Citation: Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230400. doi: 10.3866/PKU.WHXB202304002 shu

In situ and Ex situ Investigation of the Organic-Organic Interface Effect

  • Corresponding author: Zi Wang, wangz2020@gusulab.ac.cn Wenchong Wang, wangw@uni-muenster.de Lizhen Huang, lzhuang@suda.edu.cn Lifeng Chi, chilf@suda.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 3 April 2023
    Revised Date: 5 May 2023
    Accepted Date: 9 May 2023
    Available Online: 15 May 2023

    Fund Project: the National Natural Science Foundation of China 22222205the National Natural Science Foundation of China 52173176the National Natural Science Foundation of China 51773143the National Natural Science Foundation of China 51821002the Suzhou Key Laboratory of Surface and Interface Intelligent Matter SZS20220110

  • Organic-organic heterostructures have been widely applied in various organic electronic devices, including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic solar cells. A thorough understanding of the interface effect in these heterostructures is of crucial importance for device design and optimization. However, owing to the diverse chemical properties and weak van der Waals interactions of organic semiconductors, interface charge transport is critically related to the organic-organic electronic structure and environmental atmosphere. Therefore, an in situ real-time investigation of the electrical properties in vacuum could efficiently avoid atmospheric influence and aid determination of the instinct interactions at the organic-organic interface. Herein, we report in situ real-time electrical property monitoring of the pentacene/vanadyl phthalocyanine (VOPc) heterostructure with top layer pentacene growth. The hole mobility of the heterostructure transistors decreases from 0.4 cm2∙V−1∙s−1 to approximately 0.2 cm2∙V−1∙s−1, while the electron mobility increases rapidly from 0.01 cm2∙V−1∙s−1 to approximately 0.9 cm2∙V−1∙s−1 as the pentacene thickness increases. This enhanced electron transport is attributed to the interface electron transfer from pentacene to VOPc, leading to filling of trap states in the VOPc layer and an improvement in the charge mobility and n-channel current. In contrast, the ex situ processing results indicate that atmospheric exposure will significantly suppress this charge transfer effect, resulting to a negligible improvement in the electron transport. The film morphology, Kelvin probe force microscopy, and X-ray photoelectron spectroscopy characterizations suggest electron transfer occurs from pentacene to VOPc. Additionally, density functional theory (DFT) calculations confirm that the interaction between pentacene and VOPc is strong and the pentacene molecule tends to transfer electrons to VOPc with a calculated charge transfer value of approximately 0.15 e. Moreover, this interface charge transfer is significantly suppressed with the presence of either O2 or H2O, which is highly consistent with our experiment results. In this paper, we provide a clear understanding of the instinct organic-organic interface charge transfer effect by using in situ characterization, which will be helpful for further device performance optimization and analysis.
  • 加载中
    1. [1]

      Sun, Y. R.; Giebink, N. C.; Kanno, H.; Ma, B. W.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908. doi: 10.1038/nature04645  doi: 10.1038/nature04645

    2. [2]

      Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K. Nature 2009, 459, 234-U116. doi: 10.1038/nature08003  doi: 10.1038/nature08003

    3. [3]

      Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. J. Nature 1999, 397, 414. doi: 10.1038/17087  doi: 10.1038/17087

    4. [4]

      Yang, J. J.; Hu, D. H.; Zhu, F.; Ma, Y. G.; Yan, D. H. Sci. Adv. 2022, 8, eadd1757. doi: 10.1126/sciadv.add1757  doi: 10.1126/sciadv.add1757

    5. [5]

      Peumans, P.; Uchida, S.; Forrest, S. R. Nature 2003, 425, 158. doi: 10.1038/nature01949  doi: 10.1038/nature01949

    6. [6]

      Koch, N. Chemphyschem 2007, 8, 1438. doi: 10.1002/cphc.200700177  doi: 10.1002/cphc.200700177

    7. [7]

      Braga, D.; Horowitz, G. Adv. Mater. 2009, 21, 1473. doi: 10.1002/adma.200802733  doi: 10.1002/adma.200802733

    8. [8]

      Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H. Nature 2005, 434, 194. doi: 10.1038/nature03376  doi: 10.1038/nature03376

    9. [9]

      Wang, H. B.; Yan, D. H. NPG Asia Mater. 2010, 2, 69. doi: 10.1038/asiamat.2010.44  doi: 10.1038/asiamat.2010.44

    10. [10]

      Sun, P. F.; Liu, D.; Zhu F.; Yan, D. H. Nat. Photonics 2023, 17, 264. doi: 10.1038/s41566-022-01138-0  doi: 10.1038/s41566-022-01138-0

    11. [11]

      Salzmann, I.; Heimel, G.; Oehzelt, M.; Winkler, S.; Koch, N. Acc. Chem. Res. 2016, 49, 370. doi: 10.1021/acs.accounts.5b00438  doi: 10.1021/acs.accounts.5b00438

    12. [12]

      Zaumseil, J.; Friend, R. H.; Sirringhaus, H. Nat. Mater. 2006, 5, 69. doi: 10.1038/nmat1537  doi: 10.1038/nmat1537

    13. [13]

      Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008, 3, 270. doi: 10.1038/nnano.2008.83  doi: 10.1038/nnano.2008.83

    14. [14]

      Huang, L. Z.; Wang, Z.; Zhu, X. F.; Chi, L. F. Nanoscale Horiz. 2016, 1, 383. doi: 10.1039/c6nh00040a  doi: 10.1039/c6nh00040a

    15. [15]

      Pannemann, C.; Diekmann, T.; Hilleringmann, U. J. Mater. Res. 2004, 19, 1999. doi: 10.1557/jmr.2004.0267  doi: 10.1557/jmr.2004.0267

    16. [16]

      Wu, X. F.; Jia, R. F.; Jie, J. S.; Zhang, M.; Pan, J.; Zhang, X. J.; Zhang, X. H. Adv. Funct. Mater. 2019, 29, 1906653. doi: 10.1002/adfm.201906653  doi: 10.1002/adfm.201906653

    17. [17]

      Wu, X. F.; Jia, R. F.; Pan, J.; Zhang, X. J.; Jie, J. S. Nanoscale Horiz. 2020, 5, 454. doi: 10.1039/c9nh00694j  doi: 10.1039/c9nh00694j

    18. [18]

      Di Pietro, R.; Sirringhaus, H. Adv. Mater. 2012, 24, 3367. doi: 10.1002/adma.201200829  doi: 10.1002/adma.201200829

    19. [19]

      Davydok, A.; Luponosov, Y. N.; Ponomarenko, S. A.; Grigorian, S. Nanoscale Res. Lett. 2022, 17, 22. doi: 10.1186/s11671-022-03662-y  doi: 10.1186/s11671-022-03662-y

    20. [20]

      Xu, J. J.; Hu, C. G.; Chen, X. J.; Zhang, L.; Fu, X.; Hu, X. T. Acta Phys. Sin. 2015, 64, 230701.  doi: 10.7498/aps.64.230701

    21. [21]

      Liu, S. -W.; Lee, C. -C.; Tai, H. -L.; Wen, J. -M.; Lee, J. -H.; Chen, C. -T. ACS Appl. Mater. Interfaces. 2010, 2, 2282. doi: 10.1021/am1003377  doi: 10.1021/am1003377

    22. [22]

      Noever, S. J.; Fischer, S.; Nickel, B. Adv. Mater. 2013, 25, 2147. doi: 10.1002/adma.201203964  doi: 10.1002/adma.201203964

    23. [23]

      Vazquez, H.; Gao, W.; Flores, F.; Kahn, A. Phys. Rev. B 2005, 71, 041306. doi: 10.1103/PhysRevB.71.041306  doi: 10.1103/PhysRevB.71.041306

    24. [24]

      Zhong, S.; Zhong, J. Q.; Mao, H. Y.; Zhang, J. L.; Lin, J. D.; Chen, W. Phys. Chem. Chem. Phys. 2012, 14, 14127. doi: 10.1039/c2cp41107e  doi: 10.1039/c2cp41107e

    25. [25]

      Zang, C. X.; Xu, M. X.; Zhang, L. T.; Liu, S. H.; Xie, W. F. J. Mater. Chem. C 2021, 9, 1484. doi: 10.1039/d0tc05059h  doi: 10.1039/d0tc05059h

    26. [26]

      Kiguchi, M.; Nakayama, M.; Shimada, T.; Saiki, K. Phys. Rev. B 2005, 71, 035332. doi: 10.1103/PhysRevB.71.035332  doi: 10.1103/PhysRevB.71.035332

    27. [27]

      Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015  doi: 10.1063/1.1316015

    28. [28]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    29. [29]

      Delley, B. J. Chem. Phys. 1990, 92 (1), 508. doi: 10.1063/1.458452  doi: 10.1063/1.458452

    30. [30]

      Grimme, S. J. Comput. Chem. 2006, 27 (15), 1787. doi: 10.1002/jcc.20495  doi: 10.1002/jcc.20495

    31. [31]

      Mulliken, R. S. J. Chem. Phys. 1955, 23 (10), 1841. doi: 10.1063/1.1740589  doi: 10.1063/1.1740589

    32. [32]

      Shen, X. L.; Wang, Y. D.; Li, J. P.; Chen, Y. K.; Wang, Z. F.; Wang, W. C.; Huang, L. Z.; Chi, L. F. Front. Mater. 2020, 7, 245. doi: 10.3389/fmats.2020.00245  doi: 10.3389/fmats.2020.00245

    33. [33]

      Katiyar, S.; Verma, N.; Jogi, J. Semicond. Sci. Technol. 2022, 37, 025008. doi: 10.1088/1361-6641/ac3b3b  doi: 10.1088/1361-6641/ac3b3b

    34. [34]

      Knipp, D.; Street, R. A.; Volkel, A.; Ho, J. J. Appl. Phys. 2003, 93, 347. doi: 10.1063/1.1525068  doi: 10.1063/1.1525068

    35. [35]

      Yang, J. L.; Wang, T.; Wang, H. B.; Zhu, F.; Li, G.; Yan, D. H. J. Phys. Chem. B 2008, 112, 7816. doi: 10.1021/jp711455u  doi: 10.1021/jp711455u

    36. [36]

      Khim, D.; Baeg, K. J.; Caironi, M.; Liu, C.; Xu, Y.; Kim, D. Y.; Noh, Y. Y. Adv. Funct. Mater. 2014, 24, 6252. doi: 10.1002/adfm.201400850  doi: 10.1002/adfm.201400850

    37. [37]

      Mendez, H.; Heimel, G.; Opitz, A.; Sauer, K.; Barkowski, P.; Oehzelt, M.; Soeda, J.; Okamoto, T.; Takeya, J.; Arlin, J. B.; et al. Angew. Chem. Int. Ed. 2013, 52, 7751. doi: 10.1002/anie.201302396  doi: 10.1002/anie.201302396

    38. [38]

      Yu, X. J.; Xu, J. B.; Cheung, W. Y.; Ke, N. J. Appl. Phys. 2007, 102, 103711. doi: 10.1063/1.2815637  doi: 10.1063/1.2815637

    39. [39]

      Lussem, B.; Keum, C. M.; Kasemann, D.; Naab, B.; Bao, Z. N.; Leo, K. Chem. Rev. 2016, 116, 13714. doi: 10.1021/acs.chemrev.6b00329  doi: 10.1021/acs.chemrev.6b00329

    40. [40]

      Minakata, T.; Nagoya, I.; Ozaki, M. J. Appl. Phys. 1991, 69, 7354. doi: 10.1063/1.347594  doi: 10.1063/1.347594

    41. [41]

      Yamaguchi, J.; Itaka, K.; Hayakawa, T.; Arai, K.; Yamashiro, M.; Yaginuma, S.; Koinuma, H. Macromol. Rapid Commun. 2004, 25, 334. doi: 10.1002/marc.200300238  doi: 10.1002/marc.200300238

    42. [42]

      Yang, J.; Nguyen, T. Q. Org. Electron. 2007, 8, 566. doi: 10.1016/j.orgel.2007.04.005  doi: 10.1016/j.orgel.2007.04.005

    43. [43]

      Zaitsev, V. B.; Levshin, N. L.; Yudin, S. G. Mosc. Univ. Phys. Bull. 2009, 64, 191. doi: 10.3103/s0027134909020192  doi: 10.3103/s0027134909020192

    44. [44]

      Xu, X. Z.; Zhang, X. J.; Deng, W.; Huang, L. M.; Wang, W.; Jie, J. S.; Zhang, X. H. ACS Appl. Mater. Interfaces 2018, 10, 10287. doi: 10.1021/acsami.7b17176  doi: 10.1021/acsami.7b17176

    45. [45]

      Guo, J. H.; Jiang, S.; Pei, M. J.; Xiao, Y. L.; Zhang, B. W.; Wang, Q. J.; Zhu, Y.; Wang, H. Y.; Jie, J. S.; Wang, X. R.; et al. Adv. Electron. Mater. 2020, 6, 2000062. doi: 10.1002/aelm.202000062  doi: 10.1002/aelm.202000062

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    3. [3]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    4. [4]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    8. [8]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    9. [9]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    10. [10]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    11. [11]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    15. [15]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    16. [16]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    17. [17]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    18. [18]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    19. [19]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    20. [20]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

Metrics
  • PDF Downloads(23)
  • Abstract views(1298)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return