Citation: Ruiqin Feng, Ye Fan, Yun Fang, Yongmei Xia. Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230402. doi: 10.3866/PKU.WHXB202304020
-
Mixed solutions of polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS) were investigated by capillary electrophoresis, together with other technologies, to confirm the formation of PVP-bound SDS micelles through cation-bridging association, which shows the nature of polyanions and the ability to exchange Na+ of SDS with environmental cations. Because additional water-soluble precursors of nanomaterials are capable of entering the cation-bridging layer of the PVP-SDS pseudo-polyanions, we speculate that the PVP chain and PVP-bound SDS micelles located on both sides of the precursor may act as a two-stage soft template to synthesize nanomaterials with unique morphologies. In this study, PVP-SDS pseudo-polyanions were used as soft templates to promote the growth of gold particles into gold nanoflowers (AuNFs). Tensiometry, conductometry, capillary electrophoresis, and zeta potential measurements confirmed the formation of the new PVP-SDS-HAuCl4 pseudo-polyanions. Transmission electron microscopy, X-ray diffraction, and UV-Vis spectroscopy analyses showed that the AuNFs synthesized in the mixed solution of PVP (50 g·L−1)-SDS (2 mmol·L−1)-HAuCl4 (0.25 mmol·L−1) possessed a face-centered cubic structure with abundant {111} crystal plane, demonstrating an average equivalent diameter of 108 nm with rich nano-protrusion of approximately 16.5 nm on the surface of AuNFs. The mechanistic study shows that PVP mainly acts as an in situ reductant for HAuCl4 in PVP-bound SDS micelles that simultaneously act as the primary template to govern the size of the primary gold crystals. In addition to continuously reducing HAuCl4, PVP functions as a secondary template, leading to primary gold crystals in a finite space linked by the PVP chain through preferential adsorption, stacked, and grown into mature AuNFs. Finally, a lower HAuCl4 concentration and an adequate reduction period are favorable in the aforementioned process dominated by the soft template rather than by the crystal growth rule of gold particles; thus, the reduction rate of HAuCl4 and nucleation-growth competition of gold particles can be regulated. Therefore, the optimal combination of low concentrations of SDS, PVP, and HAuCl4, together with an appropriate reduction period, would result in synergism between the reduction rate of HAuCl4, crystal growth rule of gold particles, and stacking degree of the primary gold crystals. AuNFs show strong surface-enhanced Raman scattering (SERS) activity for the Raman probe molecule of rhodamine 6G, strongly depending on the nano-protrusion morphology of AuNFs. The highest SERS enhancement factor can reach 6.71×107, which is superior to the reported level of the similar AuNFs (106). Because the particle sizes and morphologies of AuNFs can be precisely regulated, this strategy is a facile aqueous one-pot method for the synthesis of nanomaterials under normal temperature and pressure, which eliminates carrier requirements or adsorption interference from cationic surfactants, and has the potential to further enhance the SERS activity of the nanomaterials.
-
-
[1]
(1) Barveen, N. R.; Wang, T. J.; Chang, Y. H.; Yuan, L. Z. J. Alloy. Compd. 2021, 861, 157952. doi: 10.1016/j.jallcom.2020.157952
-
[2]
(2) Ge, K.; Huang, Y.; Zhang, H.; Gu, Y. Sensor Actuat B-Chem. 2022, 361, 131734. doi: 10.1016/j.snb.2022.131734
-
[3]
-
[4]
(4) Zheng, X.; Ye, J.; Chen, W.; Wang, X.; Li, J.; Su, F.; Ding, C.; Huang, Y. ACS Sens. 2022, 7 (10), 3126. doi: 10.1021/acssensors.2c01603
-
[5]
(5) Wei, W.; Xi, Z.; Huang, Q. Chinese J. Chem. Phys. 2021, 34 (2), 197. doi: 10.1063/1674-0068/cjcp2005062
-
[6]
-
[7]
(7) Duval, R. E.; Gouyau, J.; Lamouroux, E. Nanomaterials 2019, 9 (12), 1775. doi: 10.3390/nano9121775
-
[8]
(8) Ning, C. F.; Tian, Y. F.; Zhou, W.; Yin, B. C.; Ye, B. C. Analyst 2019, 144 (9), 2929. doi: 10.1039/c9an00306a
-
[9]
(9) Tang, H.; Zhu, C.; Meng, G.; Wu, N. J. Electrochem. Soc. 2018, 165 (8), B3098. doi: 10.1149/2.0161808jes
-
[10]
(10) Lafuente, M.; Ruiz-Rincón, S.; Mallada, R.; Cea, P.; Pilar Pina, M. Appl. Surf. Sci. 2020, 506, 144663. doi: 10.1016/j.apsusc.2019.144663
-
[11]
(11) Sivashanmugan, K.; Nguyen, V.-H.; Nguyen, B.-S. Mater. Lett. 2020, 271, 127807. doi: 10.1016/j.matlet.2020.127807
-
[12]
(12) Xu, L.; Liu, H.; Zhou, H.; Hong, M. Talanta 2021, 228, 122204. doi: 10.1016/j.talanta.2021.122204
-
[13]
(13) Liu, B. Y.; Yang, M.; Li, H. G. Colloids Surf. A 2017, 520, 213. doi: 10.1016/j.colsurfa.2017.01.087
-
[14]
-
[15]
(15) Liebig, F.; Henning, R.; Sarhan, R. M.; Prietzel, C.; Bargheer, M.; Koetz, J. Nanotechnology 2018, 29 (18), 185603. doi: 10.1088/1361-6528/aaaffd
-
[16]
(16) Ren, Y.; Xu, C.; Wu, M.; Niu, M.; Fang, Y. Colloids Surf. A 2011, 380, 222. doi: 10.1016/j.colsurfa.2011.02.029
-
[17]
(17) Barbosa, S.; Agrawal, A.; Rodriguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Kornowski, A.; Weller, H.; Liz-Marzan, L. M. Langmuir 2010, 26 (18), 14943. doi: 10.1021/la102559e
-
[18]
(18) Chen, H.; Yu, H.; Cui, S.; Liu, C. Int. J. Appl. Ceram. Technol. 2019, 17 (3), 1460. doi: 10.1111/ijac.13261
-
[19]
-
[20]
(20) Javed, R.; Usman, M.; Tabassum, S.; Zia, M. Appl. Surf. Sci. 2016, 386, 319. doi: 10.1016/j.apsusc.2016.06.042
-
[21]
(21) Zhai, Y.; DuChene, J. S.; Wang, Y.-C.; Qiu, J.; Johnston-Peck, A. C.; You, B.; Guo, W.; DiCiaccio, B.; Qian, K.; Zhao, E. W.; et al. Nat. Mater. 2016, 15 (8), 889. doi: 10.1038/nmat4683
-
[22]
(22) Uehara, N.; Sonoda, N.; Iwamatsu, T.; Haneishi, C.; Inagawa, A. Colloids Surf. A 2020, 585, 124113. doi: 10.1016/j.colsurfa.2019.124113
-
[23]
(23) Das, R. S.; Singh, B.; Banerjee, R.; Mukhopadhyay, S. Dalton Trans. 2013, 42 (11), 4068. doi: 10.1039/c2dt32007j
-
[24]
(24) Zhang, Q.; Li, H.; Gao, P.; Wang, L. Chin. J. Catal. 2014, 35 (11), 1793. doi: 10.1016/s1872-2067(14)60203-5
-
[25]
(25) Mei, S.; Qi, H.; Zhou, T.; Li, C. Y. Angew. Chem. Int. Ed. 2017, 56 (44), 13645. doi: 10.1002/anie.201706180
-
[26]
-
[27]
(27) Prieto, G.; Tüysüz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G.-H.; Schüth, F. Chem. Rev. 2016, 116 (22), 14056. doi: 10.1021/acs.chemrev.6b00374
-
[28]
(28) Feng, R.; Wu, Y.; Wang, W.; Fang, Y.; Chen, M.; Xia, Y. J. Mol. Liq. 2022, 354, 118898. doi: 10.1016/j.molliq.2022.118898
-
[29]
(29) Feng, R.; Chen, M.; Fang, Y.; Fan, Y.; Xia, Y. Colloids Surf. A 2023, 671, 131585. doi: 10.1016/j.colsurfa.2023.131585
-
[30]
(30) Guo, S.; Dong, S.; Wang, E. Cryst. Growth Des. 2009, 9 (1), 372. doi: 10.1021/cg800583h
-
[31]
(31) Li, Y.; Xu, R.; Bloor, D. M.; Penfold, J.; Holzwarth, J. F.; Jones, E. W. Langmuir 2000, 16 (23), 8677. doi: 10.1021/la000292h
-
[32]
(32) Patel, A. S.; Juneja, S.; Kanaujia, P. K.; Maurya, V.; Prakash, G. V.; Chakraborti, A.; Bhattacharya, J. Nano-Struct. Nano-Objects 2018, 16, 329. doi: 10.1016/j.nanoso.2018.09.001
-
[33]
(33) Ramos, R. M. C. R.; Jiang, W.; Heng, J. Z. X.; Ko, H. Y. Y.; Ye, E.; Regulacio, M. D. ACS Appl. Nano Mater. 2023, 6 (5), 3963. doi: 10.1021/acsanm.3c00192
-
[34]
(34) Li, J.; Chang, M.; Zhou, X.; Li, D.; Li, Y. Mater. Res. Bull. 2014, 59, 1506. doi: 10.1016/j.materresbull.2014.07.017
-
[35]
(35) Sahu, B. K.; Dwivedi, A.; Pal, K. K.; Pandian, R.; Dhara, S.; Das, A. Appl. Surf. Sci. 2021, 537, 147615. doi: 10.1016/j.apsusc.2020.147615
-
[36]
(36) Li, H.; Liu, H.; Qin, Y.; Mu, Y.; Fang, X.; Zhai, T.; Zhang, X. Plasmonics 2020, 15 (6), 2027. doi: 10.1007/s11468-020-01229-0
-
[37]
(37) Kim, D.; Kim, J.; Henzie, J.; Ko, Y.; Lim, H.; Kwon, G.; Na, J.; Kim, H.-J.; Yamauchi, Y.; You, J. Chem. Eng. J. 2021, 419, 129445. doi: 10.1016/j.cej.2021.129445
-
[1]
-
-
[1]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[2]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[3]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[4]
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
-
[5]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[6]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[7]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[8]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[9]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[10]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[11]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[12]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[13]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[14]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[15]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[16]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[17]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[18]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[19]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[20]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(431)
- HTML views(33)