Citation:
Wencheng Fang, Dong Liu, Ying Zhang, Hao Feng, Qiang Li. Improved Photoelectrochemical Performance by Polyoxometalate- Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode[J]. Acta Physico-Chimica Sinica,
;2024, 40(2): 230400.
doi:
10.3866/PKU.WHXB202304006
-
Photoelectrochemical water splitting using semiconductor materials is one of the most promising methods for converting solar energy into chemical energy. Among the commonly used semiconductors, p-type CuBi2O4 is considered one of the most suitable photocathode materials and can allow a theoretical photocurrent density of about 20 mA·cm-2 for photoelectrochemical water splitting. However, due to severe charge carrier recombination, the obtained photocurrent density is much lower than the theoretical value. Highly efficient photoelectrochemical performance relies on fast charge carrier separation and transport, and prompt reaction kinetics. In this study, we report the development of a polyoxometalate-modified CuBi2O4/Mg-CuBi2O4 homojunction photocathode to improve both the bulk and interfacial charge carrier transport in the photocathode. For the bulk of the photocathode, the built-in electric field originating from the CuBi2O4/Mg-CuBi2O4 homojunction promotes the migration of photo-excited electrons on the conduction band from pure CuBi2O4 to Mg-doped CuBi2O4. Additionally, the electric field facilitates the transfer of holes from the valence band of Mg-doped CuBi2O4 to pure CuBi2O4. This directional transfer of both photo-excited electrons and holes plays a significant role in promoting separation and suppressing the recombination of the charge carriers. On the surface of the photocathode, the reduced polyoxometalate co-catalyst Ag6[P2W18O62] (AgP2W18) was used as a proton sponge to accelerate surface reaction kinetics and suppress carrier recombination. These synergistic effects improved the photo-generated charge carrier transfer and reaction kinetics. As a result, the novel photocathode displayed excellent photoelectrochemical properties, and the photocurrent density was observed to be -0.64 mA·cm-2 at 0.3 V vs. RHE, which is better than that of -0.39 mA·cm-2 for a pure photocathode. Furthermore, the novel photocathode had an applied bias photon-to-current efficiency (ABPE) higher than 0.19% at 0.3 V vs. RHE. In contrast, the pure photocathode had an ABPE of ~0.12% under the same conditions. Additionally, when H2O2 was used as an electron scavenger, the photocurrent density was -3 mA·cm-2 at 0.3 V vs. RHE, which is an improvement of approximately 1.5 times compared to the pure photocathode. Furthermore, the charge separation and charge injection efficiency of the novel photocathode were significantly improved compared with the pure photocathode. The experimental results conclusively indicate that the formation of the CuBi2O4/Mg-CuBi2O4 homojunction and AgP2W18 modification played a significant role in the improved performance of the CuBi2O4 photocathode. The performance of the novel photocathode was comparable with the results reported in previous studies, demonstrating its promising potential in real applications.
-
-
-
[1]
(1) Rajeshwar, K.; Hossain, M. K.; Macaluso, R. T.; Janaky, C.; Varga, A.; Kulesza, P. J. J. Electrochem. Soc. 2018, 165, H3192. doi: 10.1149/2.0271804jes
-
[2]
(2) Hu, Y.; Wang, J.; Huang, H.; Feng, J.; Liu, W.; Guan, H.; Hao, L.; Li, Z.; Zou, Z. J. Mater. Chem. A 2023, 11, 149.
-
[3]
doi: 10.1039/d2ta07117g
-
[4]
(3) Niu, J.; Peng, Y.; Hu, T.; Chen, Y.; Cheng, J.; Hu, Y. Chem. Eng. J. 2023, 454, 140203. doi: 10.1016/j.cej.2022.140203
-
[5]
(4) Bruziquesi, C. G. O.; Stolzemburg, M. C. P.; de Souza, R. R.; Rodriguez, M.; Rocco, M. L.; Salomão, P. E. A.; Nogueira, A. E.; López-Cabaña, Z. E.; Pereira, M. C.; Silva, A. C. Int. J. Hydrog. Energy 2023, 48, 3456. doi: 10.1016/j.ijhydene.2022.10.195
-
[6]
(5) Qu, L.; Tan, R.; Sivanantham, A.; Kang, M. J.; Jeong, Y. J.; Seo, D. H.; Kim, S.; Cho, I. S. J. Energy Chem. 2022, 71, 201. doi: 10.1016/j.jechem.2022.03.013
-
[7]
(6) Gu, M.; Yan, Z.; Wu, X.; Li, Z.; Dong, Y.; Wang, G. L. Nanoscale 2023, 15, 2954. doi: 10.1039/d2nr05588k
-
[8]
(7) Bi, Y.; Tan, G. Q.; Zhang, B. X.; Yang, Q.; Feng, S. J.; Liu, C. J.; Liu, W. L.; Xia, A.; Ren, H. J.; Liu, Y. J. Alloy. Compd. 2023, 941, 168992. doi: 10.1016/j.jallcom.2023.168992
-
[9]
(8) Sun, M.; Chen, W.; Jiang, X.; Liu, B.; Tan, B.; Luo, L.; Xie, M.; Zhang, Z. ACS Appl. Mater. Interfaces 2022, 14, 43946. doi: 10.1021/acsami.2c12309
-
[10]
(9) Gopannagari, M.; Reddy, D. A.; Hong, D. H.; Joshi Reddy, K. A.; Kumar, D. P.; Ahn, H. S.; Kim, T. K. J. Mater. Chem. A 2022, 10, 6623. doi: 10.1039/d1ta09956f
-
[11]
(10) Bozheyev, F.; Ellmer, K. J. Mater. Chem. A 2022, 10, 9327.
-
[12]
doi: 10.1039/d2ta01108e
-
[13]
(11) Lee, J.; Yoon, H.; Kim, S.; Seo, S.; Song, J.; Choi, B. U.; Choi, S. Y.; Park, H.; Ryu, S.; Oh, J.; et al. Chem. Commun. 2019, 55, 12447. doi: 10.1039/c9cc06092h
-
[14]
(12) Monny, S. A.; Zhang, L.; Wang, Z.; Luo, B.; Konarova, M.; Du, A.; Wang, L. J. Mater. Chem. A 2020, 8, 2498. doi: 10.1039/c9ta10975g
-
[15]
(13) Tan, B.; Reyes, A. M.; Menéndez-Proupin, E.; Reyes-Lillo, S. E.; Li, Y.; Zhang, Z. ACS Energy Lett. 2022, 7, 3492. doi: 10.1021/acsenergylett.2c01750
-
[16]
(14) Wang, X.; Liu, X.; Wu, Y.; Fu, Y.; Zhang, H.; Zhou, M.; Wang, Y. Appl. Catal. B-Environ. 2023, 323, 122182. doi: 10.1016/j.apcatb.2022.122182
-
[17]
(15) Lei, W.; Yu, Y.; Zhang, H.; Jia, Q.; Zhang, S. Mater. Today 2022, 52, 133. doi: 10.1016/j.mattod.2021.10.028
-
[18]
(16) Fan, S.; Chen, Y.; Yang, L. J. Phys. Chem. C 2022, 126, 19446. doi: 10.1021/acs.jpcc.2c05593
-
[19]
(17) Sauty, M.; Lopes, N. M.; Banon, J.-P.; Lassailly, Y.; Martinelli, L.; Alhassan, A.; Chow, Y. C.; Nakamura, S.; Speck, J. S.; Weisbuch, C. Phys. Rev. Lett. 2022, 129, 216602. doi: 10.1103/PhysRevLett.129.216602
-
[20]
(18) Hasanvandian, F.; Zehtab Salmasi, M.; Moradi, M.; Farshineh Saei, S.; Kakavandi, B.; Rahman Setayesh, S. Chem. Eng. J. 2022, 444, 136493. doi: 10.1016/j.cej.2022.136493
-
[21]
(19) Wang, Y.; Wang, H.; He, T. Chemosphere 2021, 264, 128508. doi: 10.1016/j.chemosphere.2020.128508
-
[22]
(20) Li, C.; He, J.; Xiao, Y.; Li, Y.; Delaunay, J.-J. Energy Environ. Sci. 2020, 13, 3269. doi: 10.1039/d0ee02397c
-
[23]
(21) Kumar, M.; Meena, B.; Subramanyam, P.; Suryakala, D.; Subrahmanyam, C. NPG Asia Mater. 2022, 14, 88. doi: 10.1038/s41427-022-00436-x
-
[24]
(22) Hota, P.; Das, A.; Maiti, D. K. Int. J. Hydrog. Energy 2023, 48, 523. doi: 10.1016/j.ijhydene.2022.09.264
-
[25]
(23) Zang, D.; Wang, H. Polyoxometalates 2022, 1, 9140006. doi: 10.26599/POM.2022.9140006
-
[26]
(24) Gao, X.; Wang, J.; Xue, Q.; Ma, Y.-Y.; Gao, Y. ACS Appl. Nano Mater. 2021, 4, 2126. doi: 10.1021/acsanm.0c03406
-
[27]
(25) Ma, K.; Dong, Y.; Zhang, M.; Xu, C.; Ding, Y. J. Colloid Interface Sci. 2021, 587, 613. doi: 10.1016/j.jcis.2020.11.018
-
[28]
(26) Yu, L.; Liu, Q.; Ding, S.; Yu, J.; Peng, S.; Zhang, J.; Jiang, C.; Yang, G. Appl. Surf. Sci. 2022, 602, 154095. doi: 10.1016/j.apsusc.2022.154095
-
[29]
(27) Xin, J.; Pang, H.; Jin, Z.; Wu, Q.; Yu, X.; Ma, H.; Wang, X.; Tan, L.; Yang, G. Inorg. Chem. 2022, 61, 16055. doi: 10.1016/j.jallcom.2022.164907
-
[30]
(28) Du, J.; Ma, Y.-Y.; Cui, W.-J.; Zhang, S.-M.; Han, Z.-G.; Li, R.-H.; Han, X.-Q.; Guan, W.; Wang, Y.-H.; Li, Y.-Q. Appl. Catal. B-Environ. 2022, 318, 121812. doi: 10.1016/j.apcatb.2022.121812
-
[31]
(29) Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Angew. Chem. Int. Ed. 2020, 59, 20779. doi: 10.1002/anie.202008054
-
[32]
(30) Wang, L.; Zhang, Q.; Wei, T.; Li, F.; Sun, Z.; Xu, L. J. Mater. Chem. A 2021, 9, 2912. doi: 10.1039/d0ta10303a
-
[33]
(31) Wang, L.; Li, M.; Zhang, Q.; Li, F.; Xu, L. Inorg. Chem. Front. 2021, 8, 3566. doi: 10.1039/d1qi00503k
-
[34]
(32) Keshipour, S.; Asghari, A. Int. J. Hydrog. Energy 2022, 47, 12865. doi: 10.1016/j.ijhydene.2022.02.058
-
[35]
(33) Ogiwara, N.; Iwano, T.; Ito, T.; Uchida, S. Coord. Chem. Rev. 2022, 462, 214524. doi: 10.1016/j.ccr.2022.214524
-
[36]
(34) McHugh, P. J.; Stergiou, A. D.; Symes, M. D. Adv. Energy Mater. 2020, 10, 2002453. doi: 10.1002/aenm.202002453
-
[37]
(35) Zhang, M.; Li, H.; Zhang, J.; Lv, H.; Yang, G.-Y. Chin. J. Catal. 2021, 42, 855. doi: 10.1016/S1872-2067(20)63714-7
-
[38]
(36) Contant, R.; Klemperer, W. G.; Yaghi, O. Inorg. Synth. 1990, 27, 104. doi: 10.1002/9780470132586.ch18
-
[39]
(37) Ross-Medgaarden, E. I.; Wachs, I. E. J. Phys. Chem. C 2007, 111, 15089. doi: 10.1021/jp074219c
-
[40]
(38) Xu, Y. X.; Jian, J.; Li, F.; Liu, W.; Jia, L. C.; Wang, H. Q. J. Mater. Chem. A 2019, 7, 21997. doi: 10.1039/c9ta07892d
-
[41]
(39) Sun, X.; Li, N.; Wang, X.; Mu, Y.; Su, C.; Cong, X.; Wang, X.; Wu, F.; Wu, G.; Chen, X. Biomater. Adv. 2022, 143, 213179. doi: 10.1016/j.bioadv.2022.213179
-
[42]
(40) Kumar, M.; Ghosh, C. C.; Meena, B.; Ma, T. Y.; Subrahmanyam, C. Sustain. Energy Fuels 2022, 6, 3961. doi: 10.1039/d2se00600f
-
[43]
(41) Li, T.; Li, M.; Jiang, J.; Zhao, Z.; Li, Z.; Zhao, C.; Wang, X.; Dong, S. Appl. Catal. B-Environ. 2023, 122539. doi: 10.1016/j.apcatb.2023.122539
-
[44]
(42) Liu, S.; Zhu, L.; Cao, W.; Li, P.; Zhan, Z.; Chen, Z.; Yuan, X.; Wang, J. J. Alloy. Compd. 2021, 858, 157654. doi: 10.1016/j.jallcom.2020.157654
-
[45]
(43) Cao, J.; Cen, W.; Jing, Y.; Du, Z.; Chu, W.; Li, J. Chem. Eng. J. 2022, 435, 134683. doi: 10.1016/j.cej.2022.134683
-
[46]
(44) Zhang, X.; Dai, J.; Ding, J.; Tan, K. B.; Zhan, G.; Huang, J.; Li, Q. Catal. Sci. Technol. 2022, 12, 2426. doi: 10.1039/d1cy02185k
-
[47]
(45) Wu, Z.; Zhang, Z.; Sun, M.; Tan, B.; Liu, B.; Han, W.; Xie, E.; Li, Y. Adv. Mater. Interfaces 2021, 8, 2101443. doi: 10.1002/admi.202101443
-
[48]
(46) Xu, N.; Li, F.; Gao, L.; Hu, H.; Hu, Y.; Long, X.; Ma, J.; Jin, J. ACS Sustain. Chem. Eng. 2018, 6, 7257. doi: 10.1021/acssuschemeng.7b04133
-
[49]
(47) Xu, X.; Li, Y.; Liu, C.; Zhang, P.; Fan, K.; Wu, X.; Shan, Y.; Li, F. Dalton Trans. 2023, 52, 5848. doi: 10.1039/d3dt00542a
-
[50]
(48) Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical Water Splitting Standards, Experimental Methods, and Protocols; Springer: New York, NY, USA, 2013; pp. 63–68.
-
[51]
(49) Hu, Y.; Hu, Q.; Qi, Y.; Zhang, W.; Liu, C.; Wang, Y.; Guan, H.; Hao, L. Dalton Trans. 2023, doi: 10.1039/d2dt04009c
-
[52]
(50) Yuan, N.; Zhang, J.; Zhang, S.; Chen, G.; Meng, S.; Fan, Y.; Zheng, X.; Chen, S. J. Phys. Chem. C 2020, 124, 8561. doi: 10.1021/acs.jpcc.0c00422
-
[53]
(51) Gu, L.; Hou, X.; Lei, Y.; Gou, S.; Yang, X.; He, W.; Zheng, Z. J. Alloy. Compd. 2022, 904, 163934. doi: 10.1016/j.jallcom.2022.163934
-
[54]
(52) Wei, S.; Wang, C.; Long, X.; Wang, T.; Wang, P.; Zhang, M.; Li, S.; Ma, J.; Jin, J.; Wu, L. Nanoscale 2020, 12, 15193. doi: 10.1039/d0nr04473c
-
[55]
(53) Lamers, M.; Sahre, M.; Müller, M. J.; Abou-Ras, D.; van de Krol, R.; Abdi, F. F. APL Mater. 2020, 8, 061101. doi: 10.1063/5.0003005
-
[56]
(54) Berglund, S. P.; Abdi, F. F.; Bogdanoff, P.; Chemseddine, A.; Friedrich, D.; van de Krol, R. Chem. Mater. 2016, 28, 4231. doi: 10.1021/acs.chemmater.6b00830
-
[57]
(55) Wang, J.; Ni, G.; Liao, W.; Liu, K.; Chen, J.; Liu, F.; Zhang, Z.; Jia, M.; Li, J.; Fu, J. Angew. Chem. Int. Ed. 2022, 62, e202217026. doi: 10.1002/anie.202217026
-
[58]
(56) Wang, J.; Zhao, C.; Yuan, S.; Li, X.; Zhang, J.; Hu, X.; Lin, H.; Wu, Y.; He, Y. J. Colloid Interface Sci. 2023, 638, 427. doi: 10.1016/j.jcis.2023.02.005
-
[59]
(57) Pakdel, A.; Khan, A. U.; Pawula, F.; Hébert, S.; Mori, T. Adv. Mater. Interfaces 2022, 9, 2200785. doi: 10.1002/admi.202200785
-
[60]
(58) Li, M.; Tian, X.; Zou, X.; Han, X.; Du, C.; Shan, B. Int. J. Hydrog. Energy 2020, 45, 15121. doi: 10.1016/j.ijhydene.2020.03.242
-
[61]
(59) Fang, W.; Tao, R.; Jin, Z.; Sun, Z.; Li, F.; Xu, L. J. Alloy. Compd. 2019, 797, 140. doi: 10.1016/j.jallcom.2019.05.063
-
[62]
(60) Baerends, E. J. Phys. Chem. Chem. Phys. 2017, 19, 15639. doi: 10.1039/c7cp02123b
-
[63]
(61) Dong, W. J.; Navid, I. A.; Xiao, Y.; Lee, T. H.; Lim, J. W.; Lee, D.; Jang, H. W.; Lee, J. L.; Mi, Z. J. Mater. Chem. A 2022, 10, 7869. doi: 10.1039/d2ta00032f
-
[64]
(62) Tan, B.; Liu, B.; Sun, M.; Li, Y.; Cao, Z.; Zhang, Z. J. Mater. Chem. A 2022, 10, 9427. doi: 10.1039/D2TA00476C
-
[65]
(63) Yang, L.; Wang, J.; Ma, T.; Zhang, L. J. Colloid Interface Sci. 2022, 611, 760. doi: 10.1016/j.jcis.2021.11.100
-
[66]
(64) Jiang, W.; Zhang, L.; Ni, C.; Shi, M.; Zhao, Y.; Deng, Y.; Chi, H.; Chen, R.; Wang, X.; Li, R.; et al. Angew. Chem. Int. Ed. 2023, 62, e202302575. doi: 10.1002/anie.202302575
-
[67]
(65) He, H.; Huang, X.; Liu, C.; Li, D.; Chen, S.; Yan, Z.; Liu, Y. Appl. Surfaces Sci. 2023, 610, 155493. doi: 10.1016/j.apsusc.2022.155493
-
[68]
(66) Mary, A. S.; Murugan, C.; Pandikumar, A. J. Colloid Interface Sci. 2022, 608, 2482. doi: 10.1016/j.jcis.2021.10.172
-
[69]
(67) Chen, J. J.; Vila-Nadal, L.; Sole-Daura, A.; Chisholm, G.; Minato, T.; Busche, C.; Zhao, T.; Kandasamy, B.; Ganin, A. Y.; Smith, R. M.; et al. J. Am. Chem. Soc. 2022, 144, 8951. doi: 10.1021/jacs.1c10584
-
[70]
(68) Gao, L.; Li, F.; Hu, H.; Long, X.; Xu, N.; Hu, Y.; Wei, S.; Wang, C.; Ma, J.; Jin, J. ChemSusChem 2018, 11, 2502. doi: 10.1002/cssc.201800999
-
[71]
(69) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h
-
[1]
-
-
-
[1]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[2]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[3]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[4]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[5]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[6]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[7]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[9]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[10]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[11]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[12]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[13]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[14]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[15]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[16]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[17]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[18]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[19]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[20]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(129)
- HTML views(6)