Citation: Huimin Liu, Kezhi Li, Xin Zhang, Xuemin Yin, Qiangang Fu, Hejun Li. SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230402. doi: 10.3866/PKU.WHXB202304026
-
As technology and society have continued to develop, the demand for energy storage solutions has increased significantly. Indeed, the development of low-cost, low-carbon, environmentally friendly energy conversion and storage systems is required to address the environmental and ecological problems faced by society. Due to their fast charging and discharging speeds, long cycle life and environmentally friendly characteristics, supercapacitors are widely used in many fields, especially in wind power generation systems, communication and transportation. Among all kinds of electrode materials, silicon carbide (SiC) nanomaterials and SiC-derived carbon (SiC-CDC) materials present long life, high power density, and uncomplicated working mechanisms, which hold significant promise as electrode materials for supercapacitors. So far, various strategies and approaches for controlling the microstructure of SiC nanomaterials and SiC-CDC materials have been developed to achieve further improvement from preparation methods to electrochemical properties. As such, this review systematically introduces the common preparation methods of SiC nanomaterials and SiC-CDC, including the template method, chemical vapor deposition (CVD) method, high temperature halogen etching method and high temperature thermal decomposition process for preparing SiC-CDC. Furthermore, the advantages and disadvantages of different preparation methods are discussed. Additionally, the review covers the progress in employing SiC nanomaterials and SiC-CDC materials as supercapacitor electrode materials in detail. However, despite this progress, the commercial application of SiC nanomaterials and SiC-CDC materials as supercapacitor electrodes has been restricted by some problems, in particular their limited conductivity and poor wettability. More importantly, the low energy density of supercapacitors is still a major problem. Thus, current methods and developmental trends of the strategies to improve electrochemical performance such as “highly conductive carbon material composite”, “heteroatomic doping”, “pseudocapacitance composites”, “multi-stage pore structure design”, “chemical activation” are further analyzed with regards to the current challenges. For example, the introduction of heteroatoms and functional group molecules for reactions into SiC and SiC-CDC materials can inhibit the agglomeration of materials (such as particles and nanosheets), improve their conductivity and wettability, and enhance their specific capacitance. Finally, the challenges and opportunities in the application of SiC nanomaterials and their derived carbons in the field of energy storage for supercapacitors are summarized and prospected. As current preparation methods are limited to the laboratory scale, the combination and improvement of different preparation methods and the development of large-scale and low-cost preparation technology are still the directions of the next efforts. This comprehensive review is expected to further advance the research of SiC nanomaterials and SiC-CDC materials.
-
-
[1]
(1) Armaroli, N.; Balzani, V. Energy Environ. Sci. 2011, 4, 3193. doi: 10.1039/c1ee01249e
-
[2]
(2) Gonzalez, A.; Goikolea, E.; Andoni Barrena, J.; Mysyk, R. Renew. Sust. Energ. Rev. 2016, 58, 1189. doi: 10.1016/j.rser.2015.12.249
-
[3]
(3) Hou, Z. G.; Zhang, X. Q.; Chen, J. W.; Qian, Y. T.; Chen, L. F.; Lee, P. S. Adv. Energy Mater. 2022, 12, 2104053. doi: 10.1002/aenm.202104053
-
[4]
(4) Lv, J. Q.; Zeng, P.; Abbas, S. C.; Guan, X. F.; Luo, P. H.; Chen, D. G.; Wang, Y. B. J. Mater. Chem. A 2019, 7, 16876. doi: 10.1039/c9ta04421c
-
[5]
(5) Zhao, H. Y.; Dong, W. X.; Deng, Y.; Chen, L. F.; Zhao, C. F.; Zhang, C. L.; Zhou, J.; Qu, Y. F.; Li, Y. S.; Li, D. J.; et al. Interdiscip. Mater. 2022, 1, 537. doi: 10.1002/idm2.12057
-
[6]
(6) Zhang, K. L.; Wang, L.; Cai, W. L.; Chen, L. F.; Wang, D.; Chen, Y. H.; Pan, H. L.; Wang, L. B.; Qian, Y. T. Inorg. Chem. Front. 2019, 6, 955. doi: 10.1039/c9qi00052f
-
[7]
(7) Acharya, J.; Ko, T. H.; Seo, M. K.; Khil, M. S.; Kim, H. Y.; Kim, B. S. J. Colloid Interface Sci. 2020, 564, 65. doi: 10.1016/j.jcis.2019.12.098
-
[8]
(8) Ojha, G. P.; Pant, B.; Park, S. J.; Park, M.; Kim, H. Y. J. Colloid Interface Sci. 2017, 494, 338. doi: 10.1016/j.jcis.2017.01.100
-
[9]
(9) Acharya, J.; Pant, B.; Ojha, G. P.; Park, M. J. Mater. Chem. A 2022, 10, 7999. doi: 10.1039/d1ta11063b
-
[10]
(10) Dong, W. X.; Qu, Y. F.; Liu, X.; Chen, L. F. FlatChem 2023, 37, 100467. doi: 10.1016/j.flatc.2022.100467
-
[11]
(11) Heuser, S.; Yang, N. J.; Hof, F.; Schulte, A.; Schoenherr, H.; Jiang, X. Small 2018, 14, 1801857. doi: 10.1002/smll.201801857
-
[12]
(12) Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumalai, J. Renew. Sust. Energ. Rev. 2019, 101, 123. doi: 10.1016/j.rser.2018.10.026
-
[13]
(13) Wang, Y. F.; Zhang, L.; Hou, H. Q.; Xu, W. H.; Duan, G. G.; He, S. J.; Liu, K. M.; Jiang, S. H. J. Mater. Sci. 2021, 56, 173. doi: 10.1007/s10853-020-05157-6
-
[14]
(14) Ojha, G. P.; Kang, G. W.; Kuk, Y. S.; Hwang, Y. E.; Kwon, O. H.; Pant, B.; Acharya, J.; Park, Y. W.; Park, M. Nanomaterials 2023, 13, 150. doi: 10.3390/nano13010150
-
[15]
(15) Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Prog. Mater. Sci. 2015, 72, 1. doi: 10.1016/j.pmatsci.2015.01.003
-
[16]
(16) Nguyen, T. K., Nguyen; Sadegh, A.; Dao, D. V. Small 2021, 17, 2101775. doi: 10.1002/smll.202101775
-
[17]
(17) Zhou, D.; Seraphin, S. Chem. Phys. Lett. 1994, 222, 233. doi: 10.1016/0009-2614(94)00342-4
-
[18]
(18) Liang, P. P.; Li, H. X.; Wang, G.; Han, J. S.; Yuan, B.; Cao, Y. N.; Zhang, Q. Mater. Lett. 2021, 284, 129014. doi: 10.1016/j.matlet.2020.129014
-
[19]
(19) Liu, H. M.; Li, K. Z.; Chen, H.; Liu, B.; Yin, X. M. Ceram. Int. 2022, 48, 34543. doi: 10.1016/j.ceramint.2022.08.038
-
[20]
(20) Tian, X. K.; Chen, X. Y.; Ma, C. L.; Su, K.; Geng, Q. K.; Zhao, F.; Liu, X. H. Ceram. Int. 2022, 48, 36273. doi: 10.1016/j.ceramint.2022.08.186
-
[21]
(21) Li, W. F.; Huang, Q. F.; Guo, H. S.; Hou, Y. G. Ceram. Int. 2018, 44, 4500. doi: 10.1016/j.ceramint.2017.12.015
-
[22]
-
[23]
(23) Zeraati, M.; Tahmasebi, K.; Irannejad, A. J. Nanostruct. 2020, 10, 660. doi: 10.22052/jns.2020.03.019
-
[24]
-
[25]
(25) Zhang, M. J. Phys. Chem. Solids 2017, 103, 1. doi: 10.1016/j.jpcs.2016.11.026
-
[26]
(26) Xi, G. C.; Peng, Y. Y.; Wan, S. M.; Li, T. W.; Yu, W. C.; Qian, Y. T. J. Phys. Chem. B 2004, 108, 20102. doi: 10.1021/jp0462153
-
[27]
(27) Dong, C.; Zou, G. F.; Liu, E.; Xi, B. J.; Huang, T.; Qian, Y. T. J. Am. Ceram. Soc. 2007, 90, 653. doi: 10.1111/j.1551-2916.2006.01439.x
-
[28]
(28) Li, Y. B.; Xie, S. S.; Zou, X. P.; Tang, D. S.; Liu, Z. Q.; Zhou, W. Y.; Wang, G. J. Cryst. Growth 2001, 223, 125. doi: 10.1016/s0022-0248(01)00597-8
-
[29]
-
[30]
(30) Chiu, S. C.; Huang, C. W.; Li, Y. Y. J. Phys. Chem. C 2007, 111, 10294. doi: 10.1021/jp0687192
-
[31]
(31) Kita, K. i.; Narisawa, M.; Nakahira, A.; Mabuchi, H.; Sugimoto, M.; Yoshikawa, M. J. Mater. Sci. 2010, 45, 3397. doi: 10.1007/s10853-010-4346-2
-
[32]
(32) Wang, L.; Wei, G. G.; Gao, F. M.; Li, C. M.; Yang, W. Y. Nanoscale 2015, 7, 7585. doi: 10.1039/c5nr00952a
-
[33]
(33) Tang, M.; Yu, Z. J.; Yu, Y. X.; Zhang, L. T.; Chen, L. F. J. Mater. Sci. 2009, 44, 1633. doi: 10.1007/s10853-009-3246-9
-
[34]
(34) Chen, J. J.; Liao, X.; Wang, M. M.; Liu, Z. X.; Zhang, J. D.; Ding, L. J.; Gao, L.; Li, Y. Nanoscale 2015, 7, 6374. doi: 10.1039/c5nr00776c
-
[35]
-
[36]
(36) Li, D.; Xia, Y. N. Nano Lett. 2004, 4, 933. doi: 10.1021/nl049590f
-
[37]
(37) Liu, H. A.; Balkus Jr, K. J. Mater. Lett. 2009, 63, 2361. doi: 10.1016/j.matlet.2009.08.009
-
[38]
(38) Wei, J.; Li, X. T.; Wang, Y.; Chen, B.; Zhang, M. J.; Qin, C. M. J. Am. Ceram. Soc. 2020, 103, 6187. doi: 10.1111/jace.17396
-
[39]
(39) Fan, J. Y.; Li, H. X.; Wang, J.; Xiao, M. Appl. Phys. Lett. 2012, 101, 131906. doi: 10.1063/1.4755778
-
[40]
(40) Zhu, J.; Liu, Z.; Wu, X. L.; Xu, L. L.; Zhang, W. C.; Chu, P. K. Nanotechnology 2007, 18, 365603. doi: 10.1088/0957-4484/18/36/365603
-
[41]
(41) Xiong, H. W.; Zhao, L. Z.; Chen, H. H.; Wang, X. F.; Zhou, K. C.; Zhang, D. J. Alloys Compd. 2019, 809, 151824. doi: 10.1016/j.jallcom.2019.151824
-
[42]
(42) Xiong, H. W.; Chen, H. H.; Zhao, L. Z.; Huang, Y. J.; Zhou, K. C.; Zhang, D. J. Eur. Ceram. Soc. 2019, 39, 2648. doi: 10.1016/j.jeurceramsoc.2019.02.045
-
[43]
-
[44]
(44) Batisse, N.; Guerin, K.; Dubois, M.; Hamwi, A.; Spinelle, L.; Tomasella, E. Thin Solid Films 2010, 518, 6746. doi: 10.1016/j.tsf.2010.05.120
-
[45]
(45) Kraft, T.; Nickel, K. G.; Gogotsi, Y. G. J. Mater. Sci. 1998, 33, 4357. doi: 10.1023/a:1004480814477
-
[46]
(46) Xi, J. Q.; Liu, C.; Morgan, D.; Szlufarska, I. Acta Mater. 2021, 209, 116803. doi: 10.1016/j.actamat.2021.116803
-
[47]
(47) Badami, D. V. Carbon 1965, 3, 53. doi: 10.1016/0008-6223(65)90027-8
-
[48]
(48) Cheng, W. Q.; Xiong, Y. L.; Ding, L. J.; Li, H. L.; Yang, J. H.; Zhu, M. M.; Chen, J. J.; Zhang, G. J. J. Cryst. Growth 2022, 599, 126903. doi: 10.1016/j.jcrysgro.2022.126903
-
[49]
(49) Fujisawa, K.; Lei, Y.; de Tomas, C.; Suarez Martinez, I.; Zhou, C.; Lin, Y. C.; Subramanian, S.; Elias, A. L.; Fujishige, M.; Takeuchi, K.; et al. Carbon 2019, 142, 78. doi: 10.1016/j.carbon.2018.10.032
-
[50]
(50) Pan, H.; Zang, J. B.; Dong, L.; Li, X. H.; Wang, Y. H.; Wang, Y. J. Electrochem. Commun. 2013, 37, 40. doi: 10.1016/j.elecom.2013.10.014
-
[51]
(51) Pan, H.; Zang, J. B.; Li, X. H.; Wang, Y. H. Carbon 2014, 69, 630. doi: 10.1016/j.carbon.2013.12.022
-
[52]
(52) Zou, X. L.; Ji, L.; Hsu, H. Y.; Zheng, K.; Pang, Z. Y.; Lu, X. G. J. Mater. Chem. A 2018, 6, 12724. doi: 10.1039/c8ta03922d
-
[53]
(53) Fu, Q. G.; Zhang, P.; Zhuang, L.; Zhou, L.; Zhang, J. P.; Wang, J.; Hou, X. H.; Riedel, R.; Li, H. J. J. Mater. Sci. Technol. 2022, 96, 31. doi: 10.1016/j.jmst.2021.03.076
-
[54]
(54) Yin, X. M.; Han, L. Y.; Liu, H. M.; Li, N.; Song, Q.; Fu, Q. G.; Zhang, Y. L.; Li, H. J. Adv. Funct. Mater. 2022, 32, 2204965. doi: 10.1002/adfm.202204965
-
[55]
(55) Sarno, M.; Galvagno, S.; Piscitelli, R.; Portofino, S.; Ciambelli, P. Ind. Eng. Chem. Res. 2016, 55, 6025. doi: 10.1021/acs.iecr.6b00737
-
[56]
(56) Yang, B. C.; Sun, R. X.; Li, X. J.; Ma, M. D.; Zhang, X. R.; Wang, Z. X.; Yi, W. C.; Zhang, Z.; Yang, R. L.; Sun, H. R.; et al. J. Mater. Sci. 2021, 56, 16068. doi: 10.1007/s10853-021-06318-x
-
[57]
(57) Hou, J. H.; Fang, L.; Wang, X. Z.; Gao, H.; Wang, G. X. Chem. Commun. 2022, 58, 12455. doi: 10.1039/d2cc04723c
-
[58]
(58) Zhang, Z. H.; Tan, J.; Cheng, L. S.; Yang, W. M. Ceram. Int. 2021, 47, 24652. doi: 10.1016/j.ceramint.2021.05.187
-
[59]
(59) Zhao, Y. X.; Kang, W. M.; Li, L.; Yan, G. L.; Wang, X. Q.; Zhuang, X. P.; Cheng, B. W. Electrochim. Acta 2016, 207, 257. doi: 10.1016/j.electacta.2016.05.003
-
[60]
(60) Li, W. J.; Liu, Q.; Fang, Z.; Wang, L.; Chen, S. L.; Gao, F. M.; Ji, Y.; Yang, W. Y.; Fang, X. S. Adv. Energy Mater. 2019, 9, 1900073. doi: 10.1002/aenm.201900073
-
[61]
(61) Chen, Y. Q.; Zhang, X. N.; Xie, Z. P. ACS Nano 2015, 9, 8054. doi: 10.1021/acsnano.5b01784
-
[62]
(62) Li, X. X.; Liu, Q.; Chen, S. L.; Li, W. J.; Liang, Z.; Fang, Z.; Yang, W. Y.; Tian, Y.; Yang, Y. Energy Storage Mater. 2020, 27, 261. doi: 10.1016/j.ensm.2020.02.009
-
[63]
(63) Gu, L.; Wang, Y. W.; Fang, Y. J.; Lu, R.; Sha, J. J. Power Sources 2013, 243, 648. doi: 10.1016/j.jpowsour.2013.06.050
-
[64]
(64) Li, X. X.; Li, W. J.; Liu, Q.; Chen, S. L.; Wang, L.; Gao, F. M.; Shao, G.; Tian, Y.; Lin, Z. F.; et al. Adv. Funct. Mater. 2021, 31, 2008901. doi: 10.1002/adfm.202008901
-
[65]
(65) Chang, C. H.; Hsia, B.; Alper, J. P.; Wang, S.; Luna, L. E.; Carraro, C.; Lu, S. Y.; Maboudian, R. ACS Appl. Mater. Interfaces 2015, 7, 26658. doi: 10.1021/acsami.5b08423
-
[66]
(66) Li, X. X.; Chen, J. J.; Chen, S. L.; Li, W. J.; Yang, J. H.; Hu, F.; Wei, Q. L.; Zhao, X. S.; Zhang, X. F.; Yang, W. Y. J. Mater. Chem. A 2022, 10, 15708. doi: 10.1039/d2ta03866h
-
[67]
(67) Zhuang, H.; Yang, N. J.; Zhang, L.; Fuchs, R.; Jiang, X. ACS Appl. Mater. Interfaces 2015, 7, 10886. doi: 10.1021/acsami.5b02024
-
[68]
(68) Chen, Q. Q.; Jiang, Y.; Wang, Y.; Li, H.; Yu, C. P.; Cui, J. W.; Qin, Y. Q.; Sun, J.; Yan, J.; Zheng, H. M.; et al. Inorg. Chem. Commun. 2019, 106, 174. doi: 10.1016/j.inoche.2019.06.009
-
[69]
(69) Kim, M.; Oh, I.; Kim, J. Chem. Eng. J. 2016, 289, 170. doi: 10.1016/j.cej.2015.12.087
-
[70]
(70) Liu, S.; Wang, E. H.; Liu, S. C.; Guo, C. Y.; Wang, H. L.; Yang, T.; Hou, X. M. J. Mater. Sci. Technol. 2022, 110, 178. doi: 10.1016/j.jmst.2021.09.012
-
[71]
(71) Sun, Q. Y.; Tu, R.; Xu, Q. F.; Zhang, C. F.; Li, J.; Ohmori, H. S.; Kosinova, M.; Basu, B.; Yan, J. S.; Li, S.; et al. J. Power Sources 2019, 444, 227308. doi: 10.1016/j.jpowsour.2019.227308
-
[72]
(72) Abbas, S. C.; Lin, C. M.; Hua, Z. F.; Deng, Q. D.; Huang, H.; Ni, Y. H.; Cao, S. L.; Ma, X. J. Chem. Eng. J. 2022, 433, 133738. doi: 10.1016/j.cej.2021.133738
-
[73]
(73) Xia, M. Y.; Ning, J.; Feng, X.; Guo, H. B.; Wang, D.; Zhang, J. C.; Hao, Y. Chem. Eng. J. 2022, 428, 131114. doi: 10.1016/j.cej.2021.131114
-
[74]
(74) Naskar, P.; Maiti, A.; Chakraborty, P.; Kundu, D.; Biswas, B.; Banerjee, A. J. Mater. Chem. A 2021, 9, 1970. doi: 10.1039/d0ta09655e
-
[75]
(75) Chen, J. H.; Zhang, Y. J.; Hou, X. M.; Su, L.; Fan, H. L.; Chou, K. C. RSC Adv. 2016, 6, 19626. doi: 10.1039/c5ra27291b
-
[76]
(76) Kim, M.; Kim, J. Nanotechnology 2017, 28, 195401. doi: 10.1088/1361-6528/aa6812
-
[77]
(77) Chen, Y. Q.; Zhang, X. N.; Xue, W. J.; Xie, Z. P. ACS Appl. Mater. Interfaces 2020, 12, 32514. doi: 10.1021/acsami.0c04825
-
[78]
(78) Yin, X. M.; Li, H. J.; Yuan, R. M.; Lu, J. H. J. Mater. Sci. Technol. 2021, 81, 162. doi: 10.1016/j.jmst.2020.10.085
-
[79]
(79) Yin, X. M.; Li, H. J.; Han, L. Y.; Yuan, R. M.; Lu, J. H. J. Colloid Interface Sci. 2020, 577, 481. doi: 10.1016/j.jcis.2020.05.101
-
[80]
(80) Yin, X. M.; Li, H. J.; Yuan, R. M.; Lu, J. H. J. Colloid Interface Sci. 2021, 586, 219. doi: 10.1016/j.jcis.2020.10.086
-
[81]
(81) Zhao, J.; Li, Z. J.; Zhang, M.; Meng, A.; Li, Q. D. ACS Sustainable Chem. Eng. 2016, 4, 3598. doi: 10.1021/acssuschemeng.6b00697
-
[82]
(82) Meng, A.; Yang, Z.; Li, Z. J.; Yuan, X. C.; Zhao, J. J. Alloys Compd. 2018, 746, 93. doi: 10.1016/j.jallcom.2018.02.280
-
[83]
(83) Zhao, J.; Li, Z. J.; Zhang, M.; Meng, A.; Li, Q. D. J. Power Sources 2016, 332, 355. doi: 10.1016/j.jpowsour.2016.09.128
-
[84]
(84) Hamzan, N. B.; bin Ramly, M. M.; bin Omar, M. F.; Nakajima, H.; Tunmee, S.; Rahman, S. A.; Goh, B. T. Thin Solid Films 2020, 716, 138430. doi: 10.1016/j.tsf.2020.138430
-
[85]
(85) Hamzan, N. B.; bin Ramly, M. M.; Huang, N. M.; Rahman, S. A.; Goh, B. T. Mater. Charact. 2017, 132, 187. doi: 10.1016/j.matchar.2017.08.005
-
[86]
(86) Wang, R. Y.; Li, W. J.; Jiang, L.; Liu, Q.; Wang, L.; Tang, B.; Yang, W. Y. Electrochim. Acta 2022, 406, 139867. doi: 10.1016/j.electacta.2022.139867
-
[87]
(87) Liu, W. N.; Li, X. X.; Li, W. J.; Ye, Y. M.; Wang, H.; Su, P. P.; Yang, W. Y.; Yang, Y. J. Energy Chem. 2022, 66, 30. doi: 10.1016/j.jechem.2021.07.007
-
[88]
(88) Gu, W. T.; Yushin, G. Wiley Interdiscip. Rev. Energy Environ 2014, 3, 424. doi: 10.1002/wene.102
-
[89]
(89) Castro Gutierrez, J.; Celzard, A.; Fierro, V. Front. Mater. 2020, 7, 217. doi: 10.3389/fmats.2020.00217
-
[90]
(90) Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. J. Power Sources 2006, 158, 765. doi: 10.1016/j.jpowsour.2005.09.008
-
[91]
(91) Rufino, B.; Mazerat, S.; Couvrat, M.; Lorrette, C.; Maskrot, H.; Pailler, R. Carbon 2011, 49, 3073. doi: 10.1016/j.carbon.2011.03.029
-
[92]
-
[93]
(93) Young, C.; Lin, J. J.; Wang, J.; Ding, B.; Zhang, X. G.; Alshehri, S. M.; Ahamad, T.; Salunkhe, R. R.; Hossain, S. A.; Khan, J. H.; et al. Chem. Eur. J. 2018, 24, 6127. doi: 10.1002/chem.201705465
-
[94]
(94) Oschatz, M.; Boukhalfa, S.; Nickel, W.; Hofmann, J. P.; Fischer, C.; Yushin, G.; Kaskel, S. Carbon 2017, 113, 283. doi: 10.1016/j.carbon.2016.11.050
-
[95]
(95) Portet, C.; Yushin, G.; Gogotsi, Y. J. Electrochem. Soc. 2008, 155, A531. doi: 10.1149/1.2918304
-
[96]
(96) Kim, M.; Oh, I.; Kim, J. J. Power Sources 2016, 307, 715. doi: 10.1016/j.jpowsour.2016.01.038
-
[97]
(97) Fiset, E.; Bae, J. S.; Rufford, T. E.; Bhatia, S.; Lu, G. Q.; Hulicova-Jurcakova, D. J. Solid State Electrochem. 2014, 18, 703. doi: 10.1007/s10008-013-2306-x
-
[98]
(98) Meier, A.; Weinberger, M.; Pinkert, K.; Oschatz, M.; Paasch, S.; Giebeler, L.; Althues, H.; Brunner, E.; Eckert, J.; Kaskel, S. Microporous Mesoporous Mater. 2014, 188, 140. doi: 10.1016/j.micromeso.2013.12.022
-
[99]
(99) Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.; Kaskel, S.; Yushin, G. ACS Nano 2010, 4, 1337. doi: 10.1021/nn901825y
-
[100]
(100) Ma, C.; Fan, Q. C.; Dirican, M.; Subjalearndee, N.; Cheng, H.; Li, J. J.; Song, Y.; Shi, J. L.; Zhang, X. W. Appl. Surf. Sci. 2021, 545, 148933. doi: 10.1016/j.apsusc.2021.148933
-
[101]
(101) Tee, E.; Tallo, I.; Kurig, H.; Thomberg, T.; Jaenes, A.; Lust, E. Electrochim. Acta 2015, 161, 364. doi: 10.1016/j.electacta.2015.02.106
-
[102]
(102) Tee, E.; Tallo, I.; Thomberg, T.; Janes, A.; Lust, E. J. Electrochem. Soc. 2016, 163, A1317. doi: 10.1149/2.0931607jes
-
[103]
(103) Yan, P. T.; Xu, J.; Wu, C.; Gu, Y.; Zhang, X. S.; Zhang, R. J.; Song, Y. B. Electrochim. Acta 2016, 189, 16. doi: 10.1016/j.electacta.2015.12.022
-
[104]
(104) Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Science 2015, 350, 1508. doi: 10.1126/science.aab3798
-
[105]
(105) Qu, J. Y.; Geng, C.; Lv, S. Y.; Shao, G. H.; Ma, S. Y.; Wu, M. B. Electrochim. Acta 2015, 176, 982. doi: 10.1016/j.electacta.2015.07.094
-
[106]
(106) Pinkert, K.; Oschatz, M.; Borchardt, L.; Klose, M.; Zier, M.; Nickel, W.; Giebeler, L.; Oswald, S.; Kaskel, S.; Eckert, J. ACS Appl. Mater. Interfaces 2014, 6, 2922. doi: 10.1021/am4055029
-
[107]
(107) Liu, F.; Gutes, A.; Carraro, C.; Chu, J.; Maboudian, R. In Graphitization of n-type Polycrystalline Silicon Carbide and Its Application for Micro-Supercapacitors, 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, China, 05-09 June 2011; IEEE: Beijing, China, 2011; p 1879.
-
[108]
(108) Ahmed, M.; Khawaja, M.; Notarianni, M.; Wang, B.; Goding, D.; Gupta, B.; Boeckl, J. J.; Takshi, A.; Motta, N.; Saddow, S. E.; et al. Nanotechnology 2015, 26, 434005. doi: 10.1088/0957-4484/26/43/434005
-
[109]
(109) Yan, P. T.; Xu, J.; Zhang, X. S.; Wu, C.; Gu, Y.; Zhang, R. J. Int. J. Hydrog. Energy 2016, 41, 14820. doi: 10.1016/j.ijhydene.2016.07.045
-
[110]
(110) Alhabeb, M.; Beidaghi, M.; Van Aken, K. L.; Dyatkin, B.; Gogotsi, Y. Carbon 2017, 118, 642. doi: 10.1016/j.carbon.2017.03.094
-
[111]
(111) Zeiger, M.; Ariyanto, T.; Kruener, B.; Peter, N. J.; Fleischmann, S.; Etzold, B. J. M.; Presser, V. J. Mater. Chem. A 2016, 4, 18899. doi: 10.1039/c6ta08900c
-
[112]
(112) Pang, Z. Y.; Li, G. S.; Zou, X. L.; Sun, C. T.; Hu, C. H.; Tang, W.; Ji, L.; Hsu, H. Y.; Xu, Q.; Lu, X. G. J. Energy Chem. 2021, 56, 512. doi: 10.1016/j.jechem.2020.08.042
-
[1]
-
-
[1]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[4]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[5]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[6]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[7]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[8]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[9]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[10]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[11]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[12]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[13]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[14]
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
-
[15]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[16]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[17]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[18]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[19]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[20]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(105)
- HTML views(13)