Citation: Yan Xin, Yunnian Ge, Zezhong Li, Qiaobao Zhang, Huajun Tian. Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230306. doi: 10.3866/PKU.WHXB202303060
-
With the development of modern society, the demand for energy is increasing. Consequently, the efficient utilization of renewable energy has become the primary concern in the energy sector. Secondary batteries can accomplish energy storage through efficient electrical/chemical energy conversion, thereby providing an effective solution for the utilization of renewable energy. Lithium-ion batteries have been the most widely used secondary battery systems, owing to their high energy densities and long lifetimes. Nevertheless, traditional inorganic cathode materials have recently encountered problems such as increasing manufacturing costs, lithium supply-chain constraints, and safety issues. Meanwhile, organic electrode materials (OEMs) have emerged as promising electrode candidates for secondary batteries owing to several advantages, such as their low costs, abundant resources, environmental friendliness, and structural designability. In recent decades, considerable efforts have been dedicated to OEM research. To date, commonly used OEMs include carbonyl polymers, conductive polymers, nitrile compounds, organic sulfides, organic free radical compounds, imine compounds, and Azo compounds. OEMs have been used in various metal ion battery systems, including lithium-, sodium-, aluminum-, zinc-, magnesium-, potassium-, and calcium-based batteries. However, the commercialization of OEMs still encounters several challenges, mainly owing to their low conductivity, high solubility, and low discharge potential. The low intrinsic conductivity of OEMs leads to difficulties in ion diffusion, while their high solubility in organic electrolytes inevitably reduces cyclic stability. Moreover, the low discharge potential of OEMs decreases energy density and rate performance. In view of the technical restrictions affecting OEMs, researchers have focused on modifications and optimizations of the structure, preparation strategies, and sizes of OEMs. In this paper, we review the development history and applications of OEMs and systemically summarize their classification, reaction mechanisms, and primary challenges. In addition, we thoroughly report on OEM modification strategies. By shaping their molecular structures, such as either by substituent introduction, conjugated structure formation, or small molecule polymerization, the solubility of OEMs can be reduced, and their discharge potential can be enhanced. The conductivity of OEMs can be improved significantly by combining them with conductive carbon materials. Nano-sized optimization and electrode–electrolyte coupling can also significantly improve their cycle stability and rate performance. Additionally, the electrochemical performance of OEMs can be improved by optimizing preparation processes and determining the best technological parameters. Finally, we envision future research paths of OEM modification, which could provide a future reference in OEM design and research.
-
-
[1]
(1) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
-
[2]
(2) Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 1. doi: 10.1038/natrevmats.2016.13
-
[3]
(3) Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19. doi: 10.1038/nchem.2085
-
[4]
(4) Cao, Y. L.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14, 200. doi: 10.1038/s41565-019-0371-8
-
[5]
(5) Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y. L.; Yao, Y. Chem. Rev. 2020, 120, 6490. doi: 10.1021/acs.chemrev.9b00482
-
[6]
-
[7]
(7) Li, H. Joule 2019, 3, 911. doi: 10.1016/j.joule.2019.03.028
-
[8]
(8) Manthiram, A. Nat. Commun. 2020, 11, 1550. doi: 10.1038/s41467-020-15355-0
-
[9]
-
[10]
(10) Chen, H.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J. M. ChemSusChem 2008, 1, 348. doi: 10.1002/cssc.200700161
-
[11]
(11) Xu, Z.; Ye, H. J.; Li, H. Q; Xu, Y. Z.; Wang, C. Y.; Yin, J.; Zhu, H. ACS Omega 2017, 2, 1273. doi: 10.1021/acsomega.6b00504
-
[12]
(12) Shea, J. J.; Luo, C. ACS Appl. Mater. Interfaces 2020, 12, 5361. doi: 10.1021/acsami.9b20384
-
[13]
(13) Lu, Y.; Zhang, Q.; Li, L.; Niu, Z. Q.; Chen, J. Chem 2018, 4, 2786. doi: 10.1016/j.chempr.2018.09.005
-
[14]
(14) Xie, J.; Zhang, Q. C. Small 2019, 15, 1805061. doi: 10.1002/smll.201805061
-
[15]
(15) Zhu, L. M.; Ding, G. C.; Xie, L. L.; Cao, X. Y.; Liu, J. P.; Lei, X. F.; Ma, J. X. Chem. Mater. 2019, 31, 8582. doi: 10.1021/acs.chemmater.9b03109
-
[16]
(16) Williams, D. L.; Byrne, J. J.; Driscoll, J. S. J. Electrochem. Soc. 1969, 116, No.1, 2. doi: 10.1149/1.2411755
-
[17]
(17) MacInnes, D.; Druy, M. A.; Nigrey, P. J.; Nairns, D. P.; MacDiarmid, A. G.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1981, No. 7, 317. doi: 10.1039/C39810000317
-
[18]
(18) Tobishima, S. I.; Yamaki, J. I.; Yamaji, A. J. Electrochem. Soc. 1984, 131, 57. doi: 10.1149/1.2115542
-
[19]
(19) Pickup, P. G.; Osteryoung, R. A. J. Am. Chem. Soc. 1984, 106, 2294. doi: 10.1021/ja00320a014
-
[20]
(20) Macdiarmid, A. G.; Chiang, J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Nanaxakkara, L. D.; Wu, S. W.; Yaniger, S. I. Mol. Cryst. Liq. Cryst. 1985, 121, 173. doi: 10.1080/00268948508074857
-
[21]
(21) Visco, S. J.; DeJonghe, L. C. J. Electrochem. Soc. 1988, 135, 2905. doi: 10.1149/1.2095460
-
[22]
(22) Matsunaga, T.; Daifuku, H.; Nakajima, T.; Kawagoe, T. Polym. Adv. Technol. 1990, 1, 33. doi: 10.1002/pat.1990.220010106
-
[23]
(23) Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1996, 80, 279. doi: 10.1016/0379-6779(96)80214-1
-
[24]
(24) Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.; Hasegawa, E. Chem. Phys. Lett. 2002, 359, 351. doi: 10.1016/S0009-2614(02)00705-4
-
[25]
(25) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120. doi: 10.1038/nmat2372
-
[26]
(26) Matsunaga, T.; Kubota, T.; Sugimoto, T.; Satoh, M. Chem. Lett. 2011, 40, 750. doi: 10.1246/cl.2011.750
-
[27]
(27) Han, X. Y.; Qing, G. Y.; Sun, J. T.; Sun, T. L. Angew. Chem. 2012, 21, 5237. doi: 10.1002/ange.201109187
-
[28]
(28) Chen, Y. A.; Luo, W.; Carter, M.; Zhou, L. H.; Dai, J. Q.; Fu, K.; Lacey, S.; Li, T.; Wan, J. Y.; Han, X. G. Nano Energy 2015, 18, 205. doi: 10.1016/j.nanoen.2015.10.015
-
[29]
(29) Rodríguez-Pérez, I. A.; Yuan, Y. F.; Bommier, C.; Wang, X. F.; Ma, L.; Leonard, D. P.; Lerner, M. M.; Carter, R. G.; Wu, T. P.; Greaney, P. A. J. Am. Chem. Soc. 2017, 139, 13031. doi: 10.1021/jacs.7b06313
-
[30]
(30) Luo, C.; Borodin, O.; Ji, X.; Hou, S.; Gaskell, K. J.; Fan, X. L.; Chen, J.; Deng, T.; Wang, R. X; Jiang, J. J. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 2004. doi: 10.1073/pnas.1717892115
-
[31]
(31) Wang, J. D.; Lakraychi, A. E.; Liu, X. L.; Sieuw, L.; Morari, C.; Poizot, P.; Vlad, A. Nat. Mater. 2021, 20, 665. doi: 10.1038/s41563-020-00869-1
-
[32]
(32) Naegele, D.; Bittihn, R. Solid State Ion 1988, 28, 983. doi: 10.1016/0167-2738(88)90316-5
-
[33]
(33) Miller, J. S. Adv. Mater. 1993, 5, 671. doi: 10.1002/adma.19930050918
-
[34]
(34) Yokoji, T.; Kameyama, Y.; Maruyama, N.; Matsubara, H. J. Mater. Chem. A 2016, 4, 5457. doi: 10.1039/c5ta10713j
-
[35]
(35) Zhang, K.; Guo, C. Y.; Zhao, Q.; Niu, Z. Q.; Chen, J. Adv. Sci. 2015, 2, 1500018. doi: 10.1002/advs.201500018
-
[36]
(36) Xu, F.; Xia, J. T.; Shi, W. Electrochem. Commun. 2015, 60, 117. doi: 10.1016/j.elecom.2015.08.027
-
[37]
(37) Tian, B. B.; Zheng, J.; Zhao, C. X.; Liu, C. B.; Su, C. L.; Tang, W.; Li, X.; Ning, G. H. J. Mater. Chem. A 2019, 7, 9997. doi: 10.1039/c9ta00647h
-
[38]
(38) Chen, Y.; Li, J. Y.; Zhu, Q.; Fan, K.; Cao, Y. Q.; Zhang, G. Q.; Zhang, C. Y.; Gao, Y. B.; Zou, J. C.; Zhai, T. Y. Angew. Chem. Int. Ed. 2022, 61, e202116289. doi: 10.1002/anie.202116289
-
[39]
(39) Pan, B. F.; Huang, J. H.; Feng, Z. X.; Zeng, L.; He, M. N.; Zhang, L.; Vaughey, J. T.; Bedzyk, M. J.; Fenter, P.; Zhang, Z. C. Adv. Energy Mater. 2016, 6, 1600140. doi: 10.1002/aenm.201600140
-
[40]
(40) Kim, D. J.; Yoo, D. J.; Otley, M. T.; Prokofjevs, A.; Pezzato, C.; Owczarek, M.; Lee, S. J.; Choi, J. W.; Stoddart, J. F. Nat. Energy 2019, 4, 51. doi: 10.1038/s41560-018-0291-0
-
[41]
(41) Shacklette, L. W.; Toth, J. E.; Murthy, N. S.; Baughman, R. H. J. Electrochem. Soc. 1985, 132, 1529. doi: 10.1149/1.2114159
-
[42]
(42) Su, D. W.; Zhang, J. Q.; Dou, S. X.; Wang, G. X. Chem. Commun. 2015, 51, 16092. doi: 10.1039/c5cc04229a
-
[43]
(43) Li, H.; Wu, J.; Li, H. B.; Xu, Y. L.; Zheng, J.; Shi, Q. F.; Kang, H. W.; Zhao, S. Q.; Zhang, L. H; Wang, R. Chem. Eng. J. 2022, 430, 132704. doi: 10.1016/j.cej.2021.132704
-
[44]
(44) Karami, H.; Mousavi, M. F.; Shamsipur, M. J. Power Sources 2003, 124, 303. doi: 10.1016/s0378-7753(03)00620-7
-
[45]
(45) Ju, Q. Q.; Shi, Y.; Kan, J. Q. Synth. Met. 2013, 178, 27. doi: 10.1016/j.synthmet.2013.06.016
-
[46]
(46) Koura, N.; Ejiri, H.; Takeishi, K. J. Electrochem. Soc. 1993, 140, 602. doi: 10.1149/1.2056128
-
[47]
(47) Chola, N. M.; Nagarale, R. K. J. Electrochem. Soc. 2020, 167, 100552. doi: 10.1149/1945-7111/ab9cc9
-
[48]
(48) Li, F. L.; Si, Y. B.; Liu, B. J.; Li, Z. J.; Fu, Y. Z. Adv. Funct. Mater. 2019, 29, 1902223. doi: 10.1002/adfm.201902223
-
[49]
(49) Wang, D. Y.; Si, Y. B.; Guo, W.; Fu, Y. Z. Adv. Sci. 2020, 7, 1902646. doi: 10.1002/advs.201902646
-
[50]
(50) NuLi, Y. N.; Guo, Z. P.; Liu, H. K.; Yang, J. Electrochem. Commun. 2007, 9, 1913. doi: 10.1016/j.elecom.2007.05.009
-
[51]
(51) Tuttle, M. R.; Walter, C.; Brackman, E.; Moore, C. E.; Espe, M.; Rasik, C.; Adams, P.; Zhang, S. Chem. Sci. 2021, 12, 15253. doi: 10.1039/d1sc04231a
-
[52]
(52) Bugnon, L.; Morton, C. J.; Novak, P.; Vetter, J.; Nesvadba, P. Chem. Mater. 2007, 19, 2910. doi: 10.1021/cm063052h
-
[53]
(53) Oyaizu, K.; Kawamoto, T.; Suga, T.; Nishide, H. Macromolecules 2010, 43, 10382. doi: 10.1021/ma1020159
-
[54]
(54) Deng, W. W.; Shi, W. B.; Liu, Q. J.; Jiang, J. Y.; Wang, Q. L.; Guo, C. X. J. Power Sources 2020, 479, 228796. doi: 10.1016/j.jpowsour.2020.228796
-
[55]
(55) Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. Macromol. Chem. Phys. 2009, 210, 1989. doi: 10.1002/macp.200900257
-
[56]
-
[57]
(57) Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Nat. Commun. 2014, 5, 5335. doi: 10.1038/ncomms6335
-
[58]
(58) Peng, C. X.; Ning, G. H.; Su, J.; Zhong, G. M.; Tang, W.; Tian, B. B.; Su, C. L.; Yu, D. Y.; Zu, L. H.; Yang, J. H. Nat. Energy 2017, 2, 1. doi: 10.1038/nenergy.2017.74
-
[59]
(59) López-Herraiz, M.; Castillo-Martínez, E.; Carretero-González, J.; Carrasco, J.; Rojo, T.; Armand, M. Energy Environ. Sci. 2015, 8, 3233. doi: 10.1039/c5ee01832c
-
[60]
(60) Sun, G. C.; Yang, B. Z.; Chen, X. J.; Wei, Y. H.; Yin, G.; Zhang, H. P.; Liu, Q. Chem. Eng. J. 2022, 431, 134253. doi: 10.1016/j.cej.2021.134253
-
[61]
(61) Mao, M. L.; Luo, C.; Pollard, T. P.; Hou, S.; Gao, T.; Fan, X. L.; Cui, C. Y.; Yue, J. M.; Tong, Y. X.; Yang, G. J. Angew. Chem. Int. Ed. 2019, 58, 17820. doi: 10.1002/anie.201910916
-
[62]
(62) Luo, W.; Allen, M.; Raju, V.; Ji, X. L. Adv. Energy Mater. 2014, 4, 1400554. doi: 10.1002/aenm.201400554
-
[63]
(63) Luo, C.; Ji, X.; Hou, S.; Eidson, N.; Fan, X. L.; Liang, Y. J.; Deng, T.; Jiang, J. J.; Wang, C. S. Adv. Mater. 2018, 30, 1706498. doi: 10.1002/adma.201706498
-
[64]
(64) Luo, C.; Xu, G. L.; Ji, X.; Hou, S.; Chen, L.; Wang, F.; Jiang, J. J.; Chen, Z. H.; Ren, Y.; Amine, K. Angew. Chem. Int. Ed. 2018, 57, 2879. doi: 10.1002/anie.201713417
-
[65]
(65) Liang, Y. J.; Luo, C.; Wang, F.; Hou, S.; Liou, S. C.; Qing, T. T.; Li, Q.; Zheng, J.; Cui, C. Y.; Wang, C. S. Adv. Energy Mater. 2019, 9, 1802986. doi: 10.1002/aenm.201802986
-
[66]
(66) Wei, J.; Zhang, P. B.; Shen, T. Y.; Liu, Y. Z.; Dai, T. F.; Tie, Z. X.; Jin, Z. ACS Energy Lett. 2022, 8, 762. doi: 10.1021/acsenergylett.2c02646
-
[67]
-
[68]
(68) Liang, Y. L.; Zhang, P.; Yang, S. Q.; Tao, Z. L.; Chen, J. Adv. Energy Mater. 2013, 3, 600. doi: 10.1002/aenm.201200947
-
[69]
(69) Zhao, L. B.; Gao, S. T.; He, R. X.; Shen, W.; Li, M. ChemSusChem 2018, 11, 1215. doi: 10.1002/cssc.201702344
-
[70]
(70) Liang, Y. L.; Zhang, P.; Chen, J. Chem. Sci. 2013, 4, 1330. doi: 10.1039/c3sc22093a
-
[71]
(71) Ohzuku, T.; Wakamatsu, H.; Takehara, Z.; Yoshizawa, S. Electrochim. Acta 1979, 24, 723. doi: 10.1016/0013-4686(79)87057-7
-
[72]
(72) Han, X. Y.; Chang, C. Y.; Yuan, L. J.; Sun, T. L.; Sun, J. T. Adv. Mater. 2007, 19, 1616. doi: 10.1002/adma.200602584
-
[73]
(73) Kim, D. J.; Je, S. H.; Sampath, S.; Choi, J. W.; Coskun, A. RSC Adv. 2012, 2, 7968. doi: 10.1039/c2ra21239k
-
[74]
(74) Ito, T.; Shirakawa, H.; Ikeda, S. J. Polym. Sci. A-Polym. Chem. 1974, 12, 11. doi: 10.1002/pol.1974.170120102
-
[75]
(75) Novák, P.; Müller, K.; Santhanam, K.; Haas, O. Chem. Rev. 1997, 97, 207. doi: 10.1021/cr941181o
-
[76]
(76) Liao, H. P.; Ding, H. M.; Li, B. J.; Ai, X. P.; Wang, C. J. Mater. Chem. A 2014, 2, 8854. doi: 10.1039/c4ta00523f
-
[77]
(77) Guo, W.; Fu, Y. Z. Chem. Eur. J. 2020, 26, 13322. doi: 10.1002/chem.202000878
-
[78]
(78) Wang, D. Y.; Guo, W.; Fu, Y. Z. Acc. Chem. Res. 2019, 52, 2290. doi: 10.1021/acs.accounts.9b00231
-
[79]
(79) Guo, W.; Wang, D. Y.; Chen, Q. L.; Fu, Y. Z. Adv. Sci. 2022, 9, 2103989. doi: 10.1002/advs.202103989
-
[80]
-
[81]
(81) Li, Y.; Wu, K. H.; Huang, N.; Dalapati, S.; Su, B. J.; Jang, L. Y.; Gentle, I. R.; Jiang, D. L.; Wang, D. W. Energy Storage Mater. 2018, 12, 30. doi: 10.1016/j.ensm.2017.11.007
-
[82]
(82) Li, F. J.; Si, Y. B.; Li, Z. J.; Guo, W.; Fu, Y. Z. J. Mater. Chem. A 2020, 8, 87. doi: 10.1039/c9ta10611a
-
[83]
(83) Bhargav, A.; Ma, Y.; Shashikala, K.; Cui, Y.; Losovyj, Y.; Fu, Y. Z. J. Mater. Chem. A 2017, 5, 25005. doi: 10.1039/c7ta07460c
-
[84]
(84) Wang, D. Y.; Si, Y. B.; Guo, W.; Fu, Y. Z. Nat. Commun. 2021, 12, 3220. doi: 10.1038/s41467-021-23521-1
-
[85]
(85) Janoschka, T.; Hager, M. D.; Schubert, U. S. Adv. Mater. 2012, 24, 6397. doi: 10.1002/adma.201203119
-
[86]
(86) Kolek, M.; Otteny, F.; Schmidt, P.; Mück-Lichtenfeld, C.; Einholz, C.; Becking, J.; Schleicher, E.; Winter, M.; Bieker, P.; Esser, B. Energy Environ. Sci. 2017, 10, 2334. doi: 10.1039/c7ee01473b
-
[87]
(87) Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C. B.; Kang, K. Green Chem. 2017, 19, 2980. doi: 10.1039/c7gc00849j
-
[88]
(88) Deunf, É.; Jiménez, P.; Guyomard, D.; Dolhem, F.; Poizot, P. Electrochem. Commun. 2016, 72, 64. doi: 10.1016/j.elecom.2016.09.002
-
[89]
(89) Lee, M.; Hong, J.; Seo, D. H.; Nam, D. H.; Nam, K. T.; Kang, K.; Park, C. B. Angew. Chem. Int. Ed. 2013, 52, 8322. doi: 10.1002/anie.201301850
-
[90]
(90) Lee, M.; Hong, J.; Kim, H.; Lim, H. D.; Cho, S. B.; Kang, K.; Park, C. B. Adv. Mater. 2014, 26, 2558. doi: 10.1002/adma.201305005
-
[91]
(91) Son, E. J.; Kim, J. H.; Kim, K.; Park, C. B. J. Mater. Chem. A 2016, 4, 11179. doi: 10.1039/c6ta03123d
-
[92]
(92) Cui, C. Y.; Ji, X.; Wang, P. F.; Xu, G. L.; Chen, L.; Chen, J.; Kim, H.; Ren, Y.; Chen, F.; Yang, C. Y. ACS Energy Lett. 2019, 5, 224. doi: 10.1021/acsenergylett.9b02466
-
[93]
(93) Wang, J. Q.; Chen, C. S.; Zhang, Y. G. ACS Sustain. Chem. Eng. 2018, 6, 1772. doi: 10.1021/acssuschemeng.7b03165
-
[94]
(94) Shimizu, A.; Tsujii, Y.; Kuramoto, H.; Nokami, T.; Inatomi, Y.; Hojo, N.; Yoshida, J. I. Energy Technol. 2014, 2, 155. doi: 10.1002/ente.201300148
-
[95]
(95) Banda, H.; Damien, D.; Nagarajan, K.; Raj, A.; Hariharan, M.; Shaijumon, M. M. Adv. Energy Mater. 2017, 7, 1701316. doi: 10.1002/aenm.201701316
-
[96]
(96) Yokoji, T.; Matsubara, H.; Satoh, M. J. Mater. Chem. A 2014, 2, 19347. doi: 10.1039/c4ta02812k
-
[97]
(97) Zeng, R. H.; Xing, L. D.; Qiu, Y. C.; Wang, Y. T.; Huang, W. N.; Li, W. S.; Yang, S. H. Electrochim. Acta 2014, 146, 447. doi: 10.1016/j.electacta.2014.09.08
-
[98]
(98) Hanyu, Y.; Sugimoto, T.; Ganbe, Y.; Masuda, A.; Honma, I. J. Electrochem. Soc. 2013, 161, A6. doi: 10.1149/2.015401jes
-
[99]
(99) Hanyu, Y.; Honma, I. Sci. Rep. 2012, 2, 453. doi: 10.1038/srep00453
-
[100]
(100) Lee, J.; Kim, H.; Park, M. J. Chem. Mater. 2016, 28, 2408. doi: 10.1021/acs.chemmater.6b00624
-
[101]
(101) Li, Z. Y.; Jia, Q. Q.; Chen, Y.; Fan, K.; Zhang, C. Y.; Zhang, G. Q.; Xu, M.; Mao, M. L.; Ma, J.; Hu, W. P. Angew. Chem. Int. Ed. 2022, 61, e202207221. doi: 10.1002/anie.202207221
-
[102]
(102) Shimizu, A.; Kuramoto, H.; Tsujii, Y.; Nokami, T.; Inatomi, Y.; Hojo, N.; Suzuki, H.; Yoshida, J. I. J. Power Sources 2014, 260, 211. doi: 10.1016/j.jpowsour.2014.03.027
-
[103]
(103) Wan, W.; Lee, H.; Yu, X. Q.; Wang, C.; Nam, K. W.; Yang, X. Q.; Zhou, H. H. RSC Adv. 2014, 4, 19878. doi: 10.1039/c4ra01166j
-
[104]
(104) Hanyu, Y.; Ganbe, Y.; Honma, I. J. Power Sources 2013, 221, 186. doi: 10.1016/j.jpowsour.2012.08.040
-
[105]
(105) Tang, M.; Zhu, S. L.; Liu, Z. T.; Jiang, C.; Wu, Y. C.; Li, H. Y.; Wang, B.; Wang, E. J.; Ma, J.; Wang, C. L. Chem 2018, 4, 2600. doi: 10.1016/j.chempr.2018.08.014
-
[106]
(106) Chen, D. Y.; Avestro, A. J.; Chen, Z. H.; Sun, J. L.; Wang, S. J.; Xiao, M.; Erno, Z.; Algaradah, M. M.; Nassar, M. S.; Amine, K. Adv. Mater. 2015, 27, 2907. doi: 10.1002/adma.201405416
-
[107]
(107) Yang, J. X.; Xiong, P. X.; Shi, Y. Q.; Sun, P. F.; Wang, Z. P.; Chen, Z. F.; Xu, Y. H. Adv. Funct. Mater. 2020, 30, 1909597. doi: 10.1002/adfm.201909597
-
[108]
(108) Wang, C. L.; Xu, Y.; Fang, Y. G.; Zhou, M.; Liang, L. Y.; Singh, S.; Zhao, H. P.; Schober, A.; Lei, Y. J. Am. Chem. Soc. 2015, 137, 3124. doi: 10.1021/jacs.5b00336
-
[109]
(109) Sotomura, T.; Uemachi, H.; Takeyama, K.; Naoi, K.; Oyama, N. Electrochim. Acta 1992, 37, 1851. doi: 10.1016/0013-4686(92)85089-4
-
[110]
(110) Tannai, H.; Tsuge, K.; Sasaki, Y.; Hatozaki, O.; Oyama, N. Dalton Trans. 2003, No. 11, 2353. doi: 10.1021/jp960774v
-
[111]
(111) Kaminaga, A.; Tatsuma, T.; Sotomura, T.; Oyama, N. J. Electrochem. Soc. 1995, 142, L47. doi: 10.1149/1.2044178
-
[112]
(112) Song, Z. P.; Qian, Y. M.; Gordin, M. L.; Tang, D. H.; Xu, T.; Otani, M.; Zhan, H.; Zhou, H. S.; Wang, D. H. Angew. Chem. 2015, 127, 14153. doi: 10.1002/anie.201506673
-
[113]
(113) Sharma, P.; Damien, D.; Nagarajan, K.; Shaijumon, M. M.; Hariharan, M. J. Phys. Chem. Lett. 2013, 4, 3192. doi: 10.1021/jz4017359
-
[114]
(114) Shi, Y. Q.; Sun, P. F.; Yang, J. X.; Xu, Y. H. ChemSusChem 2020, 13, 334. doi: 10.1002/cssc.201902966
-
[115]
(115) Sang, P. F.; Si, Y. B.; Fu, Y. Z. Chem. Commun. 2019, 55, 4857. doi: 10.1039/c9cc01495k
-
[116]
(116) Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. doi: 10.1126/science.1120411
-
[117]
(117) Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Adv. Energy Mater. 2020, 10, 1904199. doi: 10.1002/aenm.201904199
-
[118]
(118) Kandambeth, S.; Kale, V. S.; Shekhah, O.; Alshareef, H. N.; Eddaoudi, M. Adv. Energy Mater. 2022, 12, 2100177. doi: 10.1002/aenm.202100177
-
[119]
(119) Cao, Y.; Wang, M. D.; Wang, H. J.; Han, C. Y.; Pan, F. S.; Sun, J. Adv. Energy Mater. 2022, 12, 2200057. doi: 10.1002/aenm.202200057
-
[120]
(120) Zou, J. C.; Fan, K.; Chen, Y.; Hu, W. P.; Wang, C. L. Coord. Chem. Rev. 2022, 458, 214431. doi: 10.1016/j.ccr.2022.214431
-
[121]
-
[122]
(122) Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. J. Am. Chem. Soc. 2017, 139, 4258. doi: 10.1021/jacs.7b02648
-
[123]
(123) Ramanathan, V.; Ogale, S.; Haldar, S.; Kushwaha, R.; Roy, K. Adv. Energy Mater. 2019, 9, 1902428. doi: 10.1002/aenm.201902428
-
[124]
(124) Vitaku, E.; Gannett, C. N.; Carpenter, K. L.; Shen, L.; Abruña, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2019, 142, 16. doi: 10.1021/jacs.9b08147
-
[125]
(125) Singh, V.; Kim, J.; Kang, B.; Moon, J.; Kim, S.; Kim, W. Y.; Byon, H. R. Adv. Energy Mater. 2021, 11, 2003735. doi: 10.1002/aenm.202003735
-
[126]
(126) Gao, H.; Neale, A. R.; Zhu, Q.; Bahri, M.; Wang, X.; Yang, H. F.; Xu, Y. J.; Clowes, R.; Browning, N. D.; Little, M. A. J. Am. Chem. Soc. 2022, 144, 9434. doi: 10.1021/jacs.2c02196
-
[127]
(127) Chen, X. D.; Li, Y. S.; Wang, L.; Xu, Y.; Nie, A.; Li, Q. Q.; Wu, F.; Sun, W. W.; Zhang, X.; Vajtai, R. Adv. Mater. 2019, 31, 1901640. doi: 10.1002/adma.201901640
-
[128]
(128) Lei, Z. D.; Chen, X. D.; Sun, W. W.; Zhang, Y.; Wang, Y. Adv. Energy Mater. 2019, 9, 1801010. doi: 10.1002/aenm.201801010
-
[129]
(129) Wang, Z. Q.; Gu, S. A.; Cao, L. J.; Kong, L.; Wang, Z. Y.; Qin, N.; Li, M. Q.; Luo, W.; Chen, J. J.; Wu, S. S. ACS Appl. Mater. Interfaces 2020, 13, 514. doi: 10.1021/acsami.0c17692
-
[130]
(130) Wu, M. M.; Zhao, Y.; Sun, B. Q.; Sun, Z. H.; Li, C. X.; Han, Y.; Xu, L. Q; Ge, Z.; Ren, Y. X; Zhang, M. T. Nano Energy 2020, 70, 104498. doi: 10.1016/j.nanoen.2020.104498
-
[131]
(131) Li, S. W.; Liu, Y. Z.; Dai, L.; Li, S.; Wang, B.; Xie, J.; Li, P. F. Energy Storage Mater. 2022, 48, 439. doi: 10.1016/j.ensm.2022.03.033
-
[132]
(132) Xu, F.; Jin, S. B.; Zhong, H.; Wu, D. C.; Yang, X. Q.; Chen, X.; Wei, H.; Fu, R. W; Jiang, D. J. Sci. Rep. 2015, 5, 8225. doi: 10.1038/srep08225
-
[133]
(133) Yoo, J.; Cho, S. J.; Jung, G. Y.; Kim, S. H.; Choi, K. H.; Kim, J. H.; Lee, C. K.; Kwak, S. K.; Lee, S. Y. Nano Lett. 2016, 16, 3292. doi: 10.1021/acs.nanolett.6b00870
-
[134]
(134) Luo, Z. Q.; Liu, L. J.; Ning, J. X.; Lei, K. X.; Lu, Y.; Li, F. J.; Chen, J. Angew. Chem. Int. Ed. 2018, 57, 9443. doi: 10.1002/anie.201805540
-
[135]
(135) Wang, G.; Chandrasekhar, N.; Biswal, B. P.; Becker, D.; Paasch, S.; Brunner, E.; Addicoat, M.; Yu, M.; Berger, R.; Feng, X. L. Adv. Mater. 2019, 31, 1901478. doi: 10.1002/adma.201901478
-
[136]
(136) Wang, Z. L.; Li, Y. J.; Liu, P. J.; Qi, Q. Y.; Zhang, F.; Lu, G. L.; Zhao, X.; Huang, X. Y. Nanoscale 2019, 11, 5330. doi: 10.1039/c9nr00088g
-
[137]
(137) Schon, T. B.; Tilley, A. J.; Kynaston, E. L.; Seferos, D. S. ACS Appl. Mater. Interfaces 2017, 9, 15631. doi: 10.1021/acsami.7b02336
-
[138]
(138) Xu, S. Q.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W. B.; Zhuang, X. D.; Brunner, E.; Heine, T.; Berger, R. Angew. Chem. 2019, 131, 859. doi: 10.1002/ange.201812685
-
[139]
(139) Yang, D. H.; Yao, Z. Q.; Wu, D. H.; Zhang, Y. H.; Zhou, Z.; Bu, X. H. J. Mater. Chem. A 2016, 4, 18621. doi: 10.1039/c6ta07606h
-
[140]
(140) Zhu, Z. Q.; Chen, J. J. Electrochem. Soc. 2015, 162, A2393. doi: 10.1149/2.0031514jes
-
[141]
(141) Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Nat. Commun. 2018, 9, 576. doi: 10.1038/s41467-018-02889-7
-
[142]
(142) Narayan, R.; Blagojević, A.; Mali, G.; Vélez Santa, J. F.; Bitenc, J.; Randon-Vitanova, A.; Dominko, R. Chem. Mater. 2022, 34, 6378. doi: 10.1021/acs.chemmater.2c00862
-
[143]
(143) Wu, H. P.; Yang, Q.; Meng, Q. H.; Ahmad, A.; Zhang, M.; Zhu, L. Y.; Liu, Y. G.; Wei, Z. X. J. Mater. Chem. A 2016, 4, 2115. doi: 10.1039/c5ta07246h
-
[144]
(144) Wu, H. P.; Wang, K.; Meng, Y. N.; Lu, K.; Wei, Z. X. J. Mater. Chem. A 2013, 1, 6366. doi: 10.1039/c3ta10473g
-
[145]
(145) Wang, J. H.; Liu, Z. L.; Wang, H. G.; Cui, F. C.; Zhu, G. S. Chem. Eng. J. 2022, 450, 138051. doi: 10.1016/j.cej.2022.138051
-
[146]
(146) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. E.; Zhang, Y. S.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[147]
(147) Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Adv. Mater. 2012, 24, 5979. doi: 10.1002/adma.201201587
-
[148]
(148) Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Chem. Rev. 2014, 114, 7150. doi: 10.1021/cr500023c
-
[149]
(149) Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Adv. Mater. 2014, 26, 849. doi: 10.1002/adma.201303115
-
[150]
(150) Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501
-
[151]
(151) Zhang, S. Q.; Zhao, W. T.; Li, H.; Xu, Q. ChemSusChem 2020, 13, 188. doi: 10.1002/cssc.201902697
-
[152]
(152) Xiao, Z. Y.; Xiang, G. Q.; Zhang, Q.; Wang, Y. L.; Yang, Y. K. Energy Environ. Mater. 2022. doi: 10.1002/eem2.12399
-
[153]
(153) Ai, W.; Zhou, W. W.; Du, Z. Z.; Sun, C. C.; Yang, J.; Chen, Y.; Sun, Z. P.; Feng, S.; Zhao, J. F.; Dong, X. C. Adv. Funct. Mater. 2017, 27, 1603603. doi: 10.1002/adfm.201603603
-
[154]
(154) Wang, Y.; Kretschmer, K.; Zhang, J. Q.; Mondal, A. K.; Guo, X.; Wang, G. X. RSC Adv. 2016, 6, 57098. doi: 10.1039/c6ra11809g
-
[155]
(155) Song, Z. P.; Xu, T.; Gordin, M. L.; Jiang, Y. B.; Bae, I. T.; Xiao, Q. F.; Zhan, H.; Liu, J.; Wang, D. H. Nano Lett. 2012, 12, 2205. doi: 10.1021/nl2039666
-
[156]
(156) Li, L.; Zuo, Z. C.; Wang, F.; Gao, J. C.; Cao, A.; He, F.; Li, Y. L. Adv. Mater. 2020, 32, 2000140. doi: 10.1002/adma.202000140
-
[157]
(157) Gao, H.; Tian, B. B.; Yang, H. F.; Neale, A. R.; Little, M. A.; Sprick, R. S.; Hardwick, L. J.; Cooper, A. I. ChemSusChem 2020, 13, 5571. doi: 10.1002/cssc.202001389
-
[158]
(158) Li, H.; Duan, W. C.; Zhao, Q.; Cheng, F. Y.; Liang, J.; Chen, J. Inorg. Chem. Front. 2014, 1, 193. doi: 10.1039/c3qi00076a
-
[159]
(159) Kim, H.; Kwon, J. E.; Lee, B.; Hong, J.; Lee, M.; Park, S. Y.; Kang, K. Chem. Mater. 2015, 27, 7258. doi: 10.1021/acs.chemmater.5b02569
-
[160]
(160) Mirle, C.; Medabalmi, V.; Ramanujam, K. ACS Appl. Energy Mater. 2021, 4, 1218. doi: 10.1021/acsaem.0c02511
-
[161]
(161) Wang, S. W.; Wang, L. J.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Nano Lett. 2013, 13, 4404. doi: 10.1021/nl402239p
-
[162]
(162) Wang, Y. Q.; Ding, Y.; Pan, L. J.; Shi, Y.; Yue, Z. H.; Shi, Y.; Yu, G. H. Nano Lett. 2016, 16, 3329. doi: 10.1021/acs.nanolett.6b00954
-
[163]
(163) Luo, C.; Huang, R. M.; Kevorkyants, R.; Pavanello, M.; He, H. X.; Wang, C. S. Nano Lett. 2014, 14, 1596. doi: 10.1021/nl500026j
-
[164]
(164) Xu, F.; Chen, X.; Tang, Z. W.; Wu, D. C.; Fu, R. W.; Jiang, D. L. Chem. Commun. 2014, 50, 4788. doi: 10.1039/c4cc01002g
-
[165]
(165) Zhang, C.; He, Y. W.; Mu, P.; Wang, X.; He, Q.; Chen, Y.; Zeng, J. H.; Wang, F.; Xu, Y. H.; Jiang, J. X. Adv. Funct. Mater. 2018, 28, 1705432. doi: 10.1002/adfm.201705432
-
[166]
(166) Wu, J. S.; Rui, X. H.; Wang, C. Y.; Pei, W. B.; Lau, R.; Yan, Q. Y.; Zhang, Q. C. Adv. Energy Mater. 2015, 5, 1402189. doi: 10.1002/aenm.201402189
-
[167]
(167) Xie, J.; Rui, X. H.; Gu, P. Y.; Wu, J. S.; Xu, Z. J.; Yan, Q. Y.; Zhang, Q. C. ACS Appl. Mater. Interfaces 2016, 8, 16932. doi: 10.1021/acsami.6b04277
-
[168]
(168) Wu, J. S.; Rui, X. H.; Long, G. K.; Chen, W. Q.; Yan, Q. Y.; Zhang, Q. C. Angew. Chem. Int. Ed. 2015, 54, 7354. doi: 10.1002/anie.201503072
-
[169]
(169) Kapaev, R. R.; Shestakov, A. F.; Vasil’ev, S. G.; Stevenson, K. J. ACS Appl. Energy Mater. 2021, 4, 10423. doi: 10.1021/acsaem.1c01970
-
[170]
(170) Gu, S.; Wu, S. F.; Cao, L. J.; Li, M. C.; Qin, N.; Zhu, J.; Wang, Z. Q.; Li, Y. Z.; Li, Z. Q.; Chen, J. J. J. Am. Chem. Soc. 2019, 141, 9623. doi: 10.1021/jacs.9b03467
-
[171]
(171) Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952. doi: 10.1021/ja408243n
-
[172]
(172) Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.; Vaidhyanathan, R. Adv. Energy Mater. 2018, 8, 1702170. doi: 10.1002/aenm.201702170
-
[173]
(173) Zhang, Y. R.; Wang, W. B.; Hou, M. L.; Zhang, Y. T.; Dou, Y. Y.; Yang, Z. H.; Xu, X. Y.; Liu, H. N.; Qiao, S. L. Energy Storage Mater. 2022, 47, 376. doi: 10.1016/j.ensm.2022.02.029
-
[174]
(174) Xu, Z. X.; Li, M.; Sun, W. Y.; Tang, T.; Lu, J.; Wang, X. L. Adv. Mater. 2022, 34, 2200077. doi: 10.1002/adma.202200077
-
[175]
(175) Wang, Y. Q.; Bai, P. X.; Li, B. F.; Zhao, C.; Chen, Z. F.; Li, M. J.; Su, H.; Yang, J. X.; Xu, Y. H. Adv. Energy Mater. 2021, 11, 2101972. doi: 10.1002/aenm.202101972
-
[176]
(176) Luo, C.; Ji, X.; Chen, J.; Gaskell, K. J.; He, X. Z.; Liang, Y. J.; Jiang, J. J.; Wang, C. S. Angew. Chem. 2018, 130, 8703. doi: 10.1002/anie.201804068
-
[177]
-
[178]
-
[179]
(179) Cui, D. M.; Tian, D.; Chen, S. S.; Yuan, L. J. J. Mater. Chem. A 2016, 4, 9177. doi: 10.1039/c6ta02880b
-
[180]
(180) Shi, Y. Q.; Yang, J. K.; Yang, J. X.; Wang, Z. P.; Chen, Z. F.; Xu, Y. H. Adv. Funct. Mater. 2022, 32, 2111307. doi: 10.1002/adfm.202111307
-
[181]
(181) Kim, J.; Elabd, A.; Chung, S. Y.; Coskun, A.; Choi, J. W. Chem. Mater. 2020, 32, 4185. doi: 10.1021/acs.chemmater.0c00246
-
[182]
(182) Sang, P. F.; Song, J. H.; Guo, W.; Fu, Y. Z. Chem. Eng. J. 2021, 415, 129043. doi: 10.1016/j.cej.2021.129043
-
[183]
(183) Luo, C.; Wang, J. J.; Fan, X. L.; Zhu, Y. J.; Han, F. D.; Suo, L. M.; Wang, C. S. Nano Energy 2015, 13, 537. doi: 10.1016/j.nanoen.2015.03.041
-
[184]
(184) Lyu, H. L.; Liu, J. R.; Mahurin, S.; Dai, S.; Guo, Z. H.; Sun, X. G. J. Mater. Chem. A 2017, 5, 24083. doi: 10.1039/c7ta07893e
-
[185]
(185) Kim, J. K.; Thébault, F.; Heo, M. Y.; Kim, D. S.; Hansson, Ö.; Ahn, J. H.; Johansson, P.; Öhrström, L.; Matic, A.; Jacobsson, P. Electrochem. Commun. 2012, 21, 50. doi: 10.1016/j.elecom.2012.05.016
-
[186]
(186) Zhang, Y.; Gao, P. P.; Guo, X. Y.; Chen, H.; Zhang, R. Q.; Du, Y.; Wang, B. F.; Yang, H. S. RSC Adv. 2020, 10, 16732. doi: 10.1039/d0ra01312a
-
[187]
(187) Zhang, X. Y.; Xu, Q. H.; Wang, S. J.; Tang, Y. C.; Huang, X. B. ACS Appl. Energy Mater. 2021, 4, 11787. doi: 10.1021/acsaem.1c02556
-
[188]
(188) Rodríguez-Pérez, I. A.; Jian, Z. L.; Waldenmaier, P. K.; Palmisano, J. W.; Chandrabose, R. S.; Wang, X. F.; Lerner, M. M.; Carter, R. G.; Ji, X. L. ACS Energy Lett. 2016, 1, 719. doi: 10.1021/acsenergylett.6b00300
-
[189]
(189) Katsuyama, Y.; Kobayashi, H.; Iwase, K.; Gambe, Y.; Honma, I. Adv. Sci. 2022, 9, 2200187. doi: 10.1002/advs.202200187
-
[190]
(190) Lu, Y.; Chen, J. Nat. Rev. Chem. 2020, 4, 127. doi: 10.1038/s41570-020-0160-9
-
[191]
(191) Lyu, H. L.; Li, P. P.; Liu, J. R.; Mahurin, S.; Chen, J. H.; Hensley, D. K.; Veith, G. M.; Guo, Z. H.; Dai, S.; Sun, X. G. ChemSusChem 2018, 11, 763. doi: 10.1002/cssc.201702001
-
[192]
(192) Wang, X. X.; Tang, W.; Hu, Y.; Liu, W. Q.; Yan, Y. C.; Xu, L.; Fan, C. Green Chem. 2021, 23, 6090. doi: 10.1039/D1GC01927A
-
[193]
(193) Lu, Y.; Cai, Y. C.; Zhang, Q.; Chen, J. Adv. Mater. 2022, 34, 2104150. doi: 10.1002/adma.202104150
-
[194]
(194) Kim, H.; Seo, D. H.; Yoon, G.; Goddard III, W. A.; Lee, Y. S.; Yoon, W. S.; Kang, K. J. Phys. Chem. Lett. 2014, 5, 3086. doi: 10.1021/jz501557n
-
[195]
(195) Iordache, A.; Delhorbe, V.; Bardet, M.; Dubois, L.; Gutel, T.; Picard, L. ACS Appl. Mater. Interfaces 2016, 8, 22762. doi: 10.1021/acsami.6b07591
-
[196]
(196) Shestakov, A. F.; Yarmolenko, O. V.; Ignatova, A. A.; Mumyatov, A. V.; Stevenson, K. J.; Troshin, P. A. J. Mater. Chem. A 2017, 5, 6532. doi: 10.1039/c6ta10520c
-
[197]
(197) Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Energies 2017, 10, 1314. doi: 10.3390/en10091314
-
[198]
(198) Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2
-
[199]
(199) Patry, G.; Romagny, A.; Martinet, S.; Froelich, D. Energy Sci. Eng. 2015, 3, 71. doi: 10.1002/ese3.47
-
[200]
(200) Chen, M.; Liu, L.; Zhang, P. Y.; Chen, H. N. RSC Adv. 2021, 11, 24429. doi: 10.1039/d1ra03068j
-
[201]
(201) Qin, K. Q.; Tan, S.; Mohammadiroudbari, M.; Yang, Z. Z.; Yang, X. Q.; Hu, E. Y.; Luo, C. Nano Energy 2022, 101, 107554. doi: 10.1016/j.nanoen.2022.107554
-
[202]
(202) Molina, A.; Patil, N.; Ventosa, E.; Liras, M.; Palma, J.; Marcilla, R. ACS Energy Lett. 2020, 5, 2945. doi: 10.1021/acsenergylett.0c01577
-
[203]
(203) Wang, J. Q.; Tee, K.; Lee, Y.; Riduan, S. N.; Zhang, Y. G. J. Mater. Chem. A 2018, 6, 2752. doi: 10.1039/c7ta10232a
-
[204]
(204) Wilkinson, D.; Bhosale, M.; Amores, M.; Naresh, G.; Cussen, S. A.; Cooke, G. ACS Appl. Energy Mater. 2021, 4, 12084. doi: 10.1021/acsaem.1c01339
-
[205]
(205) Song, Z. P.; Qian, Y. M.; Zhang, T.; Otani, M.; Zhou, H. S. Adv. Sci. 2015, 2, 1500124. doi: 10.1002/advs.201500124
-
[206]
(206) Zhao, J. H.; Kang, T.; Chu, Y. L.; Chen, P.; Jin, F.; Shen, Y. B.; Chen, L. W. Nano Res. 2019, 12, 1355. doi: 10.1007/s12274-019-2306-y
-
[207]
(207) Wang, J. Q.; Lee, Y.; Tee, K.; Riduan, S. N.; Zhang, Y. G Chem. Commun. 2018, 54, 7681. doi: 10.1039/c8cc03801e
-
[208]
(208) Shi, R. J.; Liu, L. J.; Lu, Y.; Wang, C. C.; Li, Y. X.; Li, L.; Yan, Z. H.; Chen, J. Nat. Commun. 2020, 11, 178. doi: 10.1038/s41467-019-13739-5
-
[209]
(209) Tie, Z. W.; Liu, L. J.; Deng, S. Z.; Zhao, D. B.; Niu, Z. Q. Angew. Chem. 2020, 132, 4950. doi: 10.1002/anie.201916529
-
[210]
(210) Chen, X. J.; Su, H. Q.; Yang, B. Z.; Yin, G.; Liu, Q. Sustain. Energy Fuels 2022, 6, 2523. doi: 10.1039/d2se00310d
-
[211]
(211) Zhang, C.; Ma, W. Y.; Han, C. Z.; Luo, L. W.; Daniyar, A.; Xiang, S. H.; Wu, X. Y.; Ji, X. L.; Jiang, J. X. Energy Environ. Sci. 2021, 14, 462. doi: 10.1039/d0ee03356a
-
[212]
(212) Ma, D. X.; Zhao, H. M.; Cao, F.; Zhao, H. H.; Li, J. X.; Wang, L.; Liu, K. Chem. Sci. 2022, 13, 2385. doi: 10.1039/d1sc06412f
-
[213]
(213) Tie, Z. W.; Zhang, Y.; Zhu, J. C.; Bi, S. S.; Niu, Z. Q. J. Am. Chem. Soc. 2022, 144, 10301. doi: 10.1021/jacs.2c01485
-
[214]
(214) Chen, J.; Li, L. D.; Cheng, Y. H.; Huang, Y.; Chen, C. Int. J. Hydrogen Energy 2022, 47, 16025. doi: 10.1016/j.ijhydene.2022.03.100
-
[215]
(215) Zhang, H.; Qu, Z.; Tang, H. M.; Wang, X.; Koehler, R.; Yu, M. H.; Gerhard, C.; Yin, Y.; Zhu, M. S.; Zhang, K. ACS Energy Lett. 2021, 6, 2491. doi: 10.1021/acsenergylett.1c00768
-
[216]
(216) Cai, S. C.; Meng, Z. H.; Cheng, Y. P.; Zhu, Z. Y.; Chen, Q. Q.; Wang, P.; Kan, E. J.; Ouyang, B.; Zhang, H. N.; Tang, H. L. Electrochim. Acta 2021, 395, 139074. doi: 10.1016/j.electacta.2021.139074
-
[217]
(217) Zhu, Z. H.; Yu, B.; Sun, W. W.; Chen, S. Q.; Wang, Y.; Li, X. P.; Lv, L. P. J. Power Sources 2022, 542, 231583. doi: 10.1016/j.jpowsour.2022.231583
-
[218]
(218) Guo, Z. W.; Ma, Y. Y.; Dong, X. L.; Huang, J. H.; Wang, Y. G.; Xia, Y. Y. Angew. Chem. 2018, 130, 11911. doi: 10.1002/anie.201807121
-
[219]
(219) Wang, J. Q.; Liu, J.; Hu, M. M.; Zeng, J.; Mu, Y. B.; Guo, Y.; Yu, J.; Ma, X.; Qiu, Y. J.; Huang, Y. J. Mater. Chem. A 2018, 6, 11113. doi: 10.1039/c8ta03143f
-
[220]
(220) Wu, H. P.; Meng, Q. H.; Yang, Q.; Zhang, M.; Lu, K.; Wei, Z. X. Adv. Mater. 2015, 27, 6504. doi: 10.1002/adma.201502241
-
[221]
(221) Dong, F.; Peng, C. X.; Xu, H. Y.; Zheng, Y. X.; Yao, H. F.; Yang, J. H.; Zheng, S. Y. ACS Nano 2021, 15, 20287. doi: 10.1021/acsnano.1c08449
-
[222]
(222) Wang, Y.; Jiang, H. D.; Zheng, R. Z.; Pan, J. B.; Niu, J. L.; Zou, X. L.; Jia, C. Y. J. Mater. Chem. A 2020, 8, 12799. doi: 10.1039/D0TA04203J
-
[223]
(223) Li, G. P.; Zhang, B. J.; Wang, J. W.; Zhao, H. Y.; Ma, W. Q.; Xu, L. T.; Zhang, W. D.; Zhou, K.; Du, Y. P.; He, G. Angew. Chem. 2019, 131, 8556. doi: 10.1002/anie.201903152
-
[224]
(224) Khayum, A.; Ghosh, M.; Vijayakumar, V.; Halder, A.; Nurhuda, M.; Kumar, S.; Addicoat, M.; Kurungot, S.; Banerjee, R. Chem. Sci. 2019, 10, 8889. doi: 10.1039/C9SC03052B
-
[225]
(225) Jin, Z. X.; Cheng, Q.; Evans, A. M.; Gray, J.; Zhang, R. W.; Bao, S. T.; Wei, F. K.; Venkataraman, L.; Yang, Y.; Nuckolls, C. Chem. Sci. 2022, 13, 3533. doi: 10.1039/D1SC07157B
-
[226]
(226) Wang, Y. Q.; Yang, Z. X.; Xia, T. L.; Pan, G. X.; Zhang, L.; Chen, H.; Zhang, J. H. ChemElectroChem 2019, 6, 5080. doi: 10.1002/celc.201901267
-
[227]
(227) Yu, Q. H.; Tang, W.; Hu, Y.; Gao, J.; Wang, M.; Liu, S. H.; Lai, H. H.; Xu, L.; Fan, C. Chem. Eng. J. 2021, 415, 128509. doi: 10.1016/j.cej.2021.128509
-
[228]
(228) Liu, W. Q.; Tang, W.; Zhang, X. P.; Hu, Y.; Wang, X. X.; Yan, Y. C.; Xu, L.; Fan, C. Int. J. Hydrogen Energy 2021, 46, 36801. doi: 10.1016/j.ijhydene.2021.08.203
-
[229]
(229) Lu, Y.; Zhang, Q.; Li, F. J.; Chen, J. Angew. Chem. 2023, 135, e202216047. doi: 10.1002/anie.202216047
-
[230]
(230) Zhou, G. Y.; Miao, Y. E.; Wei, Z. X.; Mo, L. L.; Lai, F. L.; Wu, Y.; Ma, J. M.; Liu, T. X. Adv. Funct. Mater. 2018, 28, 1804629. doi: 10.1002/adfm.201804629
-
[231]
(231) Ma, L.; Lu, D.; Yang, P.; Xi, X.; Liu, R. L.; Wu, D. Q. Electrochim. Acta 2019, 319, 201. doi: 10.1016/j.electacta.2019.06.153
-
[232]
(232) Wang, B.; Wang, H.; Chen, W. X.; Wu, P. F.; Bu, L. H.; Zhang, L.; Wan, L. Z. J. Colloid Interface Sci. 2020, 572, 1. doi: 10.1016/j.jcis.2020.03.047
-
[233]
(233) Wu, D. Q.; Lu, D.; Yang, P.; Ma, L.; Jiang, B.; Xi, X.; Meng, F. C.; Zhang, W. B.; Zhang, F.; Zhong, Q. Q. Chin. J. Polym. Sci. 2020, 38, 540. doi: 10.1007/s10118-020-2388-8
-
[234]
(234) Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J. M.; Poizot, P. J. Am. Chem. Soc. 2009, 131, 8984. doi: 10.1021/ja9024897
-
[235]
(235) Jouhara, A.; Dupré, N.; Gaillot, A. C.; Guyomard, D.; Dolhem, F.; Poizot, P. Nat. Commun. 2018, 9, 4401. doi: 10.1038/s41467-018-06708-x
-
[236]
(236) Lakraychi, A. E.; Deunf, E.; Fahsi, K.; Jimenez, P.; Bonnet, J. P.; Djedaini-Pilard, F.; Bécuwe, M.; Poizot, P.; Dolhem, F. J. Mater. Chem. A 2018, 6, 19182. doi: 10.1039/C8TA07097K
-
[237]
(237) Deng, W. W.; Shi, W. B.; Li, P. Y.; Hu, N. Q.; Wang, S. C.; Wang, J. Y.; Liu, L.; Shi, Z. Z.; Lin, J.; Guo, C. X. Energy Storage Mater. 2022, 46, 535. doi: 10.1016/j.ensm.2022.01.039
-
[238]
(238) Wang, J. D.; Guo, X. L.; Apostol, P.; Liu, X. L.; Robeyns, K.; Gence, L.; Morari, C.; Gohy, J. F.; Vlad, A. Energy Environ. Sci. 2022, 15, 3923. doi: 10.1039/D2EE00566B
-
[1]
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[2]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[3]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[4]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[5]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[6]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[7]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[8]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[9]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[10]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[11]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[12]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[13]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[14]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[15]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[16]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[17]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[18]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[19]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[20]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(145)
- HTML views(32)