Citation: Chengcheng Zhang, Zhiyi Wu, Jiahui Shen, Le He, Wei Sun. Silicon Nanostructure Arrays: An Emerging Platform for Photothermal CO2 Catalysis[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230400. doi: 10.3866/PKU.WHXB202304004 shu

Silicon Nanostructure Arrays: An Emerging Platform for Photothermal CO2 Catalysis

  • Corresponding author: Le He, lehe@suda.edu.cn Wei Sun, sunnyway423@zju.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 3 April 2023
    Revised Date: 5 May 2023
    Accepted Date: 8 May 2023
    Available Online: 12 May 2023

    Fund Project: the National Key R & D Program of China 2021YFF0502000the National Natural Science Foundation of China 61721005the National Natural Science Foundation of China 52172221the National Natural Science Foundation of China 51920105005the Fundamental Research Funds for the Central Universities, China 226-2022-00159the U of T-ZJU Joint Seed Fund, China, the Fundamental Research Funds for the Central Universities, China 226-2022-00200the National Postdoctoral Program for Innovative Talents, China BX20220222the China Postdoctoral Science Foundation 2021M702388Jiangsu Funding Program for Excellent Postdoctoral Talent 2022ZB564the Natural Science Foundation of Jiangsu Province, China BK20200101

  • Rapid population growth and the demand for energy, which is powered by unrestricted fossil fuel exploitation, have caused severe environmental problems. Thus, it is crucial to effectively exploit alternative clean energy sources. Solar energy, which is a sustainable renewable energy source, provides an effective strategy for mitigating the energy crisis and greenhouse effect without resulting in additional carbon emissions. The concept of converting carbon dioxide (CO2) into synthetic fuels is a promising solution towards realizing a sustainable carbon-neutral economy. Photocatalysis is a favorable approach for CO2 conversion, but it has limitations in terms of conversion rates, efficiency, and scalability. Therefore, the novel concept of photothermal catalysis has been proposed based on the photothermal effect of catalysts, which allows for the complete exploitation of the solar spectrum, especially infrared light that is typically wasted during photochemical catalysis. Photothermal catalysis, combining photochemical and photothermal effects, can effectively catalyze chemical reactions under mild conditions. Although various metal structures can serve as the light-absorbing and active centers for photothermal catalysis, they suffer from disadvantages such as insufficient light utilization, high cost, and poor stability. Recently, naturally abundant silicon has emerged as a prospective photothermal catalyst, especially silicon nanostructure arrays, which outperform other conventional silicon materials owing to their excellent light-harvesting ability and efficient catalytic performance. Compared with conventional photothermal catalysts, silicon nanostructure arrays have demonstrated unique catalytic performance advantages in the photothermal CO2 reduction reaction. As a platform, silicon nanostructure arrays exhibit an excellent light-harvesting ability, high specific surface area, and versatile hybridization possibilities. This review discusses the fundamental concepts and principles related to the theory and applications of photothermal catalytic CO2 conversion, the functionalities of silicon nanostructure arrays in conventional photothermal CO2 catalytic reduction, and the recent developments in photothermal CO2 catalysis using silicon nanostructure arrays. Ultimately, it provides a guide for the development direction of high-performance nanostructure arrays-based photothermal CO2 catalysts.
  • 加载中
    1. [1]

      Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; et al. Science 2016, 351, 1065. doi: 10.1126/science.aaf1835  doi: 10.1126/science.aaf1835

    2. [2]

      Wang, J.; Kattel, S.; Hawxhurst, C. J.; Lee, J. H.; Tackett, B. M.; Chang, K.; Rui, N.; Liu, C.; Chen, J. G. Angew. Chem. Int. Ed. 2019, 58, 6271. doi: 10.1002/anie.201900781  doi: 10.1002/anie.201900781

    3. [3]

      Yuan, L.; Hung, S.; Tang, Z.; Chen, H.; Xiong, Y.; Xu, Y. ACS Catal. 2019, 9, 4824. doi: 10.1021/acscatal.9b00862  doi: 10.1021/acscatal.9b00862

    4. [4]

      Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E  doi: 10.1039/C3EE41272E

    5. [5]

      Wang, Z.; Song, H.; Liu, H.; Ye, J. Angew. Chem. Int. Ed. 2020, 59, 8016. doi: 10.1002/anie.201907443  doi: 10.1002/anie.201907443

    6. [6]

      Shih, C. F.; Zhang, T.; Li, J.; Bai, C. Joule 2018, 2, 1925. doi: 10.1016/j.joule.2018.08.016  doi: 10.1016/j.joule.2018.08.016

    7. [7]

      Ding, M.; Flaig, R. W.; Jiang, H.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/C8CS00829A  doi: 10.1039/C8CS00829A

    8. [8]

      Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Chem. Soc. Rev. 2017, 46, 4645. doi: 10.1039/c6cs00306k  doi: 10.1039/c6cs00306k

    9. [9]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962. doi: 10.1021/acs.chemrev.8b00400  doi: 10.1021/acs.chemrev.8b00400

    10. [10]

      Han, C.; Li, Y.; Li, J.; Qi, M.; Tang, Z.; Xu, Y. Angew. Chem. Int. Ed. 2021, 60, 7962. doi: 10.1002/anie.202015756  doi: 10.1002/anie.202015756

    11. [11]

      Li, J.; Yuan, L.; Li, S.; Tang, Z.; Xu, Y. J. Mater. Chem. A 2019, 7, 8676. doi: 10.1039/C8TA12427B  doi: 10.1039/C8TA12427B

    12. [12]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    13. [13]

      Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607. doi: 10.1002/adma.201400087  doi: 10.1002/adma.201400087

    14. [14]

      Ni, G.; Li, G.; Boriskina, S.; Li, H.; Yang, W.; Zhang, T.; Chen, G. Nat. Energy 2016, 1, 16126. doi: 10.1038/nenergy.2016.126  doi: 10.1038/nenergy.2016.126

    15. [15]

      Elimelech, M.; Phillip, W. A. Science 2011, 333, 712. doi: 10.1126/science.1200488  doi: 10.1126/science.1200488

    16. [16]

      Quan, Q.; Xie, S. J.; Wang, Y.; Xu, Y. J. Acta Phys. -Chim. Sin. 2017, 33, 2404.  doi: 10.3866/PKU.WHXB201706263

    17. [17]

      Yuan, L.; Xu, Y. Appl. Surf. Sci. 2015, 342, 154. doi: 10.1016/j.apsusc.2015.03.050  doi: 10.1016/j.apsusc.2015.03.050

    18. [18]

      Meng, X.; Liu, L.; Ouyang, S.; Xu, H.; Wang, D.; Zhao, N.; Ye, J. Adv. Mater. 2016, 28, 6781. doi: 10.1002/adma.201600305  doi: 10.1002/adma.201600305

    19. [19]

      Buzzetti, L.; Crisenza, G. E. M.; Melchiorre, P. Angew. Chem. Int. Ed. 2019, 58, 3730. doi: 10.1002/anie.201809984  doi: 10.1002/anie.201809984

    20. [20]

      Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229. doi: 10.1002/adma.201102752  doi: 10.1002/adma.201102752

    21. [21]

      Ghoussoub, M.; Xia, M.; Duchesne, P. N.; Segal, D.; Ozin, G. Energy Environ. Sci. 2019, 12, 1122. doi: 10.1039/C8EE02790K  doi: 10.1039/C8EE02790K

    22. [22]

      Zhu, L.; Gao, M.; Peh, C. K. N.; Ho, G. W. Mater. Horiz. 2018, 5, 323. doi: 10.1039/C7MH01064H  doi: 10.1039/C7MH01064H

    23. [23]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    24. [24]

      Hong, J.; Xu, C.; Deng, B.; Gao, Y.; Zhu, X.; Zhang, X.; Zhang, Y. Adv. Sci. 2022, 9, 2103926. doi: 10.1002/advs.202103926  doi: 10.1002/advs.202103926

    25. [25]

      Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Chem. Soc. Rev. 2020, 50, 2173. doi: 10.1039/d0cs00357c  doi: 10.1039/d0cs00357c

    26. [26]

      Kho, E. T.; Tan, T. H.; Lovell, E.; Wong, R. J.; Scott, J.; Amal, R. Green Energy Environ. 2017, 2, 204. doi: 10.1016/j.gee.2017.06.003  doi: 10.1016/j.gee.2017.06.003

    27. [27]

      Fang, S.; Hu, Y. Chem. Soc. Rev. 2022, 51, 3609. doi: 10.1039/D1CS00782C  doi: 10.1039/D1CS00782C

    28. [28]

      He, L.; Wood, T. E.; Wu, B.; Dong, Y.; Hoch, L. B.; Reyes, L. M.; Wang, D.; Kubel, C.; Qian, C.; Jia, J.; et al. ACS Nano 2016, 10, 5578. doi: 10.1021/acsnano.6b02346  doi: 10.1021/acsnano.6b02346

    29. [29]

      Zhou, J.; Liu, H.; Wang, H. Chin. Chem. Lett. 2023, 34, 107420. doi: 10.1016/j.cclet.2022.04.018  doi: 10.1016/j.cclet.2022.04.018

    30. [30]

      Tou, M.; Michalsky, R.; Steinfeld, A. Joule 2017, 1, 146. doi: 10.1016/j.joule.2017.07.015  doi: 10.1016/j.joule.2017.07.015

    31. [31]

      Qian, C.; Sun, W.; Hung, D. L. H.; Qiu, C.; Makaremi, M.; Hari Kumar, S. G.; Wan, L.; Ghoussoub, M.; Wood, T. E.; Xia, M.; et al. Nat. Catal. 2019, 2, 46. doi: 10.1038/s41929-018-0199-x  doi: 10.1038/s41929-018-0199-x

    32. [32]

      Lv, C.; Bai, X.; Ning, S.; Song, C.; Guan, Q.; Liu, B.; Li, Y.; Ye, J. ACS Nano 2023, 17, 1725. doi: 10.1021/acsnano.2c09025  doi: 10.1021/acsnano.2c09025

    33. [33]

      Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Angew. Chem. Int. Ed. 2014, 53, 11478. doi: 10.1002/anie.201404953  doi: 10.1002/anie.201404953

    34. [34]

      Michalsky, R.; Pfromm, P. H.; Steinfeld, A. Interface Focus 2015, 5, 20140084. doi: 10.1098/rsfs.2014.0084  doi: 10.1098/rsfs.2014.0084

    35. [35]

      Heidlage, M. G.; Kezar, E. A.; Snow, K. C.; Pfromrn, P. H. Ind. Eng. Chem. Res. 2017, 56, 14014. doi: 10.1021/acs.iecr.7b03173  doi: 10.1021/acs.iecr.7b03173

    36. [36]

      Agrafiotis, C.; von Storch, H.; Roeb, M.; Sattler, C. Renew. Sust. Energ. Rev. 2014, 29, 656. doi: 10.1016/j.rser.2013.08.050  doi: 10.1016/j.rser.2013.08.050

    37. [37]

      Gokon, N.; Yamawaki, Y.; Nakazawa, D.; Kodama, T. Int. J. Hydrog. Energy 2010, 35, 7441. doi: 10.1016/j.ijhydene.2010.04.040  doi: 10.1016/j.ijhydene.2010.04.040

    38. [38]

      Han, K.; Wang, Y.; Wang, S.; Liu, Q.; Deng, Z.; Wang, F. Chem. Eng. J. 2021, 421, 129989. doi: 10.1016/j.cej.2021.129989  doi: 10.1016/j.cej.2021.129989

    39. [39]

      Zhao, J.; Guo, X.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Dai, Q.; Zhang, T. Adv. Funct. Mater. 2022, 32, 2204056. doi: 10.1002/adfm.202204056  doi: 10.1002/adfm.202204056

    40. [40]

      Jia, J.; Wang, H.; Lu, Z.; O'Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z.; Li, P.; Qiao, Q.; Wang, L.; et al. Adv. Sci. 2017, 4, 1700252. doi: 10.1002/advs.201700252  doi: 10.1002/advs.201700252

    41. [41]

      Liu, X.; Xing, C.; Yang, F.; Liu, Z.; Wang, Y.; Dong, T.; Zhao, L.; Liu, H.; Zhou, W. Adv. Energy Mater. 2022, 12, 2201009. doi: 10.1002/aenm.202201009  doi: 10.1002/aenm.202201009

    42. [42]

      Li, Z.; Shi, R.; Zhao, J.; Zhang, T. Nano Res. 2021, 14, 4828. doi: 10.1007/s12274-021-3436-6  doi: 10.1007/s12274-021-3436-6

    43. [43]

      Hao, Q.; Li, Z.; Shi, Y.; Li, R.; Li, Y.; Ouyang, S.; Yuan, H.; Zhang, T. Nano Energy 2022, 102, 107723. doi: 10.1016/j.nanoen.2022.107723  doi: 10.1016/j.nanoen.2022.107723

    44. [44]

      Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Science 1999, 285, 692. doi: 10.1126/science.285.5428.692  doi: 10.1126/science.285.5428.692

    45. [45]

      Ballif, C.; Haug, F. J.; Boccard, M.; Verlinden, P. J.; Hahn, G. Nat. Rev. Mater. 2022, 7, 597. doi: 10.1038/s41578-022-00423-2  doi: 10.1038/s41578-022-00423-2

    46. [46]

      Grätzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607  doi: 10.1038/35104607

    47. [47]

      Zhang, D.; Cai, H.; Su, Y.; Sun, W.; Yang, D.; Ozin, G. A. Chem. Catal. 2022, 2, 1893. doi: 10.1016/j.checat.2022.06.001  doi: 10.1016/j.checat.2022.06.001

    48. [48]

      Hou, Y.; Abrams, B. L.; Vesborg, P. C.; Bjorketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O.; et al. Nat. Mater. 2011, 10, 434. doi: 10.1038/nmat3008  doi: 10.1038/nmat3008

    49. [49]

      Yang, J.; Walczak, K.; Anzenberg, E.; Toma, F. M.; Yuan, G.; Beeman, J.; Schwartzberg, A.; Lin, Y.; Hettick, M.; Javey, A.; et al. J. Am. Chem. Soc. 2014, 136, 6191. doi: 10.1021/ja501513t  doi: 10.1021/ja501513t

    50. [50]

      Ali, M.; Zhou, F.; Chen, K.; Kotzur, C.; Xiao, C.; Bourgeois, L.; Zhang, X.; MacFarlane, D. R. Nat. Commun. 2016, 7, 11335. doi: 10.1038/ncomms11335  doi: 10.1038/ncomms11335

    51. [51]

      Shao, M.; Cheng, L.; Zhang, X.; Ma, D.; Lee, S. J. Am. Chem. Soc. 2009, 131, 17738. doi: 10.1021/ja908085c  doi: 10.1021/ja908085c

    52. [52]

      Wang, S.; Zhang, D.; Wang, W.; Zhong, J.; Feng, K.; Wu, Z.; Du, B.; He, J.; Li, Z.; He, L.; et al. Nat. Commun. 2022, 13, 5305. doi: 10.1038/s41467-022-33029-x  doi: 10.1038/s41467-022-33029-x

    53. [53]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037.  doi: 10.3866/PKU.WHXB202209037

    54. [54]

      Tian, L.; Xin, Q.; Zhao, C.; Xie, G.; Akram, M. Z.; Wang, W.; Ma, R.; Jia, X.; Guo, B.; Gong, J. R. Small 2021, 17, 2006530. doi: 10.1002/smll.202006530  doi: 10.1002/smll.202006530

    55. [55]

      Liu, D.; Ma, J.; Long, R.; Gao, C.; Xiong, Y. Nano Today 2017, 17, 96. doi: 10.1016/j.nantod.2017.10.013  doi: 10.1016/j.nantod.2017.10.013

    56. [56]

      Peng, K.; Huang, Z.; Zhu, J. Adv. Mater. 2004, 16, 73. doi: 10.1002/adma.200306185  doi: 10.1002/adma.200306185

    57. [57]

      Lee, S.; Kim, D.; Lee, G.; Kim, G.; Kwak, M.; Fan, R. Biosens. Bioelectron. 2014, 54, 181. doi: 10.1016/j.bios.2013.10.048  doi: 10.1016/j.bios.2013.10.048

    58. [58]

      Seol, M.; Ahn, J.; Choi, J.; Choi, S.; Choi, Y. Nano Lett. 2012, 12, 5603. doi: 10.1021/nl3026955  doi: 10.1021/nl3026955

    59. [59]

      Peng, K.; Lee, S. Adv. Mater. 2011, 23, 198. doi: 10.1002/adma.201002410  doi: 10.1002/adma.201002410

    60. [60]

      Fan, G.; Zhu, H.; Wang, K.; Wei, J.; Li, X.; Shu, Q.; Guo, N.; Wu, D. ACS Appl. Mater. Interfaces 2011, 3, 721. doi: 10.1021/am1010354  doi: 10.1021/am1010354

    61. [61]

      Tsormpatzoglou, A.; Tassis, D.; Dimitriadis, C.; Dózsa, L.; Galkin, N.; Goroshko, D.; Polyarnyi, V.; Chusovitin, E. J. Appl. Phys. 2006, 100, 074313. doi: 10.1063/1.2357642  doi: 10.1063/1.2357642

    62. [62]

      Du, S.; Bian, X.; Zhao, Y.; Shi, R.; Zhang, T. Chem. Res. Chin. Univ. 2022, 38, 723. doi: 10.1007/s40242-022-2039-4  doi: 10.1007/s40242-022-2039-4

    63. [63]

      Zhao, Y.; Gao, W.; Li, S.; Williams, G. R.; Mahadi, A. H.; Ma, D. Joule 2019, 3, 920. doi: 10.1016/j.joule.2019.03.003  doi: 10.1016/j.joule.2019.03.003

    64. [64]

      Li, Y.; Li, R.; Li, Z.; Xu, Y.; Yuan, H.; Ouyang, S.; Zhang, T. Solar RRL 2022, 6, 2200493. doi: 10.1002/solr.202200493  doi: 10.1002/solr.202200493

    65. [65]

      Feng, N.; Lin, H.; Song, H.; Yang, L.; Tang, D.; Deng, F.; Ye, J. Nat. Commun. 2021, 12, 4652. doi: 10.1038/s41467-021-24912-0  doi: 10.1038/s41467-021-24912-0

    66. [66]

      Li, S.; Qi, M.; Fan, Y.; Yang, Y.; Anpo, M.; Yamada, Y. M. A.; Tang, Z.; Xu, Y. Appl. Catal. B-Environ. 2021, 292, 120157. doi: 10.1016/j.apcatb.2021.120157  doi: 10.1016/j.apcatb.2021.120157

    67. [67]

      Lu, K.; Li, Y.; Zhang, F.; Qi, M.; Chen, X.; Tang, Z.; Yamada, Y. M. A.; Anpo, M.; Conte, M.; Xu, Y. Nat. Commun. 2020, 11, 5181. doi: 10.1038/s41467-020-18944-1  doi: 10.1038/s41467-020-18944-1

    68. [68]

      Tong, Y.; Song, L.; Ning, S.; Ouyang, S.; Ye, J. Appl. Catal. B- Environ. 2021, 298, 120551. doi: 10.1016/j.apcatb.2021.120551  doi: 10.1016/j.apcatb.2021.120551

    69. [69]

      Gao, M.; Zhang, T.; Ho, G. W. Nano Res. 2022, 15, 9985. doi: 10.1007/s12274-022-4795-3  doi: 10.1007/s12274-022-4795-3

    70. [70]

      Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Chem. Soc. Rev. 2021, 50, 2173. doi: 10.1039/d0cs00357c  doi: 10.1039/d0cs00357c

    71. [71]

      Song, C.; Wang, Z.; Yin, Z.; Xiao, D.; Ma, D. Chem. Catal. 2022, 2, 52. doi: 10.1016/j.checat.2021.10.005  doi: 10.1016/j.checat.2021.10.005

    72. [72]

      Zhang, F.; Li, Y.; Qi, M.; Yamada, Y. M. A.; Anpo, M.; Tang, Z.; Xu, Y. Chem Catal. 2021, 1, 272. doi: 10.1016/j.checat.2021.01.003  doi: 10.1016/j.checat.2021.01.003

    73. [73]

      Iglesias Juez, A.; Coronado, J. M. Chem 2018, 4, 1490. doi: 10.1016/j.chempr.2018.06.015  doi: 10.1016/j.chempr.2018.06.015

    74. [74]

      Wang, S.; Tountas, A. A.; Pan, W.; Zhao, J.; He, L.; Sun, W.; Yang, D.; Ozin, G. A. Small 2021, 17, 2007025. doi: 10.1002/smll.202007025  doi: 10.1002/smll.202007025

    75. [75]

      Wu, Z.; Li, C.; Li, Z.; Feng, K.; Cai, M.; Zhang, D.; Wang, S.; Chu, M.; Zhang, C.; Shen, J.; et al. ACS Nano 2021, 15, 5696. doi: 10.1021/acsnano.1c00990  doi: 10.1021/acsnano.1c00990

    76. [76]

      Cai, M.; Wu, Z.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C.; Wang, S.; Feng, K.; Xu, A.; et al. Nat. Energy 2021, 6, 807. doi: 10.1038/s41560-021-00867-w  doi: 10.1038/s41560-021-00867-w

    77. [77]

      Ning, S.; Sun, Y.; Ouyang, S.; Qi, Y.; Ye, J. Appl. Catal. B-Environ. 2022, 310, 121063. doi: 10.1016/j.apcatb.2022.121063  doi: 10.1016/j.apcatb.2022.121063

    78. [78]

      Mao, C.; Li, H.; Gu, H.; Wang, J.; Zou, Y.; Qi, G.; Xu, J.; Deng, F.; Shen, W.; Li, J.; et al. Chem 2019, 5, 2702. doi: 10.1016/j.chempr.2019.07.021  doi: 10.1016/j.chempr.2019.07.021

    79. [79]

      Li, Y.; Guan, Q.; Huang, G.; Yuan, D.; Xie, F.; Li, K.; Zhang, Z.; San, X.; Ye, J. Adv. Energy Mater. 2022, 12, 2202459. doi: 10.1002/aenm.202202459  doi: 10.1002/aenm.202202459

    80. [80]

      Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Huang, Y.; Zheng, L.; Zhang, T. Adv. Mater. 2019, 31, 1900509. doi: 10.1002/adma.201900509  doi: 10.1002/adma.201900509

    81. [81]

      Wu, D.; Deng, K.; Hu, B.; Lu, Q.; Liu, G.; Hong, X. ChemCatChem 2019, 11, 1598. doi: 10.1002/cctc.201802081  doi: 10.1002/cctc.201802081

    82. [82]

      Ge, H.; Kuwahara, Y.; Kusu, K.; Bian, Z. F.; Yamashita, H. Appl. Catal. B-Environ. 2022, 317, 121734. doi: 10.1016/j.apcatb.2022.121734  doi: 10.1016/j.apcatb.2022.121734

    83. [83]

      Wei, W.; Wei, Z.; Li, R.; Li, Z.; Shi, R.; Ouyang, S.; Qi, Y.; Philips, D. L.; Yuan, H. Nat. Commun. 2022, 13, 3199. doi: 10.1038/s41467-022-30958-5  doi: 10.1038/s41467-022-30958-5

    84. [84]

      Qi, Y.; Song, L.; Ouyang, S.; Liang, X.; Ning, S.; Zhang, Q.; Ye, J. Adv. Mater. 2020, 32, 1903915. doi: 10.1002/adma.201903915  doi: 10.1002/adma.201903915

    85. [85]

      Wang, L.; Dong, Y.; Yan, T.; Hu, Z.; Jelle, A. A.; Meira, D. M.; Duchesne, P. N.; Loh, J. Y. Y.; Qiu, C.; Storey, E. E.; et al. Nat. Commun. 2020, 11, 2432. doi: 10.1038/s41467-020-16336-z  doi: 10.1038/s41467-020-16336-z

    86. [86]

      Zhu, Z.; Hu, X.; An, X.; Xiao, M.; Zhang, L.; Li, C.; He, L. Chem. Asian J. 2022, 17, 202200993. doi: 10.1002/asia.202200993  doi: 10.1002/asia.202200993

    87. [87]

      Zhu, Z.; Feng, K.; Li, C.; Tang, R.; Xiao, M.; Song, R.; Yang, D.; Yan, B.; He, L. Adv. Mater. 2022, 34, 2108727. doi: 10.1002/adma.202108727  doi: 10.1002/adma.202108727

    88. [88]

      Yuan, H. C.; Yost, V. E.; Page, M. R.; Stradins, P.; Meier, D. L.; Branz, H. M. Appl. Phys. Lett. 2009, 95. doi: 10.1063/1.3231438  doi: 10.1063/1.3231438

    89. [89]

      Wang, S.; Wang, C.; Pan, W.; Sun, W.; Yang, D. Solar RRL 2021, 5, 2000392. doi: 10.1002/solr.202100596  doi: 10.1002/solr.202100596

    90. [90]

      Putwa, S.; Curtis, I. S.; Dasog, M. iScience 2023, 26, 106317. doi: 10.1016/j.isci.2023.106317  doi: 10.1016/j.isci.2023.106317

    91. [91]

      Beri, D. Mater. Adv. 2023, doi: 10.1039/D2MA00984F  doi: 10.1039/D2MA00984F

    92. [92]

      Sun, W.; Qian, C.; Chen, K.; Ozin, G. ChemNanoMat 2016, 2, 847. doi: 10.1002/cnma.201600151  doi: 10.1002/cnma.201600151

    93. [93]

      Sun, W.; Yan, X.; Qian, C.; Duchesne, P. N.; Kumar, S. G. H.; Ozin, G. A. Faraday Discuss. 2020, 222, 424. doi: 10.1039/C9FD00104B  doi: 10.1039/C9FD00104B

    94. [94]

      Battaglia, C.; Cuevas, A.; De Wolf, S. Energy Environ. Sci. 2016, 9, 1552. doi: 10.1039/c5ee03380b  doi: 10.1039/c5ee03380b

    95. [95]

      Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo, J. R.; Atwater, H. A.; Lewis, N. S. Science 2010, 327, 185. doi: 10.1126/science.1180783  doi: 10.1126/science.1180783

    96. [96]

      Oh, I.; Kye, J.; Hwang, S. Nano Lett. 2012, 12, 298. doi: 10.1021/nl203564s  doi: 10.1021/nl203564s

    97. [97]

      Liu, D.; Li, L.; Gao, Y.; Wang, C.; Jiang, J.; Xiong, Y. Angew. Chem. Int. Ed. 2015, 54, 2980. doi: 10.1002/anie.201411200  doi: 10.1002/anie.201411200

    98. [98]

      Yan, X.; Sun, W.; Fan, L.; Duchesne, P. N.; Wang, W.; Kubel, C.; Wang, D.; Kumar, S. G. H.; Li, Y. F.; Tavasoli, A.; et al. Nat. Commun. 2019, 10, 2608. doi: 10.1038/s41467-019-10464-x  doi: 10.1038/s41467-019-10464-x

    99. [99]

      Su, Y.; Wang, S.; Ji, L.; Zhang, C.; Cai, H.; Zhang, H.; Sun, W. Nanoscale 2023, 15, 154. doi: 10.1039/D2NR05140K  doi: 10.1039/D2NR05140K

    100. [100]

      Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T. F. Nat. Nanotechnol. 2014, 9, 19. doi: 10.1038/nnano.2013.271  doi: 10.1038/nnano.2013.271

    101. [101]

      O'Brien, P. G.; Sandhel, A.; Wood, T. E.; Jelle, A. A.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Adv. Sci. 2014, 1, 1400001. doi: 10.1002/advs.201400001  doi: 10.1002/advs.201400001

    102. [102]

      Hoch, L. B.; O'Brien, P. G.; Jelle, A.; Sandhel, A.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. ACS Nano 2016, 10, 9017. doi: 10.1021/acsnano.6b05416  doi: 10.1021/acsnano.6b05416

    103. [103]

      Zhang, D.; Lv, K.; Li, C.; Fang, Y.; Wang, S.; Chen, Z.; Wu, Z.; Guan, W.; Lou, D.; Sun, W.; et al. Solar RRL 2020, 5, 2000387. doi: 10.1002/solr.202000387  doi: 10.1002/solr.202000387

    104. [104]

      Shen, X.; Li, C.; Wu, Z.; Tang, R.; Shen, J.; Chu, M.; Xu, A.; Zhang, B.; He, L.; Zhang, X. Nanoscale 2022, 14, 11568. doi: 10.1039/d2nr02680e  doi: 10.1039/d2nr02680e

    105. [105]

      Chen, J.; Loso, E.; Ebrahim, N.; Ozin, G. A. J. Am. Chem. Soc. 2008, 130, 5420. doi: 10.1021/ja800288f  doi: 10.1021/ja800288f

    106. [106]

      Curti, M.; Schneider, J.; Bahnemann, D. W.; Mendive, C. B. J. Phys. Chem. Lett. 2015, 6, 3903. doi: 10.1021/acs.jpclett.5b01353  doi: 10.1021/acs.jpclett.5b01353

    107. [107]

      Jelle, A. A.; Ghuman, K. K.; O'Brien, P. G.; Hmadeh, M.; Sandhel, A.; Perovic, D. D.; Singh, C. V.; Mims, C. A.; Ozin, G. A. Adv. Energy Mater. 2018, 8, 1702277. doi: 10.1002/aenm.201702277  doi: 10.1002/aenm.201702277

    108. [108]

      O'Brien, P. G.; Ghuman, K. K.; Jelle, A. A.; Sandhel, A.; Wood, T. E.; Loh, J. Y. Y.; Jia, J.; Perovic, D.; Singh, C. V.; Kherani, N. P.; et al. Energy Environ. Sci. 2018, 11, 3443. doi: 10.1039/c8ee02347f  doi: 10.1039/c8ee02347f

    109. [109]

      Feng, K.; Wang, S.; Zhang, D.; Wang, L.; Yu, Y.; Feng, K.; Li, Z.; Zhu, Z.; Li, C.; Cai, M.; et al. Adv. Mater. 2020, 32, e2000014. doi: 10.1002/adma.202000014  doi: 10.1002/adma.202000014

    110. [110]

      Fang, Y.; Lv, K.; Li, Z.; Kong, N.; Wang, S.; Xu, A. B.; Wu, Z.; Jiang, F.; Li, C.; Ozin, G. A.; et al. Adv. Sci. 2020, 7, 2000310. doi: 10.1002/advs.202000310  doi: 10.1002/advs.202000310

    111. [111]

      Tiwari, D.; Dunn, S. J. Mater. Sci. 2009, 44, 5063. doi: 10.1007/s10853  doi: 10.1007/s10853

    112. [112]

      Thompson, T. L.; Yates, J. T., Jr. Chem. Rev. 2006, 106, 4428. doi: 10.1021/cr050172k  doi: 10.1021/cr050172k

    113. [113]

      Ge, H.; Kuwahara, Y.; Yamashita, H. Chem. Commun. 2022. doi: 10.1039/D2CC02658A  doi: 10.1039/D2CC02658A

    114. [114]

      Chen, Y.; Qi, M.; Li, Y.; Tang, Z.; Wang, T.; Gong, J.; Xu, Y. Cell Rep. Phys. Sci. 2021, 2, 100371. doi: 10.1016/j.xcrp.2021.100371  doi: 10.1016/j.xcrp.2021.100371

    115. [115]

      Chiritescu, C.; Cahill, D. G.; Nguyen, N.; Johnson, D.; Bodapati, A.; Keblinski, P.; Zschack, P. Science 2007, 315, 351. doi: 10.1126/science.1136494  doi: 10.1126/science.1136494

    116. [116]

      Wang, J.; Xie, F.; Cao, X.; An, S.; Zhou, W.; Tang, L.; Chen, K. Sci. Rep. 2017, 7, 1. doi: 10.1038/srep41418  doi: 10.1038/srep41418

    117. [117]

      Wu, Z.; Shen, J.; Li, C.; Zhang, C.; Feng, K.; Wang, Z.; Wang, X.; Meira, D. M.; Cai, M.; Zhang, D. ACS Nano 2022, 17, 1550. doi: 10.1021/acsnano.2c10707  doi: 10.1021/acsnano.2c10707

    118. [118]

      Wu, Z.; Shen, J.; Li, C.; Zhang, C.; Wu, C.; Li, Z.; An, X.; He, L. Chemistry 2023, 5, 492. doi: 10.3390/chemistry5010036  doi: 10.3390/chemistry5010036

    119. [119]

      Wang, S.; Feng, K.; Zhang, D.; Yang, D.; Xiao, M.; Zhang, C.; He, L.; Yan, B.; Ozin, G. A.; Sun, W. Adv. Sci. 2022, 9, 2104972. doi: 10.1002/advs.202104972  doi: 10.1002/advs.202104972

    120. [120]

      Kattel, S.; Liu, P.; Chen, J. G. J. Am. Chem. Soc. 2017, 139, 9739. doi: 10.1021/jacs.7b05362  doi: 10.1021/jacs.7b05362

    121. [121]

      Song, Q.; He, G.; Fei, H. Acta Phys. -Chim. Sin. 2023, 39, 2212038.  doi: 10.3866/PKU.WHXB202212038

    122. [122]

      Li, Y.; Yang, T.; Qiu, S.; Lin, W.; Yan, J.; Fan, S.; Zhou, Q. Chem. Eng. J. 2020, 389, 124382. doi: 10.1016/j.cej.2020.124382  doi: 10.1016/j.cej.2020.124382

    123. [123]

      Lei, Y.; Yang, F.; Xie, H.; Lei, Y.; Liu, X.; Si, Y.; Wang, H. J. Mater. Chem. A 2020, 8, 20629. doi: 10.1039/D0TA06022D  doi: 10.1039/D0TA06022D

    124. [124]

      Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J. R.; Wei, W. D. Chem. Rev. 2018, 118, 2927. doi: 10.1021/acs.chemrev.7b00430  doi: 10.1021/acs.chemrev.7b00430

    125. [125]

      Linic, S.; Chavez, S.; Elias, R. Nat. Mater. 2021, 20, 916. doi: 10.1038/s41563-020-00858-4  doi: 10.1038/s41563-020-00858-4

    126. [126]

      Li, R.; Li, Y.; Li, Z.; Wei, W.; Hao, Q.; Shi, Y.; Ouyang, S.; Yuan, H.; Zhang, T. ACS Catal. 2022, 12, 5316. doi: 10.1021/acscatal.2c00926  doi: 10.1021/acscatal.2c00926

    127. [127]

      Sun, W.; Cao, X. Chem. Catal. 2022, 2, 215. doi: 10.1016/j.checat.2022.01.017  doi: 10.1016/j.checat.2022.01.017

  • 加载中
    1. [1]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    2. [2]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    3. [3]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    4. [4]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    5. [5]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    6. [6]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    7. [7]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    8. [8]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    11. [11]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    12. [12]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    13. [13]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    14. [14]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    15. [15]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(13)
  • Abstract views(851)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return