Citation: Chaoqiong Zhu, Ziming Cai, Peizhong Feng, Weichen Zhang, Kezhen Hui, Xiuhua Cao, Zhenxiao Fu, Xiaohui Wang. Reliability Mechanisms of the Ultrathin-Layered BaTiO3-Based BME MLCC[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230401. doi: 10.3866/PKU.WHXB202304015 shu

Reliability Mechanisms of the Ultrathin-Layered BaTiO3-Based BME MLCC

  • Corresponding author: Ziming Cai, zmcai@cumt.edu.cn Xiaohui Wang, 
  • Received Date: 6 April 2023
    Revised Date: 23 May 2023
    Accepted Date: 24 May 2023
    Available Online: 31 May 2023

    Fund Project: the National Natural Science Foundation of China 52202153the Fundamental Research Funds for the Central Universities 2023QN1034the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University KFZD202002the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University KF202204

  • Currently, the world is at the intersection of the energy and computer revolutions. The electronic information industry, driven by the fields of 5G communication, smartphones, and new energy vehicles, is booming and has become an important pillar of the economic market. Multilayer ceramic capacitors (MLCC), which are passive electronic components with the highest market share, are one of the key products that require breakthroughs in key technologies in the basic electronic component industry, with wide applications in automotive electronics, power grid frequency modulation, aerospace, and other fields. With the trend of miniaturization and thin lamination, the thickness of the dielectric layer in the MLCC is decreasing continuously, whereas the electric field on the single dielectric layer is increasing significantly when the MLCC is applied under the same voltage, particularly for the ultrathin-layered MLCC served under medium/high voltage. Consequently, the reliability of MLCC has become a key product quality indicator. In this study, the deterioration mechanism of ultrathin-layer MLCC is systematically studied via accelerated aging tests, high-temperature impedance spectroscopy, and leakage current tests. During the accelerated aging test, the ceramic dielectrics degrades under the applied strict electric field and temperature, and the oxygen vacancies gradually migrate in grains and transgranularly, finally accumulating near the cathode, as observed by transmission electron microscopy. Consequently, a semiconducting layer with poor insulation performance near the cathode is formed, and the barrier height at the interface is reduced. Based on the results of the high-temperature impedance spectroscopy and leakage current test, the activation energy at the grain boundary and dielectric-electrode interface decreases, and the leakage current density increases significantly for the aged MLCC. The formation of an oxygen-vacancy-enriched semiconducting layer is a great threat to the reliability of MLCC, particularly under the trend of developing increasingly thinner dielectric layers. Therefore, inhibiting the migration and enrichment of oxygen vacancies is a top priority for ensuring the reliability of MLCC. To improve the reliability of ultrathin-layered MLCC, the oxygen vacancy concentration in ceramic dielectrics should be reduced, the activation energy required for its migration should be increased, and the Schottky barrier at the interface should be improved. All these results provide a powerful guide for the design of ultrathin-layered MLCC dielectric materials, which is expected to promote the upgrade iteration of high-end MLCC.
  • 加载中
    1. [1]

      Zhou, J.; Li, L.; Xiong, X. J. Eng. Sci. 2020, 22 (5), 20.  doi: 10.15302/j-sscae-2020.05.003

    2. [2]

      Yang, Z.; Du, H.; Jin, L.; Poelman, D. J. Mater. Chem. A 2021, 9 (34), 18026. doi: 10.1039/d1ta04504k  doi: 10.1039/d1ta04504k

    3. [3]

      Hong, K.; Lee, T. H.; Suh, J. M.; Yoon, S. -H.; Jang, H. W. J. Mater. Chem. C 2019, 7 (32), 9782. doi: 10.1039/C9TC02921D  doi: 10.1039/C9TC02921D

    4. [4]

      Jia, W.; Hou, Y.; Zheng, M.; Xu, Y.; Zhu, M.; Yang, K.; Cheng, H.; Sun, S.; Xing, J. IET Nanodielectr. 2018, 1 (1), 3. doi: 10.1049/iet-nde.2017.0003  doi: 10.1049/iet-nde.2017.0003

    5. [5]

      Tateishi, T.; Suzuki, S.; Banno, K.; Ando, A. Jpn. J. Appl. Phys. 2019, 58, SLLC02. doi: 10.7567/1347-4065/ab38ce  doi: 10.7567/1347-4065/ab38ce

    6. [6]

      Chen, L.; Fu, Q.; Jiang, Z.; Xing, J.; Gu, Y.; Zhang, F.; Jiang, Y.; Gu, H. J. Eu. Ceram. Soc. 2021, 41 (15), 7654. doi: 10.1016/j.jeurceramsoc.2021.08.017  doi: 10.1016/j.jeurceramsoc.2021.08.017

    7. [7]

      Gao, P. Popular Standardization 2003, 4, 34.

    8. [8]

      Gong, H. Research of Nano/Submicron Crystalline Barium Titanate Based Ceramics and Ultra-thin Layered MLCCs. Ph. D. Dissertation, Tsinghua University, Beijing, 2015.

    9. [9]

      Bowes, P. C.; Ryu, G. H.; Baker, J. N.; Dickey, E. C.; Irving, D. L. J. Am. Ceram. Soc. 2021, 104 (11), 5859. doi: 10.1111/jace.17938  doi: 10.1111/jace.17938

    10. [10]

      Lin, C. C.; Wei, W. C. J.; Su, C. Y.; Hsueh, C. H. J. Alloy. Compd. 2009, 485 (1–2), 653. doi: 10.1016/j.jallcom.2009.06.050  doi: 10.1016/j.jallcom.2009.06.050

    11. [11]

      Hong, K.; Lee, T. H.; Suh, J. M.; Park, J. -S.; Kwon, H. -S.; Choi, J.; Jang, H. W. Electron. Mater. Lett. 2018, 14 (5), 629. doi: 10.1007/s13391-018-0066-6  doi: 10.1007/s13391-018-0066-6

    12. [12]

      Polotai, A. V.; Fujii, I.; Shay, D. P.; Yang, G. -Y.; Dickey, E. C.; Randall, C. A., J. Am. Ceram. Soc. 2008, 91 (8), 2540. doi: 10.1111/j.1551-2916.2008.02517.x  doi: 10.1111/j.1551-2916.2008.02517.x

    13. [13]

      Heath, J. P.; Harding, J. H.; Sinclair, D. C.; Dean, J. S. J. Eu. Ceram. Soc. 2019, 39 (4), 1170. doi: 10.1016/j.jeurceramsoc.2018.10.033  doi: 10.1016/j.jeurceramsoc.2018.10.033

    14. [14]

      Fu, Y.; Hou, Y.; Song, B.; Cheng, H.; Liu, X.; Yu, X.; Zheng, M.; Zhu, M. J. Alloy. Compd. 2022, 903, 163995. doi: 10.1016/j.jallcom.2022.163995  doi: 10.1016/j.jallcom.2022.163995

    15. [15]

      Liu, X.; Hou, Y.; Song, B.; Cheng, H.; Fu, Y.; Zheng, M.; Zhu, M. J. Eu. Ceram. Soc. 2022, 42 (3), 973. doi: 10.1016/j.jeurceramsoc.2021.10.048  doi: 10.1016/j.jeurceramsoc.2021.10.048

    16. [16]

      Zhu, C.; Cai, Z.; Cao, X.; Fu, Z.; Li, L.; Wang, X. Adv. Powder Mater. 2022, 1 (3), 100029. doi: 10.1016/j.apmate.2022.01.002.C  doi: 10.1016/j.apmate.2022.01.002.C

    17. [17]

      Zhang, X.; Zhao, L.; Liu, L.; Zhang, Z. A.; Cui, B. Chem. Eng. J. 2022, 435, 135061. doi: 10.1016/j.cej.2022.135061  doi: 10.1016/j.cej.2022.135061

    18. [18]

      Zhu, C.; Cai, Z.; Guo, L.; Li, L.; Wang, X. J. Am. Ceram. Soc. 2021, 104 (1), 273. doi: 10.1111/jace.17433  doi: 10.1111/jace.17433

    19. [19]

      Zhang, J.; Hou, Y.; Zheng, M.; Jia, W.; Zhu, M.; Yan, H.; Suvaci, E. J. Am. Ceram. Soc. 2016, 99 (4), 1375. doi: 10.1111/jace.14100  doi: 10.1111/jace.14100

    20. [20]

      Author Gong, H.; Wang, X.; Tian, Z.; Zhang, H.; Li, L. Electron. Mater. Lett. 2014, 10 (2), 417. doi: 10.1007/s13391-013-3199-7  doi: 10.1007/s13391-013-3199-7

    21. [21]

      Morita, K.; Shimura, T.; Abe, S.; Konishi, Y. Jpn. J. Appl. Phys. 2018, 57, 11UC03. doi: 10.7567/jjap.57.11uc03  doi: 10.7567/jjap.57.11uc03

    22. [22]

      Chikada, S.; Kubota, T.; Honda, A.; Higai, S. i.; Motoyoshi, Y.; Wada, N.; Shiratsuyu, K. J. Appl. Phys. 2016, 120 (14), 142122. doi: 10.1063/1.4963381  doi: 10.1063/1.4963381

    23. [23]

      Hernandez-Lopez, A. M.; Aguilar-Garib, J. A.; Guillemet-Fritsch, S.; Nava-Quintero, R.; Dufour, P.; Tenailleau, C.; Durand, B.; Valdez-Nava, Z. Materials 2018, 11 (10), 1900. doi: 10.3390/ma11101900  doi: 10.3390/ma11101900

    24. [24]

      Saito, Y.; Nakamura, T.; Nada, K.; Sano, H. Jpn. J. Appl. Phys. 2018, 57, 11uc04. doi: 10.7567/jjap.57.11uc04  doi: 10.7567/jjap.57.11uc04

    25. [25]

      Yang, G. Y.; Lian, G. D.; Dickey, E. C.; Randall, C. A.; Barber, D. E.; Pinceloup, P.; Henderson, M. A.; Hill, R. A.; Beeson, J. J.; Skamser, D. J. J. Appl. Phys. 2004, 96 (12), 7500. doi: 10.1063/1.1809268  doi: 10.1063/1.1809268

    26. [26]

      Kaneda, K.; Lee, S.; Donnelly, N. J.; Qu, W.; Randall, C. A.; Mizuno, Y. J. Am. Ceram. Soc. 2011, 94 (11), 3934. doi: 10.1111/j.1551-2916.2011.04623.x  doi: 10.1111/j.1551-2916.2011.04623.x

    27. [27]

      Yang, H.; Cai, Z.; Zhu, C.; Feng, P.; Wang, X. ACS Sustain. Chem. Eng. 2022, 10 (28), 9176. doi: 10.1021/acssuschemeng.2c02155  doi: 10.1021/acssuschemeng.2c02155

    28. [28]

      Yang, G. Y.; Dickey, E. C.; Randall, C. A.; Barber, D. E.; Pinceloup, P.; Henderson, M. A.; Hill, R. A.; Beeson, J. J.; Skamser, D. J. J. Appl. Phys. 2004, 96 (12), 7492. doi: 10.1063/1.1809267  doi: 10.1063/1.1809267

    29. [29]

      Zhang, L.; Pu, Y.; Chen, M. Mater. Today Chem. 2023, 28, 101353. doi: 10.1016/j.mtchem.2022.101353  doi: 10.1016/j.mtchem.2022.101353

    30. [30]

      Xu, C.; Su, R.; Wang, Z.; Wang, Y.; Zhang, D.; Wang, J.; Bian, J.; Wu, C.; Lou, X.; Yang, Y. J. Alloy. Compd. 2019, 784, 173. doi: 10.1016/j.jallcom.2019.01.009  doi: 10.1016/j.jallcom.2019.01.009

    31. [31]

      Zhu, C.; Cai, Z.; Guo, L.; Jiang, Y.; Li, L.; Wang, X. ACS Appl. Energy Mater. 2022, 5 (2), 1560. doi: 10.1021/acsaem.1c02964  doi: 10.1021/acsaem.1c02964

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    7. [7]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    8. [8]

      Lijun Zhou Dongmei Wang Jiameng Wang Tongjie Yao Mei Qi Yin Kong Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    14. [14]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    15. [15]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    16. [16]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(39)
  • Abstract views(1343)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return