Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts
- Corresponding author: Yun Kuang, kuangyun@mail.buct.edu.cn Xiaoming Sun, sunxm@mail.buct.edu.cn
Citation:
Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts[J]. Acta Physico-Chimica Sinica,
;2024, 40(1): 230305.
doi:
10.3866/PKU.WHXB202303055
Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Nature 2021, 595, 361. doi: 10.1038/s41586-021-03482-7
doi: 10.1038/s41586-021-03482-7
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, 146. doi: 10.1126/science.aad4998
doi: 10.1126/science.aad4998
Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
doi: 10.1038/nature11115
Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Int. J. Hydrog. Energy 2019, 44, 15072. doi: 10.1016/j.ijhydene.2019.04.068
doi: 10.1016/j.ijhydene.2019.04.068
Ifkovits, Z. P.; Evans, J. M.; Meier, M. C.; Papadantonakis, K. M.; Lewis, N. S. Energy Environ. Sci. 2021, 14, 4740. doi: 10.1039/d1ee01226f
doi: 10.1039/d1ee01226f
Nikolaidis, P.; Poullikkas, A. Renew. Sust. Energ. Rev. 2017, 67, 597. doi: 10.1016/j.rser.2016.09.044
doi: 10.1016/j.rser.2016.09.044
Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. J. Am. Chem. Soc. 2020, 142, 11901. doi: 10.1021/jacs.0c04867
doi: 10.1021/jacs.0c04867
Shi, Z.; Wang, X.; Ge, J.; Liu, C.; Xing, W. Nanoscale 2020, 12, 13249. doi: 10.1039/d0nr02410d
doi: 10.1039/d0nr02410d
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Chem. Soc. Rev. 2017, 46, 337. doi: 10.1039/c6cs00328a
doi: 10.1039/c6cs00328a
Zhang, K.; Zou, R. Small 2021, 17, e2100129. doi: 10.1002/smll.202100129
doi: 10.1002/smll.202100129
Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148. doi: 10.1039/c4cs00448e
doi: 10.1039/c4cs00448e
Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Adv. Funct. Mater. 2020, 30, 1910274. doi: 10.1002/adfm.201910274
doi: 10.1002/adfm.201910274
Mohammed-Ibrahim, J. J. Power Sources 2020, 448, 227375. doi: 10.1016/j.jpowsour.2019.227375
doi: 10.1016/j.jpowsour.2019.227375
Gao, R.; Yan, D. Adv. Energy Mater. 2019, 10, 1900954. doi: 10.1002/aenm.201900954
doi: 10.1002/aenm.201900954
Lv, L.; Yang, Z.; Chen, K.; Wang, C.; Xiong, Y. Adv. Energy Mater. 2019, 9, 1803358. doi: 10.1002/aenm.201803358
doi: 10.1002/aenm.201803358
Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Adv. Mater. 2017, 29, 1701546. doi: 10.1002/adma.201701546
doi: 10.1002/adma.201701546
Liang, H.; Meng, F.; Caban-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Nano Lett. 2015, 15, 1421. doi: 10.1021/nl504872s
doi: 10.1021/nl504872s
Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135, 8452. doi: 10.1021/ja4027715
doi: 10.1021/ja4027715
Zhou, D.; Cai, Z.; Lei, X.; Tian, W.; Bi, Y.; Jia, Y.; Han, N.; Gao, T.; Zhang, Q.; Kuang, Y.; et al. Adv. Energy Mater. 2018, 8, 1701905. doi: 10.1002/aenm.201701905
doi: 10.1002/aenm.201701905
Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; et al. Nat. Commun. 2021, 12, 4587. doi: 10.1038/s41467-021-24828-9
doi: 10.1038/s41467-021-24828-9
Li, P.; Wang, M.; Duan, X.; Zheng, L.; Cheng, X.; Zhang, Y.; Kuang, Y.; Li, Y.; Ma, Q.; Feng, Z.; et al. Nat. Commun. 2019, 10, 1711. doi: 10.1038/s41467-019-09666-0
doi: 10.1038/s41467-019-09666-0
Hu, Y.; Luo, G.; Wang, L.; Liu, X.; Qu, Y.; Zhou, Y.; Zhou, F.; Li, Z.; Li, Y.; Yao, T.; et al. Adv. Energy Mater. 2020, 11, 2002816. doi: 10.1002/aenm.202002816
doi: 10.1002/aenm.202002816
Xie, Q.; Cai, Z.; Li, P.; Zhou, D.; Bi, Y.; Xiong, X.; Hu, E.; Li, Y.; Kuang, Y.; Sun, X. Nano Res. 2018, 11, 4524. doi: 10.1007/s12274-018-2033-9
doi: 10.1007/s12274-018-2033-9
Xiong, X.; Cai, Z.; Zhou, D.; Zhang, G.; Zhang, Q.; Jia, Y.; Duan, X.; Xie, Q.; Lai, S.; Xie, T.; et al. Sci. China Mater. 2018, 61, 939. doi: 10.1007/s40843-017-9214-9
doi: 10.1007/s40843-017-9214-9
Li, P.; Zhao, X.; Duan, X.; Li, Y.; Kuang, Y.; Sun, X. Sci. China Mater. 2019, 63, 356. doi: 10.1007/s40843-019-1215-9
doi: 10.1007/s40843-019-1215-9
Zhou, D.; Cai, Z.; Bi, Y.; Tian, W.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q.; Wang, J.; Li, Y.; et al. Nano Res. 2018, 11, 1358. doi: 10.1007/s12274-017-1750-9
doi: 10.1007/s12274-017-1750-9
Li, P.; Duan, X.; Kuang, Y.; Li, Y.; Zhang, G.; Liu, W.; Sun, X. Adv. Energy Mater. 2018, 8, 1703341. doi: 10.1002/aenm.201703341
doi: 10.1002/aenm.201703341
Chen, Q. Q.; Hou, C. C.; Wang, C. J.; Yang, X.; Shi, R.; Chen, Y. Chem. Commun. 2018, 54, 6400. doi: 10.1039/c8cc02872a
doi: 10.1039/c8cc02872a
Zhou, Y. -N.; Yu, W. -L.; Cao, Y. -N.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F. -L.; Fan, R. -Y.; Zhou, Y. -L.; Chai, Y. -M. Appl. Catal. B 2021, 292, 120150. doi: 10.1016/j.apcatb.2021.120150
doi: 10.1016/j.apcatb.2021.120150
Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; et al. Science 2016, 352, 6283. doi: 10.1126/science.aaf1525
doi: 10.1126/science.aaf1525
Duan, X.; Li, P.; Zhou, D.; Wang, Y.; Liu, H.; Wang, Z.; Zhang, X.; Yang, G.; Zhang, Z.; Tan, G.; et al. Chem. Eng. J. 2022, 446, 136962. doi: 10.1016/j.cej.2022.136962
doi: 10.1016/j.cej.2022.136962
Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X. Chem. Commun. 2014, 50, 6479. doi: 10.1039/c4cc01625d
doi: 10.1039/c4cc01625d
Li, P.; Duan, X.; Kuang, Y.; Sun, X. Small 2021, 17, e2102078. doi: 10.1002/smll.202102078
doi: 10.1002/smll.202102078
Ženíšek, J.; Ondračka, P.; Čechal, J.; Souček, P.; Holec, D.; Vašina, P. Appl. Surf. Sci. 2022, 586, 152824. doi: 10.1016/j.apsusc.2022.152824
doi: 10.1016/j.apsusc.2022.152824
Yang, J.; Liu, H.; Martens, W. N.; Frost, R. L. J. Phys. Chem. C 2010, 114, 111. doi: 10.1021/jp908548f
doi: 10.1021/jp908548f
Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. ChemCatChem 2011, 3, 1159. doi: 10.1002/cctc.201000397
doi: 10.1002/cctc.201000397
Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. J. Am. Chem. Soc. 2013, 135, 13521. doi: 10.1021/ja405997s
doi: 10.1021/ja405997s
Yang, Y.; Wang, W. -J.; Yang, Y. -B.; Guo, P. -F.; Zhu, B.; Wang, K.; Wang, W. -T.; He, Z. -H.; Liu, Z. -T. J. Electrochem. Soc. 2022, 169, 024503. doi: 10.1149/1945-7111/ac4cda
doi: 10.1149/1945-7111/ac4cda
Bi, Y.; Cai, Z.; Zhou, D.; Tian, Y.; Zhang, Q.; Zhang, Q.; Kuang, Y.; Li, Y.; Sun, X.; Duan, X. J. Catal. 2018, 358, 100. doi: 10.1016/j.jcat.2017.11.028
doi: 10.1016/j.jcat.2017.11.028
Xu, H.; Wang, B.; Shan, C.; Xi, P.; Liu, W.; Tang, Y. ACS Appl. Mater. Interfaces 2018, 10, 6336. doi: 10.1021/acsami.7b17939
doi: 10.1021/acsami.7b17939
Zhang, Y.; Cheng, C. -Q.; Kuai, C. -G.; Sokaras, D.; Zheng, X. -L.; Sainio, S.; Lin, F.; Dong, C. -K.; Nordlund, D.; Du, X. -W. J. Mater. Chem. A 2020, 8, 17471. doi: 10.1039/d0ta06353c
doi: 10.1039/d0ta06353c
Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A.; et al. Nature 2021, 593, 67. doi: 10.1038/s41586-021-03454-x
doi: 10.1038/s41586-021-03454-x
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105