorg. Chem. Front. 2019, 6, 955. doi: 10.1039/c9qi00052f

    7. [7]

      (7) Acharya, J.; Ko, T. H.; Seo, M. K.; Khil, M. S.; Kim, H. Y.; Kim, B. S. J. Colloid Interface Sci. 2020, 564, 65. doi: 10.1016/j.jcis.2019.12.098

    8. [8]

      (8) Ojha, G. P.; Pant, B.; Park, S. J.; Park, M.; Kim, H. Y. J. Colloid Interface Sci. 2017, 494, 338. doi: 10.1016/j.jcis.2017.01.100

    9. [9]

      (9) Acharya, J.; Pant, B.; Ojha, G. P.; Park, M. J. Mater. Chem. A 2022, 10, 7999. doi: 10.1039/d1ta11063b

    10. [10]

      (10) Dong, W. X.; Qu, Y. F.; Liu, X.; Chen, L. F. FlatChem 2023, 37, 100467. doi: 10.1016/j.flatc.2022.100467

    11. [11]

      (11) Heuser, S.; Yang, N. J.; Hof, F.; Schulte, A.; Schoenherr, H.; Jiang, X. Small 2018, 14, 1801857. doi: 10.1002/smll.201801857

    12. [12]

      (12) Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumalai, J. Renew. Sust. Energ. Rev. 2019, 101, 123. doi: 10.1016/j.rser.2018.10.026

    13. [13]

      (13) Wang, Y. F.; Zhang, L.; Hou, H. Q.; Xu, W. H.; Duan, G. G.; He, S. J.; Liu, K. M.; Jiang, S. H. J. Mater. Sci. 2021, 56, 173. doi: 10.1007/s10853-020-05157-6

    14. [14]

      (14) Ojha, G. P.; Kang, G. W.; Kuk, Y. S.; Hwang, Y. E.; Kwon, O. H.; Pant, B.; Acharya, J.; Park, Y. W.; Park, M. Nanomaterials 2023, 13, 150. doi: 10.3390/nano13010150

    15. [15]

      (15) Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Prog. Mater. Sci. 2015, 72, 1. doi: 10.1016/j.pmatsci.2015.01.003

    16. [16]

      (16) Nguyen, T. K., Nguyen; Sadegh, A.; Dao, D. V. Small 2021, 17, 2101775. doi: 10.1002/smll.202101775

    17. [17]

      (17) Zhou, D.; Seraphin, S. Chem. Phys. Lett. 1994, 222, 233. doi: 10.1016/0009-2614(94)00342-4

    18. [18]

      (18) Liang, P. P.; Li, H. X.; Wang, G.; Han, J. S.; Yuan, B.; Cao, Y. N.; Zhang, Q. Mater. Lett. 2021, 284, 129014. doi: 10.1016/j.matlet.2020.129014

    19. [19]

      (19) Liu, H. M.; Li, K. Z.; Chen, H.; Liu, B.; Yin, X. M. Ceram. Int. 2022, 48, 34543. doi: 10.1016/j.ceramint.2022.08.038

    20. [20]

      (20) Tian, X. K.; Chen, X. Y.; Ma, C. L.; Su, K.; Geng, Q. K.; Zhao, F.; Liu, X. H. Ceram. Int. 2022, 48, 36273. doi: 10.1016/j.ceramint.2022.08.186

    21. [21]

      (21) Li, W. F.; Huang, Q. F.; Guo, H. S.; Hou, Y. G. Ceram. Int. 2018, 44, 4500. doi: 10.1016/j.ceramint.2017.12.015

    22. [22]

    23. [23]

      (23) Zeraati, M.; Tahmasebi, K.; Irannejad, A. J. Nanostruct. 2020, 10, 660. doi: 10.22052/jns.2020.03.019

    24. [24]

    25. [25]

      (25) Zhang, M. J. Phys. Chem. Solids 2017, 103, 1. doi: 10.1016/j.jpcs.2016.11.026

    26. [26]

      (26) Xi, G. C.; Peng, Y. Y.; Wan, S. M.; Li, T. W.; Yu, W. C.; Qian, Y. T. J. Phys. Chem. B 2004, 108, 20102. doi: 10.1021/jp0462153

    27. [27]

      (27) Dong, C.; Zou, G. F.; Liu, E.; Xi, B. J.; Huang, T.; Qian, Y. T. J. Am. Ceram. Soc. 2007, 90, 653. doi: 10.1111/j.1551-2916.2006.01439.x

    28. [28]

      (28) Li, Y. B.; Xie, S. S.; Zou, X. P.; Tang, D. S.; Liu, Z. Q.; Zhou, W. Y.; Wang, G. J. Cryst. Growth 2001, 223, 125. doi: 10.1016/s0022-0248(01)00597-8

    29. [29]

    30. [30]

      (30) Chiu, S. C.; Huang, C. W.; Li, Y. Y. J. Phys. Chem. C 2007, 111, 10294. doi: 10.1021/jp0687192

    31. [31]

      (31) Kita, K. i.; Narisawa, M.; Nakahira, A.; Mabuchi, H.; Sugimoto, M.; Yoshikawa, M. J. Mater. Sci. 2010, 45, 3397. doi: 10.1007/s10853-010-4346-2

    32. [32]

      (32) Wang, L.; Wei, G. G.; Gao, F. M.; Li, C. M.; Yang, W. Y. Nanoscale 2015, 7, 7585. doi: 10.1039/c5nr00952a

    33. [33]

      (33) Tang, M.; Yu, Z. J.; Yu, Y. X.; Zhang, L. T.; Chen, L. F. J. Mater. Sci. 2009, 44, 1633. doi: 10.1007/s10853-009-3246-9

    34. [34]

      (34) Chen, J. J.; Liao, X.; Wang, M. M.; Liu, Z. X.; Zhang, J. D.; Ding, L. J.; Gao, L.; Li, Y. Nanoscale 2015, 7, 6374. doi: 10.1039/c5nr00776c

    35. [35]

    36. [36]

      (36) Li, D.; Xia, Y. N. Nano Lett. 2004, 4, 933. doi: 10.1021/nl049590f

    37. [37]

      (37) Liu, H. A.; Balkus Jr, K. J. Mater. Lett. 2009, 63, 2361. doi: 10.1016/j.matlet.2009.08.009

    38. [38]

      (38) Wei, J.; Li, X. T.; Wang, Y.; Chen, B.; Zhang, M. J.; Qin, C. M. J. Am. Ceram. Soc. 2020, 103, 6187. doi: 10.1111/jace.17396

    39. [39]

      (39) Fan, J. Y.; Li, H. X.; Wang, J.; Xiao, M. Appl. Phys. Lett. 2012, 101, 131906. doi: 10.1063/1.4755778

    40. [40]

      (40) Zhu, J.; Liu, Z.; Wu, X. L.; Xu, L. L.; Zhang, W. C.; Chu, P. K. Nanotechnology 2007, 18, 365603. doi: 10.1088/0957-4484/18/36/365603

    41. [41]

      (41) Xiong, H. W.; Zhao, L. Z.; Chen, H. H.; Wang, X. F.; Zhou, K. C.; Zhang, D. J. Alloys Compd. 2019, 809, 151824. doi: 10.1016/j.jallcom.2019.151824

    42. [42]

      (42) Xiong, H. W.; Chen, H. H.; Zhao, L. Z.; Huang, Y. J.; Zhou, K. C.; Zhang, D. J. Eur. Ceram. Soc. 2019, 39, 2648. doi: 10.1016/j.jeurceramsoc.2019.02.045

    43. [43]

    44. [44]

      (44) Batisse, N.; Guerin, K.; Dubois, M.; Hamwi, A.; Spinelle, L.; Tomasella, E. Thin Solid Films 2010, 518, 6746. doi: 10.1016/j.tsf.2010.05.120

    45. [45]

      (45) Kraft, T.; Nickel, K. G.; Gogotsi, Y. G. J. Mater. Sci. 1998, 33, 4357. doi: 10.1023/a:1004480814477

    46. [46]

      (46) Xi, J. Q.; Liu, C.; Morgan, D.; Szlufarska, I. Acta Mater. 2021, 209, 116803. doi: 10.1016/j.actamat.2021.116803

    47. [47]

      (47) Badami, D. V. Carbon 1965, 3, 53. doi: 10.1016/0008-6223(65)90027-8

    48. [48]

      (48) Cheng, W. Q.; Xiong, Y. L.; Ding, L. J.; Li, H. L.; Yang, J. H.; Zhu, M. M.; Chen, J. J.; Zhang, G. J. J. Cryst. Growth 2022, 599, 126903. doi: 10.1016/j.jcrysgro.2022.126903

    49. [49]

      (49) Fujisawa, K.; Lei, Y.; de Tomas, C.; Suarez Martinez, I.; Zhou, C.; Lin, Y. C.; Subramanian, S.; Elias, A. L.; Fujishige, M.; Takeuchi, K.; et al. Carbon 2019, 142, 78. doi: 10.1016/j.carbon.2018.10.032

    50. [50]

      (50) Pan, H.; Zang, J. B.; Dong, L.; Li, X. H.; Wang, Y. H.; Wang, Y. J. Electrochem. Commun. 2013, 37, 40. doi: 10.1016/j.elecom.2013.10.014

    51. [51]

      (51) Pan, H.; Zang, J. B.; Li, X. H.; Wang, Y. H. Carbon 2014, 69, 630. doi: 10.1016/j.carbon.2013.12.022

    52. [52]

      (52) Zou, X. L.; Ji, L.; Hsu, H. Y.; Zheng, K.; Pang, Z. Y.; Lu, X. G. J. Mater. Chem. A 2018, 6, 12724. doi: 10.1039/c8ta03922d

    53. [53]

      (53) Fu, Q. G.; Zhang, P.; Zhuang, L.; Zhou, L.; Zhang, J. P.; Wang, J.; Hou, X. H.; Riedel, R.; Li, H. J. J. Mater. Sci. Technol. 2022, 96, 31. doi: 10.1016/j.jmst.2021.03.076

    54. [54]

      (54) Yin, X. M.; Han, L. Y.; Liu, H. M.; Li, N.; Song, Q.; Fu, Q. G.; Zhang, Y. L.; Li, H. J. Adv. Funct. Mater. 2022, 32, 2204965. doi: 10.1002/adfm.202204965

    55. [55]

      (55) Sarno, M.; Galvagno, S.; Piscitelli, R.; Portofino, S.; Ciambelli, P. Ind. Eng. Chem. Res. 2016, 55, 6025. doi: 10.1021/acs.iecr.6b00737

    56. [56]

      (56) Yang, B. C.; Sun, R. X.; Li, X. J.; Ma, M. D.; Zhang, X. R.; Wang, Z. X.; Yi, W. C.; Zhang, Z.; Yang, R. L.; Sun, H. R.; et al. J. Mater. Sci. 2021, 56, 16068. doi: 10.1007/s10853-021-06318-x

    57. [57]

      (57) Hou, J. H.; Fang, L.; Wang, X. Z.; Gao, H.; Wang, G. X. Chem. Commun. 2022, 58, 12455. doi: 10.1039/d2cc04723c

    58. [58]

      (58) Zhang, Z. H.; Tan, J.; Cheng, L. S.; Yang, W. M. Ceram. Int. 2021, 47, 24652. doi: 10.1016/j.ceramint.2021.05.187

    59. [59]

      (59) Zhao, Y. X.; Kang, W. M.; Li, L.; Yan, G. L.; Wang, X. Q.; Zhuang, X. P.; Cheng, B. W. Electrochim. Acta 2016, 207, 257. doi: 10.1016/j.electacta.2016.05.003

    60. [60]

      (60) Li, W. J.; Liu, Q.; Fang, Z.; Wang, L.; Chen, S. L.; Gao, F. M.; Ji, Y.; Yang, W. Y.; Fang, X. S. Adv. Energy Mater. 2019, 9, 1900073. doi: 10.1002/aenm.201900073

    61. [61]

      (61) Chen, Y. Q.; Zhang, X. N.; Xie, Z. P. ACS Nano 2015, 9, 8054. doi: 10.1021/acsnano.5b01784

    62. [62]

      (62) Li, X. X.; Liu, Q.; Chen, S. L.; Li, W. J.; Liang, Z.; Fang, Z.; Yang, W. Y.; Tian, Y.; Yang, Y. Energy Storage Mater. 2020, 27, 261. doi: 10.1016/j.ensm.2020.02.009

    63. [63]

      (63) Gu, L.; Wang, Y. W.; Fang, Y. J.; Lu, R.; Sha, J. J. Power Sources 2013, 243, 648. doi: 10.1016/j.jpowsour.2013.06.050

    64. [64]

      (64) Li, X. X.; Li, W. J.; Liu, Q.; Chen, S. L.; Wang, L.; Gao, F. M.; Shao, G.; Tian, Y.; Lin, Z. F.; et al. Adv. Funct. Mater. 2021, 31, 2008901. doi: 10.1002/adfm.202008901

    65. [65]

      (65) Chang, C. H.; Hsia, B.; Alper, J. P.; Wang, S.; Luna, L. E.; Carraro, C.; Lu, S. Y.; Maboudian, R. ACS Appl. Mater. Interfaces 2015, 7, 26658. doi: 10.1021/acsami.5b08423

    66. [66]

      (66) Li, X. X.; Chen, J. J.; Chen, S. L.; Li, W. J.; Yang, J. H.; Hu, F.; Wei, Q. L.; Zhao, X. S.; Zhang, X. F.; Yang, W. Y. J. Mater. Chem. A 2022, 10, 15708. doi: 10.1039/d2ta03866h

    67. [67]

      (67) Zhuang, H.; Yang, N. J.; Zhang, L.; Fuchs, R.; Jiang, X. ACS Appl. Mater. Interfaces 2015, 7, 10886. doi: 10.1021/acsami.5b02024

    68. [68]

      (68) Chen, Q. Q.; Jiang, Y.; Wang, Y.; Li, H.; Yu, C. P.; Cui, J. W.; Qin, Y. Q.; Sun, J.; Yan, J.; Zheng, H. M.; et al. Inorg. Chem. Commun. 2019, 106, 174. doi: 10.1016/j.inoche.2019.06.009

    69. [69]

      (69) Kim, M.; Oh, I.; Kim, J. Chem. Eng. J. 2016, 289, 170. doi: 10.1016/j.cej.2015.12.087

    70. [70]

      (70) Liu, S.; Wang, E. H.; Liu, S. C.; Guo, C. Y.; Wang, H. L.; Yang, T.; Hou, X. M. J. Mater. Sci. Technol. 2022, 110, 178. doi: 10.1016/j.jmst.2021.09.012

    71. [71]

      (71) Sun, Q. Y.; Tu, R.; Xu, Q. F.; Zhang, C. F.; Li, J.; Ohmori, H. S.; Kosinova, M.; Basu, B.; Yan, J. S.; Li, S.; et al. J. Power Sources 2019, 444, 227308. doi: 10.1016/j.jpowsour.2019.227308

    72. [72]

      (72) Abbas, S. C.; Lin, C. M.; Hua, Z. F.; Deng, Q. D.; Huang, H.; Ni, Y. H.; Cao, S. L.; Ma, X. J. Chem. Eng. J. 2022, 433, 133738. doi: 10.1016/j.cej.2021.133738

    73. [73]

      (73) Xia, M. Y.; Ning, J.; Feng, X.; Guo, H. B.; Wang, D.; Zhang, J. C.; Hao, Y. Chem. Eng. J. 2022, 428, 131114. doi: 10.1016/j.cej.2021.131114

    74. [74]

      (74) Naskar, P.; Maiti, A.; Chakraborty, P.; Kundu, D.; Biswas, B.; Banerjee, A. J. Mater. Chem. A 2021, 9, 1970. doi: 10.1039/d0ta09655e

    75. [75]

      (75) Chen, J. H.; Zhang, Y. J.; Hou, X. M.; Su, L.; Fan, H. L.; Chou, K. C. RSC Adv. 2016, 6, 19626. doi: 10.1039/c5ra27291b

    76. [76]

      (76) Kim, M.; Kim, J. Nanotechnology 2017, 28, 195401. doi: 10.1088/1361-6528/aa6812

    77. [77]

      (77) Chen, Y. Q.; Zhang, X. N.; Xue, W. J.; Xie, Z. P. ACS Appl. Mater. Interfaces 2020, 12, 32514. doi: 10.1021/acsami.0c04825

    78. [78]

      (78) Yin, X. M.; Li, H. J.; Yuan, R. M.; Lu, J. H. J. Mater. Sci. Technol. 2021, 81, 162. doi: 10.1016/j.jmst.2020.10.085

    79. [79]

      (79) Yin, X. M.; Li, H. J.; Han, L. Y.; Yuan, R. M.; Lu, J. H. J. Colloid Interface Sci. 2020, 577, 481. doi: 10.1016/j.jcis.2020.05.101

    80. [80]

      (80) Yin, X. M.; Li, H. J.; Yuan, R. M.; Lu, J. H. J. Colloid Interface Sci. 2021, 586, 219. doi: 10.1016/j.jcis.2020.10.086

    81. [81]

      (81) Zhao, J.; Li, Z. J.; Zhang, M.; Meng, A.; Li, Q. D. ACS Sustainable Chem. Eng. 2016, 4, 3598. doi: 10.1021/acssuschemeng.6b00697

    82. [82]

      (82) Meng, A.; Yang, Z.; Li, Z. J.; Yuan, X. C.; Zhao, J. J. Alloys Compd. 2018, 746, 93. doi: 10.1016/j.jallcom.2018.02.280

    83. [83]

      (83) Zhao, J.; Li, Z. J.; Zhang, M.; Meng, A.; Li, Q. D. J. Power Sources 2016, 332, 355. doi: 10.1016/j.jpowsour.2016.09.128

    84. [84]

      (84) Hamzan, N. B.; bin Ramly, M. M.; bin Omar, M. F.; Nakajima, H.; Tunmee, S.; Rahman, S. A.; Goh, B. T. Thin Solid Films 2020, 716, 138430. doi: 10.1016/j.tsf.2020.138430

    85. [85]

      (85) Hamzan, N. B.; bin Ramly, M. M.; Huang, N. M.; Rahman, S. A.; Goh, B. T. Mater. Charact. 2017, 132, 187. doi: 10.1016/j.matchar.2017.08.005

    86. [86]

      (86) Wang, R. Y.; Li, W. J.; Jiang, L.; Liu, Q.; Wang, L.; Tang, B.; Yang, W. Y. Electrochim. Acta 2022, 406, 139867. doi: 10.1016/j.electacta.2022.139867

    87. [87]

      (87) Liu, W. N.; Li, X. X.; Li, W. J.; Ye, Y. M.; Wang, H.; Su, P. P.; Yang, W. Y.; Yang, Y. J. Energy Chem. 2022, 66, 30. doi: 10.1016/j.jechem.2021.07.007

    88. [88]

      (88) Gu, W. T.; Yushin, G. Wiley Interdiscip. Rev. Energy Environ 2014, 3, 424. doi: 10.1002/wene.102

    89. [89]

      (89) Castro Gutierrez, J.; Celzard, A.; Fierro, V. Front. Mater. 2020, 7, 217. doi: 10.3389/fmats.2020.00217

    90. [90]

      (90) Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. J. Power Sources 2006, 158, 765. doi: 10.1016/j.jpowsour.2005.09.008

    91. [91]

      (91) Rufino, B.; Mazerat, S.; Couvrat, M.; Lorrette, C.; Maskrot, H.; Pailler, R. Carbon 2011, 49, 3073. doi: 10.1016/j.carbon.2011.03.029

    92. [92]

    93. [93]

      (93) Young, C.; Lin, J. J.; Wang, J.; Ding, B.; Zhang, X. G.; Alshehri, S. M.; Ahamad, T.; Salunkhe, R. R.; Hossain, S. A.; Khan, J. H.; et al. Chem. Eur. J. 2018, 24, 6127. doi: 10.1002/chem.201705465

    94. [94]

      (94) Oschatz, M.; Boukhalfa, S.; Nickel, W.; Hofmann, J. P.; Fischer, C.; Yushin, G.; Kaskel, S. Carbon 2017, 113, 283. doi: 10.1016/j.carbon.2016.11.050

    95. [95]

      (95) Portet, C.; Yushin, G.; Gogotsi, Y. J. Electrochem. Soc. 2008, 155, A531. doi: 10.1149/1.2918304

    96. [96]

      (96) Kim, M.; Oh, I.; Kim, J. J. Power Sources 2016, 307, 715. doi: 10.1016/j.jpowsour.2016.01.038

    97. [97]

      (97) Fiset, E.; Bae, J. S.; Rufford, T. E.; Bhatia, S.; Lu, G. Q.; Hulicova-Jurcakova, D. J. Solid State Electrochem. 2014, 18, 703. doi: 10.1007/s10008-013-2306-x

    98. [98]

      (98) Meier, A.; Weinberger, M.; Pinkert, K.; Oschatz, M.; Paasch, S.; Giebeler, L.; Althues, H.; Brunner, E.; Eckert, J.; Kaskel, S. Microporous Mesoporous Mater. 2014, 188, 140. doi: 10.1016/j.micromeso.2013.12.022

    99. [99]

      (99) Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.; Kaskel, S.; Yushin, G. ACS Nano 2010, 4, 1337. doi: 10.1021/nn901825y

    100. [100]

      (100) Ma, C.; Fan, Q. C.; Dirican, M.; Subjalearndee, N.; Cheng, H.; Li, J. J.; Song, Y.; Shi, J. L.; Zhang, X. W. Appl. Surf. Sci. 2021, 545, 148933. doi: 10.1016/j.apsusc.2021.148933

    101. [101]

      (101) Tee, E.; Tallo, I.; Kurig, H.; Thomberg, T.; Jaenes, A.; Lust, E. Electrochim. Acta 2015, 161, 364. doi: 10.1016/j.electacta.2015.02.106

    102. [102]

      (102) Tee, E.; Tallo, I.; Thomberg, T.; Janes, A.; Lust, E. J. Electrochem. Soc. 2016, 163, A1317. doi: 10.1149/2.0931607jes

    103. [103]

      (103) Yan, P. T.; Xu, J.; Wu, C.; Gu, Y.; Zhang, X. S.; Zhang, R. J.; Song, Y. B. Electrochim. Acta 2016, 189, 16. doi: 10.1016/j.electacta.2015.12.022

    104. [104]

      (104) Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Science 2015, 350, 1508. doi: 10.1126/science.aab3798

    105. [105]

      (105) Qu, J. Y.; Geng, C.; Lv, S. Y.; Shao, G. H.; Ma, S. Y.; Wu, M. B. Electrochim. Acta 2015, 176, 982. doi: 10.1016/j.electacta.2015.07.094

    106. [106]

      (106) Pinkert, K.; Oschatz, M.; Borchardt, L.; Klose, M.; Zier, M.; Nickel, W.; Giebeler, L.; Oswald, S.; Kaskel, S.; Eckert, J. ACS Appl. Mater. Interfaces 2014, 6, 2922. doi: 10.1021/am4055029

    107. [107]

      (107) Liu, F.; Gutes, A.; Carraro, C.; Chu, J.; Maboudian, R. In Graphitization of n-type Polycrystalline Silicon Carbide and Its Application for Micro-Supercapacitors, 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, China, 05-09 June 2011; IEEE: Beijing, China, 2011; p 1879.

    108. [108]

      (108) Ahmed, M.; Khawaja, M.; Notarianni, M.; Wang, B.; Goding, D.; Gupta, B.; Boeckl, J. J.; Takshi, A.; Motta, N.; Saddow, S. E.; et al. Nanotechnology 2015, 26, 434005. doi: 10.1088/0957-4484/26/43/434005

    109. [109]

      (109) Yan, P. T.; Xu, J.; Zhang, X. S.; Wu, C.; Gu, Y.; Zhang, R. J. Int. J. Hydrog. Energy 2016, 41, 14820. doi: 10.1016/j.ijhydene.2016.07.045

    110. [110]

      (110) Alhabeb, M.; Beidaghi, M.; Van Aken, K. L.; Dyatkin, B.; Gogotsi, Y. Carbon 2017, 118, 642. doi: 10.1016/j.carbon.2017.03.094

    111. [111]

      (111) Zeiger, M.; Ariyanto, T.; Kruener, B.; Peter, N. J.; Fleischmann, S.; Etzold, B. J. M.; Presser, V. J. Mater. Chem. A 2016, 4, 18899. doi: 10.1039/c6ta08900c

    112. [112]

      (112) Pang, Z. Y.; Li, G. S.; Zou, X. L.; Sun, C. T.; Hu, C. H.; Tang, W.; Ji, L.; Hsu, H. Y.; Xu, Q.; Lu, X. G. J. Energy Chem. 2021, 56, 512. doi: 10.1016/j.jechem.2020.08.042

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    6. [6]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(0)
  • Abstract views(104)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return