Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution
- Corresponding author: Lei Ge, gelei@cup.edu.cn
Citation: Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230401. doi: 10.3866/PKU.WHXB202304018
Turner, J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197
doi: 10.1126/science.1103197
Li, Y.; Zhang, H.; Xu, T.; Lu, Z.; Wu, X.; Wan, P.; Sun, X.; Jiang, L. Adv. Funct. Mater. 2015, 25, 1737. doi: 10.1002/adfm.201404250
doi: 10.1002/adfm.201404250
Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Int. J. Hydrog. Energy 2019, 44, 15072. doi: 10.1016/j.ijhydene.2019.04.068
doi: 10.1016/j.ijhydene.2019.04.068
Armaroli, N.; Balzani, V. ChemSusChem 2011, 4, 21. doi: 10.1002/cssc.201000182
doi: 10.1002/cssc.201000182
Ball, M.; Wietschel, M. Int. J. Hydrog. Energy 2009, 34, 615. doi: 10.1016/j.ijhydene.2008.11.014
doi: 10.1016/j.ijhydene.2008.11.014
Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
doi: 10.1038/238037a0
Hashimoto, K.; Irie, H.; Fujishima, A. Jpn. J. Appl. Phys. 2005, 44, 8269. doi: 10.1143/JJAP.44.8269
doi: 10.1143/JJAP.44.8269
Li, X. L.; Yang, G. Q.; Li, S. S.; Xiao, N.; Li, N.; Gao, Y. Q.; Lv, D.; Ge, L. Chem. Eng. J. 2020, 379, 122350. doi: 10.1016/j.cej.2019.122350
doi: 10.1016/j.cej.2019.122350
Li, X. L.; He, R. B.; Dai, Y. J.; Li, S. S.; Xiao, N.; Wang, A. X.; Gao, Y. Q.; Li, N.; Gao, J. F.; Zhang, L. H.; et al. Chem. Eng. J. 2020, 400, 125474. doi: 10.1016/j.cej.2020.125474
doi: 10.1016/j.cej.2020.125474
Zhang, Y.; Yun, S.; Sun, M.; Wang, X.; Zhang, L.; Dang, J.; Yang, C.; Yang, J.; Dang, C.; Yuan, S. J. Colloid Interface Sci. 2021, 604, 441. doi: 10.1016/j.jcis.2021.06.152
doi: 10.1016/j.jcis.2021.06.152
Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174. doi: 10.1039/D2TA05181H
doi: 10.1039/D2TA05181H
Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q. Chin. J. Catal. 2022, 43, 2720. doi: 10.1016/S1872-2067(22)64133-0
doi: 10.1016/S1872-2067(22)64133-0
Gou, X.; Cheng, F.; Shi, Y.; Zhang, L.; Peng, S.; Chen, J.; Shen, P. J. Am. Chem. Soc. 2006, 128, 7222. doi: 10.1021/ja0580845
doi: 10.1021/ja0580845
Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. J. Mater. Sci. Technol. 2022, 112, 85. doi: 10.1016/j.jmst.2021.11.003
doi: 10.1016/j.jmst.2021.11.003
Gao, B.; Chen, W.; Liu, J.; An, J.; Wang, L.; Zhu, Y.; Sillanpää, M. J. Photochem. Photobiol. A 2018, 364, 732. doi: 10.1016/j.jphotochem.2018.07.008
doi: 10.1016/j.jphotochem.2018.07.008
Song, Y.; Zhang, J.; Dong, X.; Li, H. Energy Technol. 2021, 9 (5), 2100033. doi: 10.1002/ente.202100033
doi: 10.1002/ente.202100033
Peng, S.; Wu, Y.; Zhu, P.; Thavasi, V.; Ramakrishna, S.; Mhaisalkar, S. G. J. Mater. Chem. 2011, 21, 15718. doi: 10.1039/C1JM12432C
doi: 10.1039/C1JM12432C
Sun, L.; Qi, Y.; Jia, C. J.; Jin, Z.; Fan, W. Nanoscale 2014, 6, 2649. doi: 10.1039/C3NR06104C
doi: 10.1039/C3NR06104C
Zhou, P.; Zhang, Q.; Xu, Z.; Shang, Q.; Wang, L.; Chao, Y.; Li, Y.; Chen, H.; Lv, F.; Zhang, Q.; et al. Adv. Mater. 2020, 32 (7), 1904249. doi: 10.1002/adma.201904249
doi: 10.1002/adma.201904249
Xiao, N.; Li, S.; Li, X.; Ge, L.; Gao, Y.; Li, N. Chin. J. Catal. 2020, 41, 642. doi: 10.1016/S1872-2067(19)63469-8
doi: 10.1016/S1872-2067(19)63469-8
Ha, Y.; Shi, L.; Yan, X.; Chen, Z.; Li, Y.; Xu, W.; Wu, R. ACS Appl. Mater. Interfaces 2019, 11, 45546. doi: 10.1021/acsami.9b13580
doi: 10.1021/acsami.9b13580
Luo, S.; Li, X.; Zhang, B.; Luo, Z.; Luo, M. ACS Appl. Mater. Interfaces 2019, 11, 26891. doi: 10.1021/acsami.9b07100
doi: 10.1021/acsami.9b07100
Jiang, J.; Liu, Q.; Zeng, C.; Ai, L. J. Mater. Chem. A 2017, 5, 16929. doi: 10.1039/C7TA04893
doi: 10.1039/C7TA04893
Zhao, H.; Yuan, Z. -Y. Catal. Sci. Technol. 2017, 7, 330. doi: 10.1039/C6CY01719C
doi: 10.1039/C6CY01719C
Li, X.; Gao, Y.; Li, N.; Ge, L. Int. J. Hydrog. Energy 2022, 47, 27961. doi: 10.1016/j.ijhydene.2022.06.119
doi: 10.1016/j.ijhydene.2022.06.119
Guo, Y.; Tang, J.; Wang, Z.; Kang, Y. -M.; Bando, Y.; Yamauchi, Y. Nano Energy 2018, 47, 494. doi: 10.1016/j.nanoen.2018.03.012
doi: 10.1016/j.nanoen.2018.03.012
Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S. Nano Energy 2020, 69, 104409. doi: 10.1016/j.nanoen.2019.104409
doi: 10.1016/j.nanoen.2019.104409
Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 893. doi: 10.1039/C7EE03245E
doi: 10.1039/C7EE03245E
Gao, J.; Zhang, F.; Xue, H.; Zhang, L.; Peng, Y.; Li, X.; Gao, Y.; Li, N.; Lei, G. Appl. Catal. B 2021, 281, 119509. doi: 10.1016/j.apcatb.2020.119509
doi: 10.1016/j.apcatb.2020.119509
Sun, Z.; Wang, Y.; Zhang, L.; Wu, H.; Jin, Y.; Li, Y.; Shi, Y.; Zhu, T.; Mao, H.; Liu, J.; et al. Adv. Funct. Mater. 2020, 30 (15), 1910482. doi: 10.1002/adfm.201910482
doi: 10.1002/adfm.201910482
Yu, H.; Fisher, A.; Cheng, D.; Cao, D. ACS Appl. Mater. Interfaces 2016, 8, 21431. doi: 10.1021/acsami.6b04189
doi: 10.1021/acsami.6b04189
Chen, Z.; Wu, R.; Liu, Y.; Ha, Y.; Guo, Y.; Sun, D.; Liu, M.; Fang, F. Adv. Mater. 2018, 30 (30), 1802011. doi: 10.1002/adma.201802011
doi: 10.1002/adma.201802011
Joya, K. S.; Sinatra, L.; AbdulHalim, L. G.; Joshi, C. P.; Hedhili, M. N.; Bakr, O. M.; Hussain, I. Nanoscale 2016, 8, 9695. doi: 10.1039/C6NR00709K
doi: 10.1039/C6NR00709K
Yang, L.; Shi, L.; Wang, D.; Lv, Y.; Cao, D. Nano Energy 2018, 50, 691. doi: 10.1016/j.nanoen.2018.06.023
doi: 10.1016/j.nanoen.2018.06.023
Zou, H.; Li, G.; Duan, L.; Kou, Z.; Wang, J. Appl. Catal. B 2019, 259, 118100. doi: 10.1016/j.apcatb.2019.118100
doi: 10.1016/j.apcatb.2019.118100
Shen, R. C.; Hao, L.; Chen, Q.; Zheng, Q. Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38 (7), 2110014.
doi: 10.3866/PKU.WHXB202110014
Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Energy Environ. Sci. 2021, 14, 1897. doi: 10.1039/D0EE03697H
doi: 10.1039/D0EE03697H
Lu, Z.; Wang, J.; Huang, S.; Hou, Y.; Li, Y.; Zhao, Y.; Mu, S.; Zhang, J.; Zhao, Y. Nano Energy 2017, 42, 334. doi: 10.1016/j.nanoen.2017.11.004
doi: 10.1016/j.nanoen.2017.11.004
Sun, M.; Li, Z.; Liu, Y.; Guo, D.; Xie, Z.; Huang, Q. Int. J. Hydrog. Energy 2020, 45, 31892. doi: 10.1016/j.ijhydene.2020.08.213
doi: 10.1016/j.ijhydene.2020.08.213
Di, T.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 170. doi: 10.1016/j.jmst.2020.03.032
doi: 10.1016/j.jmst.2020.03.032
Xie, Y.; Feng, C.; Guo, Y.; Li, S.; Guo, C.; Zhang, Y.; Wang, J. Appl. Surf. Sci. 2021, 536, 147786. doi: 10.1016/j.apsusc.2020.147786
doi: 10.1016/j.apsusc.2020.147786
Wu, K.; Wu, C.; Bai, W.; Li, N.; Gao, Y.; Ge, L. Colloids Surf. A 2023, 663, 131089. doi: 10.1016/j.colsurfa.2023.131089
doi: 10.1016/j.colsurfa.2023.131089
Li, X.; Song, S.; Gao, Y.; Ge, L.; Song, W.; Ma, T.; Liu, J. Small 2021, 17 (31), 2101315. doi: 10.1002/smll.202101315
doi: 10.1002/smll.202101315
Lu, P.; Yang, Y.; Yao, J.; Wang, M.; Dipazir, S.; Yuan, M.; Zhang, J.; Wang, X.; Xie, Z.; Zhang, G. Appl. Catal. B 2019, 241, 113. doi: 10.1016/j.apcatb.2018.09.025
doi: 10.1016/j.apcatb.2018.09.025
Liu, H.; Zhang, J.; Ao, D. Appl. Catal. B 2018, 221, 433. doi: 10.1016/j.apcatb.2017.09.043
doi: 10.1016/j.apcatb.2017.09.043
Zhu, Y.; Chen, J.; Shao, L.; Xia, X.; Liu, Y.; Wang, L. Appl. Catal. B 2020, 268, 118744. doi: 10.1016/j.apcatb.2020.118744
doi: 10.1016/j.apcatb.2020.118744
Zhang, Y. N.; Gao, M.; Chen, S. T.; Wang, H. Q.; Huo, P. W. Acta Phys. -Chim. Sin. 2023, 39 (6), 2211051.
doi: 10.3866/PKU.WHXB202211051
Wang, S.; Wang, Y.; Zhang, S. L.; Zang, S. Q.; Lou, X. W. Adv. Mater. 2019, 31 (41), 1903404. doi: 10.1002/adma.201903404
doi: 10.1002/adma.201903404
Li, Z.; He, H.; Cao, H.; Sun, S.; Diao, W.; Gao, D.; Lu, P.; Zhang, S.; Guo, Z.; Li, M.; et al. Appl. Catal. B 2019, 240, 112. doi: 10.1016/j.apcatb.2018.08.074
doi: 10.1016/j.apcatb.2018.08.074
Li, T.; Luo, G.; Liu, K.; Li, X.; Sun, D.; Xu, L.; Li, Y.; Tang, Y. Adv. Funct. Mater. 2018, 28 (51), 1805828. doi: 10.1002/adfm.201805828
doi: 10.1002/adfm.201805828
Liu, C.; Yang, Z.; Li, Y. RSC Adv. 2016, 6, 32983. doi: 10.1039/C6RA00984K
doi: 10.1039/C6RA00984K
Tang, J. Y.; Yang, D.; Zhou, W. G.; Guo, R. T.; Pan, W. G.; Huang, C. Y. J. Catal. 2019, 370, 79. doi: 10.1016/j.jcat.2018.12.009
doi: 10.1016/j.jcat.2018.12.009
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661