Citation: Tao Wang, Qin Dong, Cunpu Li, Zidong Wei. Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230306. doi: 10.3866/PKU.WHXB202303061
-
Lithium-sulfur (Li-S) batteries have emerged as promising candidates for next-generation secondary power batteries given that they exhibit extremely high discharge specific capacity (1672 mAh·g-1) when sulfur is used as the positive electrode. Despite the potential of Li-S batteries for commercial applications, two significant issues need to be addressed: the shuttle effect of dissolved high-order lithium polysulfides (Li2Sn, 4 ≤ n ≤ 8) during charge/discharge processes and the slow redox kinetics of sulfur species. Fortunately, the introduction of electrochemical catalysis is an effective strategy to mitigate the above problems. In the context of electrochemical catalysis, in this paper we discuss the existence forms of polysulfides and draw clear conclusions. Specifically, in ether electrolyte systems, the dominant form of polysulfide is the neutral molecule, while a smaller proportion exists as anions and cations. In addition, we also propose the corresponding solutions for different forms of polysulfides. Unlike previous reports, we analyze the conversion mechanism of polysulfides from two perspectives: adsorption-catalysis and reactive intermediates. In terms of the strength of the interaction force between the substrate materials and polysulfides, adsorption-catalysis can be classified into physisorption-catalysis and chemisorption-catalysis. The differences between both types are analyzed and discussed in-depth. Additionally, the reactive intermediates are further classified into sulfur free radicals, thiosulfates, and organosulfur molecules based on different electrochemical reaction pathways. The mechanisms involved in the reactions of these intermediates are subsequently analyzed in detail. We also evaluate different strategies and list the types of catalysts that may correspond to each mechanism. Finally, the quantitative evaluation method of catalytic performance is also summarized, which paves a new way for the design of high-efficiency electrocatalysts in Li-S batteries. The nucleation transformation ratio (NTR) is a quantitative measure we developed to assess the catalytic properties of materials. When the reaction is ideal, the NTR should be equal to 3. A calculated NTR close to 3 indicates that the reaction from Li2S6 to Li2S4 occurs rapidly, suggesting that the material is highly catalytic to polysulfide nucleation. This quantitative approach enables researchers to determine the adsorption and catalytic effects of cathode materials on polysulfides, allowing the study of lithium-sulfur battery cathode materials to move from qualitative description to quantitative evaluation with specific factors. As a result, we can move from a qualitative description of lithium-sulfur battery cathode materials to their quantitative evaluation.
-
-
[1]
(1) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460
-
[2]
(2) Liang, C.; Dudney, N. J.; Howe, J. Y. Chem. Mater. 2009, 21, 4724. doi: 10.1021/cm902050j
-
[3]
(3) Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Adv. Mater. 2011, 23, 5641. doi: 10.1002/adma.201103274
-
[4]
(4) Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2011, 133, 18522. doi: 10.1021/ja206955k
-
[5]
(5) Shi, Z.; Sun, Z.; Cai, J.; Yang, X.; Wei, C.; Wang, M.; Ding, Y.; Sun, J. Adv. Mater. 2021, 33, e2103050. doi: 10.1002/adma.202103050
-
[6]
(6) Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H. M.; Li, F. Nat. Commun. 2017, 8, 14627. doi: 10.1038/ncomms14627
-
[7]
(7) Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. ACS Appl. Mater. Interfaces 2013, 5, 2208. doi: 10.1021/am4000535
-
[8]
(8) Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. J. Mater. Chem. A 2019, 7, 3469. doi: 10.1039/c8ta11075a
-
[9]
(9) Du, Z.; Chen, X.; Hu, W.; Chuang, C.; Xie, S.; Hu, A.; Yan, W.; Kong, X.; Wu, X.; Ji, H.; et al. J. Am. Chem. Soc. 2019, 141, 3977. doi: 10.1021/jacs.8b12973
-
[10]
(10) Xiao, D.; Li, Q.; Zhang, H.; Ma, Y.; Lu, C.; Chen, C.; Liu, Y.; Yuan, S. J. Mater. Chem. A 2017, 5, 24901. doi: 10.1039/c7ta08483h
-
[11]
(11) Zhu, J.; Cao, J.; Cai, G.; Zhang, J.; Zhang, W.; Xie, S.; Wang, J.; Jin, H.; Xu, J.; Ji, H.; et al. Angew. Chem. Int. Ed. 2023, 62, e202214351. doi:10.1002/anie.202214351
-
[12]
(12) Lu, Y. Q.; Wu, Y. J.; Sheng, T.; Peng, X. X.; Gao, Z. G.; Zhang, S. J.; Deng, L.; Nie, R.; Swiatowska, J.; Li, J. T.; et al. ACS Appl. Mater. Interfaces 2018, 10, 13499. doi: 10.1021/acsami.8b00915
-
[13]
(13) Deng, D. R.; Xue, F.; Jia, Y. J.; Ye, J. C.; Bai, C. D.; Zheng, M. S.; Dong, Q. F. ACS Nano 2017, 11, 6031. doi: 10.1021/acsnano.7b01945
-
[14]
(14) Zhang, H.; Zhao, Z.; Hou, Y. N.; Tang, Y.; Liang, J.; Liu, X.; Zhang, Z.; Wang, X.; Qiu, J. J. Mater. Chem. A 2019, 7, 9230. doi: 10.1039/c9ta00975b
-
[15]
(15) Zhao, M.; Peng, H. J.; Li, B. Q.; Chen, X.; Xie, J.; Liu, X.; Zhang, Q.; Huang, J. Q. Angew. Chem. Int. Ed. 2020, 59, 9011. doi: 10.1002/anie.202003136
-
[16]
(16) Zhang, Y.; Mu, Z.; Yang, C.; Xu, Z.; Zhang, S.; Zhang, X.; Li, Y.; Lai, J.; Sun, Z.; Yang, Y.; et al. Adv. Funct. Mater. 2018, 28, 1707578. doi: 10.1002/adfm.201707578
-
[17]
(17) Zhang, D.; Wang, S.; Hu, R.; Gu, J.; Cui, Y.; Li, B.; Chen, W.; Liu, C.; Shang, J.; Yang, S. Adv. Funct. Mater. 2020, 30, 2002471. doi: 10.1002/adfm.202002471
-
[18]
(18) Wang, Z.; Shen, J.; Liu, J.; Xu, X.; Liu, Z.; Hu, R.; Yang, L.; Feng, Y.; Liu, J.; Shi, Z.; et al. Adv. Mater. 2019, 31, e1902228. doi: 10.1002/adma.201902228
-
[19]
(19) Zhou, J.; Liu, X.; Zhu, L.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S.; Cai, J.; Sun, D.; Zhu, Y.; et al. Joule 2018, 2, 2681. doi: 10.1016/j.joule.2018.08.010
-
[20]
(20) Li, R.; Shen, H.; Pervaiz, E.; Yang, M. Chem. Eng. J. 2021, 404, 126462. doi: 10.1016/j.cej.2020.126462
-
[21]
(21) Sul, H.; Bhargav, A.; Manthiram, A. Adv. Energy Mater. 2022, 12, 2200680. doi:10.1002/aenm.202200680
-
[22]
(22) Zhao, Q.; Zhu, Q.; Liu, Y.; Xu, B. Adv. Funct. Mater. 2021, 31, 2100457. doi: 10.1002/adfm.202100457
-
[23]
(23) Yang, H.; Guo, C.; Chen, J.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. Angew. Chem. Int. Ed. 2019, 58, 791. doi: 10.1002/anie.201811291
-
[24]
(24) Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969. doi: 10.1149/1.1806394
-
[25]
(25) Urbonaite, S.; Poux, T.; Novák, P. Adv. Energy Mater. 2015, 5, 1500118. doi: 10.1002/aenm.201500118
-
[26]
(26) Gao, Y.; Guo, Q.; Zhang, Q.; Cui, Y.; Zheng, Z. Adv. Energy Mater. 2021, 11, 2002580. doi: 10.1002/aenm.202002580
-
[27]
(27) Deng, N.; Liu, Y.; Li, Q.; Yan, J.; Lei, W.; Wang, G.; Wang, L.; Liang, Y.; Kang, W.; Cheng, B. Energy Storage Mater. 2019, 23, 314. doi: 10.1016/j.ensm.2019.04.042
-
[28]
(28) Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F. F. Adv. Energy Mater. 2015, 5, 1500212. doi: 10.1002/aenm.201500212
-
[29]
(29) Urbonaite, S.; Novák, P. J. Power Sources 2014, 249, 497. doi: 10.1016/j.jpowsour.2013.10.095
-
[30]
(30) Gao, X.; Sun, Q.; Yang, X.; Liang, J.; Koo, A.; Li, W.; Liang, J.; Wang, J.; Li, R.; Holness, F. B.; et al. Nano Energy 2019, 56, 595. doi: 10.1016/j.nanoen.2018.12.001
-
[31]
(31) Meini, S.; Elazari, R.; Rosenman, A.; Garsuch, A.; Aurbach, D. J. Phys. Chem. Lett. 2014, 5, 915. doi: 10.1021/jz500222f
-
[32]
(32) Rosenman, A.; Elazari, R.; Salitra, G.; Markevich, E.; Aurbach, D.; Garsuch, A. J. Electrochem. Soc. 2015, 162, A470. doi: 10.1149/2.0861503jes
-
[33]
(33) Wang, P.; Xi, B.; Huang, M.; Chen, W.; Feng, J.; Xiong, S. Adv. Energy Mater. 2021, 11. doi: 10.1002/aenm.202002893
-
[34]
(34) Sun, Z.; Vijay, S.; Heenen, H. H.; Eng, A. Y. S.; Tu, W.; Zhao, Y.; Koh, S. W.; Gao, P.; Seh, Z. W.; Chan, K.; et al. Adv. Energy Mater. 2020, 10, 1904010. doi: 10.1002/aenm.201904010
-
[35]
(35) Zhang, H.; Tian, D.; Zhao, Z.; Liu, X.; Hou, Y. N.; Tang, Y.; Liang, J.; Zhang, Z.; Wang, X.; Qiu, J. Energy Storage Mater. 2019, 21, 210. doi: 10.1016/j.ensm.2018.12.005
-
[36]
(36) Lim, W. G.; Kim, S.; Jo, C.; Lee, J. Angew. Chem. Int. Ed. 2019, 58, 18746. doi: 10.1002/anie.201902413
-
[37]
-
[38]
-
[39]
-
[40]
(40) Liu, Y.; Zhang, S.; Qin, X.; Kang, F.; Chen, G.; Li, B. Nano Lett. 2019, 19, 4601. doi: 10.1021/acs.nanolett.9b01567
-
[41]
(41) Li, Y.; Zhan, H.; Liu, S.; Huang, K.; Zhou, Y. J. Power Sources 2010, 195, 2945. doi: 10.1016/j.jpowsour.2009.11.004
-
[42]
(42) Sun, K.; Zhang, Q.; Bock, D. C.; Tong, X.; Su, D.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S.; Gan, H. J. Electrochem. Soc. 2017, 164, A1291. doi: 10.1149/2.1631706jes
-
[43]
(43) Wang, W. P.; Zhang, J.; Yin, Y. X.; Duan, H.; Chou, J.; Li, S. Y.; Yan, M.; Xin, S.; Guo, Y. G. Adv. Mater. 2020, 32, e2000302. doi: 10.1002/adma.202000302
-
[44]
(44) Cao, G.; Duan, R.; Li, X. J. Energy Chem 2023, 5, 100096. doi: 10.1016/j.enchem.2022.100096
-
[45]
(45) Martin, R.; Doub, W., Jr.; Roberts, J., Jr.; Sawyer, D. Inorg. Chem. 1973, 4, 1921. doi: 10.1002/chin.197339037
-
[46]
(46) Rajput, N. N.; Murugesan, V.; Shin, Y.; Han, K. S.; Lau, K. C.; Chen, J.; Liu, J.; Curtiss, L. A.; Mueller, K. T.; Persson, K. A. Chem. Mater. 2017, 29, 3375. doi: 10.1021/acs.chemmater.7b00068
-
[47]
(47) Zhang, B.; Wu, J.; Gu, J.; Li, S.; Yan, T.; Gao, X. P. ACS Energy Lett. 2021, 6, 537. doi: 10.1021/acsenergylett.0c02527
-
[48]
(48) Song, Y. W.; Shen, L.; Yao, N.; Li, X. Y.; Bi, C. X.; Li, Z.; Zhou, M. Y.; Li, B. Q.; Huang, J. Q.; Zhang, Q. Chem 2022, 8, 3031. doi: 10.1016/j.chempr.2022.07.004
-
[49]
(49) Luo, Y.; Fang, Z.; Duan, S.; Wu, H.; Liu, H.; Zhao, Y.; Wang, K.; Li, Q.; Fan, S.; Wang, J.; et al. Angew. Chem. Int. Ed. 2023, 62, e202215802. doi:10.1002/anie.202215802
-
[50]
(50) Zheng, S.; Wen, Y.; Zhu, Y.; Han, Z.; Wang, J.; Yang, J.; Wang, C. Adv. Energy Mater. 2014, 4, 1400482. doi: 10.1002/aenm.201400482
-
[51]
(51) Wang, Q.; Zheng, J.; Walter, E.; Pan, H.; Lv, D.; Zuo, P.; Chen, H.; Deng, Z. D.; Liaw, B. Y.; Yu, X. J. Electrochem. Soc. 2015, 162, A474. doi: 10.1149/2.0851503jes
-
[52]
(52) Zhang, G.; Peng, H. J.; Zhao, C. Z.; Chen, X.; Zhao, L. D.; Li, P.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 16732. doi: 10.1002/anie.201810132
-
[53]
(53) Hu, J.; Long, G.; Liu, S.; Li, G.; Gao, X. Chem. Commun. 2014, 50, 14647. doi: 10.1039/C4CC06666A
-
[54]
(54) Yao, W.; Tian, C.; Yang, C.; Xu, J.; Meng, Y.; Manke, I.; Chen, N.; Wu, Z.; Zhan, L.; Wang, Y.; et al. Adv. Mater. 2022, 34, e2106370. doi: 10.1002/adma.202106370
-
[55]
(55) Wang, R.; Yang, J.; Chen, X.; Zhao, Y.; Zhao, W.; Qian, G.; Li, S.; Xiao, Y.; Chen, H.; Ye, Y.; et al. Adv. Energy Mater. 2020, 10, 1903550. doi: 10.1002/aenm.201903550
-
[56]
(56) Qiao, Z.; Zhang, Y.; Meng, Z.; Xie, Q.; Lin, L.; Zheng, H.; Sa, B.; Lin, J.; Wang, L.; Peng, D. L. Adv. Funct. Mater. 2021, 31, 2100970. doi: 10.1002/adfm.202100970
-
[57]
(57) Yu, H.; Zhang, B.; Sun, F.; Jiang, G.; Zheng, N.; Xu, C.; Li, Y. Appl. Surf. Sci. 2018, 450, 364. doi: 10.1016/j.apsusc.2018.04.123
-
[58]
(58) Wang, J.; Yang, J.; Wan, C.; Du, K.; Xie, J.; Xu, N. Adv. Funct. Mater. 2003, 13, 487. doi: 10.1002/adfm.200304284
-
[59]
(59) Zhang, Q.; Wang, Y.; Seh, Z. W.; Fu, Z.; Zhang, R.; Cui, Y. Nano Lett. 2015, 15, 3780. doi: 10.1021/acs.nanolett.5b00367
-
[60]
(60) Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. ACS Energy Lett. 2017, 2, 795. doi: 10.1021/acsenergylett.7b00164
-
[61]
(61) Tao, X.; Wang, J.; Liu, C.; Wang, H.; Yao, H.; Zheng, G.; Seh, Z. W.; Cai, Q.; Li, W.; Zu, C. X.; et al. Nat. Commun. 2016, 7, 11203. doi: 10.1038/ncomms11203
-
[62]
(62) Fu, A.; Wang, C.; Pei, F.; Cui, J.; Fang, X.; Zheng, N. Small 2019, 15, 1804786. doi: 10.1002/smll.201804786
-
[63]
(63) Peng, X. X.; Lu, Y. Q.; Zhou, L. L.; Sheng, T.; Shen, S. Y.; Liao, H. G.; Huang, L.; Li, J. T.; Sun, S. G. Nano Energy 2017, 32, 503. doi: 10.1016/j.nanoen.2016.12.060
-
[64]
(64) Tao, Y.; Wei, Y.; Liu, Y.; Wang, J.; Qiao, W.; Ling, L.; Long, D. H. Energy Environ. Sci. 2016, 9, 3230. doi: 10.1039/C6EE01662F
-
[65]
(65) Pang, Q.; Nazar, L. F. ACS Nano 2016, 10, 4111. doi: 10.1021/acsnano.5b07347
-
[66]
(66) Liu, J.; Li, W.; Duan, L.; Li, X.; Ji, L.; Geng, Z.; Huang, K.; Lu, L.; Zhou, L.; Liu, Z. R. Nano Lett. 2015, 15, 5137. doi: 10.1021/acs.nanolett.5b01919
-
[67]
(67) Ma, F.; Liang, J.; Wang, T.; Chen, X.; Fan, Y.; Hultman, B.; Xie, H.; Han, J.; Wu, G.; Li, Q. Nano Lett. 2018, 10, 5634. doi: 10.1021/acsnano.0c03325
-
[68]
(68) Wang, C.; Li, K.; Zhang, F.; Wu, Z.; Sun, L.; Wang, L. M. ACS Appl. Mater. Interfaces 2018, 10, 42286. doi: 10.1021/acsami.8b15176
-
[69]
(69) Liu, Y. T.; Han, D. D.; Wang, L.; Li, G. R.; Liu, S.; Gao, X. P. Adv. Energy Mater. 2019, 9, 1803477. doi: 10.1002/aenm.201803477
-
[70]
(70) Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang, F.; Yang, Q. H. Nano Energy 2017, 33, 306. doi: 10.1016/j.nanoen.2017.01.040
-
[71]
(71) Liu, G.; Wang, W.; Zeng, P.; Yuan, C.; Wang, L.; Li, H.; Zhang, H.; Sun, X.; Dai, K.; Mao, J.; et al.. Nano Lett. 2022, 22, 6366. doi: 10.1021/acs.nanolett.2c02183
-
[72]
(72) Hou, T. Z.; Xu, W. T.; Chen, X.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 8178. doi: 10.1002/anie.201704324
-
[73]
(73) Chen, X.; Bai, Y. K.; Zhao, C. Z.; Shen, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 11192. doi: 10.1002/anie.201915623
-
[74]
(74) Evers, S.; Yim, T.; Nazar, L. F. J. Phys. Chem. C 2012, 116, 19653. doi: 10.1021/jp304380j
-
[75]
(75) Zhang, M.; Chen, W.; Xue, L.; Jiao, Y.; Lei, T.; Chu, J.; Huang, J.; Gong, C.; Yan, C.; Yan, Y. Adv. Energy Mater. 2020, 10, 1903008. doi: 10.1002/aenm.201903008
-
[76]
(76) Hong, X.; Wang, R.; Liu, Y.; Fu, J.; Liang, J.; Dou, S. J. Energy Chem. 2020, 42, 144. doi: 10.1016/j.jechem.2019.07.001
-
[77]
(77) Wang, X.; Gao, T.; Han, F.; Ma, Z.; Zhang, Z.; Li, J.; Wang, C. Nano Energy 2016, 30, 700. doi: 10.1016/j.nanoen.2016.10.049
-
[78]
(78) Wang, Y.; Zhu, L.; Wang, J.; Zhang, Z.; Yu, J.; Yang, Z. Chem. Eng. J. 2022, 433, 133792. doi: 10.1016/j.cej.2021.133792
-
[79]
(79) Zhu, Y.; Wang, S.; Miao, Z.; Liu, Y.; Chou, S. L. Small 2018, 14, 1801987. doi: 10.1002/smll.201801987
-
[80]
(80) Barchasz, C.; Molton, F.; Duboc, C.; Lepretre, J. C.; Patoux, S.; Alloin, F. Anal. Chem. 2012, 84, 3973. doi: 10.1021/ac2032244
-
[81]
(81) Xu, R.; Tang, H.; Zhou, Y.; Wang, F.; Wang, H.; Shao, M.; Li, C.; Wei, Z. D. Chem. Sci. 2022, 13, 6224. doi: 10.1039/d2sc01353c
-
[82]
(82) Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F. Adv. Energy Mater. 2015, 5, 1401801. doi: 10.1002/aenm.201401801
-
[83]
(83) Tong, C.; Chen, H.; Jiang, S.; Li, L.; Shao, M.; Li, C.; Wei, Z. ACS Appl. Mater. Interfaces 2023, 15, 1175. doi: 10.1021/acsami.2c18594
-
[84]
(84) Wujcik, K. H.; Pascal, T. A.; Pemmaraju, C.; Devaux, D.; Stolte, W. C.; Balsara, N. P.; Prendergast, D. Adv. Energy Mater. 2015, 5, 1500285. doi: 10.1002/aenm.201500285
-
[85]
(85) Wang, C.; Ma, Y.; Du, X.; Zhang, H.; Xu, G.; Cui, G. Battery Energy 2022, 1, 20220010. doi: 10.1002/bte2.20220010
-
[86]
(86) Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Nazar, L. F.; et al.
-
[87]
Adv. Energy Mater. 2016, 6, 1501636. doi: 10.1002/aenm.201501636
-
[88]
(87) Wang, S.; Liao, J.; Yang, X.; Liang, J.; Sun, Q.; Liang, J.; Zhao, F.; Koo, A.; Kong, F.; Sun, X. L.; et al. Nano Energy 2019, 57, 230. doi: 10.1016/j.nanoen.2018.12.020
-
[89]
(88) Hua, W.; Li, H.; Pei, C.; Xia, J.; Sun, Y.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B.; et al. Adv. Mater. 2021, 33, e2101006. doi: 10.1002/adma.202101006
-
[90]
(89) Wang, J.; Jia, L.; Zhong, J.; Xiao, Q.; Wang, C.; Zang, K.; Liu, H.; Zheng, H.; Luo, J.; Yang, J.; et al. Energy Storage Mater. 2019, 18, 246. doi: 10.1016/j.ensm.2018.09.006
-
[91]
(90) Feng, J.; Yi, H.; Lei, Z.; Wang, J.; Zeng, H.; Deng, Y.; Wang, C. J. Energy Chem. 2021, 56, 171. doi: 10.1016/j.jechem.2020.07.060
-
[92]
(91) Li, Z.; Zhang, S.; Zhang, C.; Ueno, K.; Yasuda, T.; Tatara, R.; Dokko, K.; Watanabe, M. Nanoscale 2015, 7, 14385. doi: 10.1039/C5NR03201F
-
[93]
(92) Chen, S.; Dai, F.; Gordin, M. L.; Yu, Z.; Gao, Y.; Song, J.; Wang, D. Angew. Chem. Int. Ed. 2016, 55, 4231. doi: 10.1002/anie.201511830
-
[94]
(93) Zhao, M.; Li, B. Q.; Chen, X.; Xie, J.; Yuan, H.; Huang, J. Q. Chem 2020, 6, 3297. doi: 10.1016/j.chempr.2020.09.015
-
[95]
(94) Li, G.; Wang, X.; Seo, M. H.; Li, M.; Ma, L.; Yuan, Y.; Wu, T.; Yu, A.; Wang, S.; Lu, J.; et al. Nat. Commun. 2018, 9, 705. doi: 10.1038/s41467-018-03116-z
-
[96]
(95) Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M.; et al. J. Am. Chem. Soc. 2021, 143, 19865. doi: 10.1021/jacs.1c09107
-
[97]
(96) Guo, C.; Liu, M.; Gao, G. K.; Tian, X.; Zhou, J.; Dong, L. Z.; Li, Q.; Chen, Y.; Li, S. L.; Lan, Y. Q. Angew. Chem. Int. Ed. 2022, 134, e202113315. doi: 10.1002/ange.202113315
-
[98]
(97) Kaiser, M. R.; Chou, S.; Liu, H. K.; Dou, S. X.; Wang, C.; Wang, J. Adv. Mater. 2017, 29, 1700449. doi: 10.1002/adma.201700449
-
[99]
(98) Lin, Y.; Huang, S.; Zhong, L.; Wang, S.; Han, D.; Ren, S.; Xiao, M.; Meng, Y. Energy Storage Mater. 2021, 34, 128. doi: 10.1016/j.ensm.2020.09.009
-
[100]
(99) Gao, H.; Ning, S.; Lin, J.; Kang, X. Energy Storage Mater. 2021, 40, 312. doi: 10.1016/j.ensm.2021.05.027
-
[101]
(100) Dong, Q.; Wang, T.; Gan, R.; Fu, N.; Li, C.; Wei, Z. ACS Appl. Mater. Interfaces 2020, 12, 20596. doi: 10.1021/acsami.0c04554
-
[102]
(101) Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q.; Huang, J. Q. InfoMat 2019, 1, 533. doi: 10.1002/inf2.12056
-
[1]
-
-
[1]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[2]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[3]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[4]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[5]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[6]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[7]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[8]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[10]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[11]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[12]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[13]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[14]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[15]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[16]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[17]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[18]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[19]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[20]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(151)
- HTML views(20)