Citation: Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230305. doi: 10.3866/PKU.WHXB202303055 shu

Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts

  • Corresponding author: Yun Kuang, kuangyun@mail.buct.edu.cn Xiaoming Sun, sunxm@mail.buct.edu.cn
  • Received Date: 30 March 2023
    Revised Date: 24 May 2023
    Accepted Date: 25 May 2023
    Available Online: 5 June 2023

    Fund Project: the National Key R & D Program of China 2021YFA1502200the National Natural Science Foundation of China 21935001the National Natural Science Foundation of China 22075013the National Natural Science Foundation of China 22179029the Key Beijing Natural Science Foundation Z210016the S & T Program of Hebei 21344601D

  • Electrochemical water splitting proves critical to sustainable and clean hydrogen fuel production. However, the anodic water oxidation reaction—the major half-reaction in water splitting—has turned into a bottleneck due to the high energy barrier of the complex and sluggish four-electron transfer process. Nickel-iron layered double hydroxides (NiFe-LDHs) are regarded as promising non-noble metal electrocatalysts for oxygen evolution reaction (OER) catalysis in alkaline conditions. However, the electrocatalytic activity of NiFe-LDH requires improvement because of poor conductivity, a small number of exposed active sites, and weak adsorption of intermediates. As such, tremendous effort has been made to enhance the activity of NiFe-LDH, including introducing defects, doping, exfoliation to obtain single-layer structures, and constructing arrayed structures. In this study, researchers controllably doped NiFe-LDH with tungsten using a simple one-step alcohothermal method to afford nickel-iron-tungsten layered double hydroxides (NiFeW-LDHs). X-ray powder diffraction analysis was used to investigate the structure of NiFeW-LDH. The analysis revealed the presence of the primary diffraction peak corresponding to the perfectly hexagonal-phased NiFe-LDH, with no additional diffraction peaks observed, thereby ruling out the formation of tungsten-based nanoparticles. Furthermore, scanning electron microscopy (SEM) showed that the NiFeW-LDH nanosheets were approximately 500 nm in size and had a flower-like structure that consisted of interconnected nanosheets with smooth surfaces. Additionally, it was observed that NiFeW-LDH had a uniform distribution of Ni, Fe, and W throughout the nanosheets. X-ray photoelectron spectra (XPS) revealed the surface electronic structure of the NiFeW-LDH catalyst. It was determined that the oxidation state of W in NiFeW-LDH was +6 and that the XPS signal of Fe in NiFeW-LDH shifted to a higher oxidation state compared to NiFe-LDH. These results suggest electron redistribution between Fe and W. Simultaneously, the peak area of surface-adsorbed OH increased significantly after W doping, suggesting enhanced OH adsorption on the surface of NiFeW-LDH. Furthermore, density functional theory (DFT) calculations indicated that W(Ⅵ) facilitates the adsorption of H2O and O*-intermediates and enhances the activity of Fe sites, which aligns with experimental results. The novel NiFeW-LDH catalyst displayed a low overpotential of 199 and 237 mV at 10 and 100 mA∙cm−2 in 1 mol∙L−1 KOH, outperforming most NiFe-based colloid catalysts. Furthermore, experimental characterizations and DFT+U calculations suggest that W doping plays an important role through strong electronic interactions with Fe and facilitating the adsorption of important O-containing intermediates.
  • 加载中
    1. [1]

      Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Nature 2021, 595, 361. doi: 10.1038/s41586-021-03482-7  doi: 10.1038/s41586-021-03482-7

    2. [2]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, 146. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    3. [3]

      Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    4. [4]

      Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Int. J. Hydrog. Energy 2019, 44, 15072. doi: 10.1016/j.ijhydene.2019.04.068  doi: 10.1016/j.ijhydene.2019.04.068

    5. [5]

      Ifkovits, Z. P.; Evans, J. M.; Meier, M. C.; Papadantonakis, K. M.; Lewis, N. S. Energy Environ. Sci. 2021, 14, 4740. doi: 10.1039/d1ee01226f  doi: 10.1039/d1ee01226f

    6. [6]

      Nikolaidis, P.; Poullikkas, A. Renew. Sust. Energ. Rev. 2017, 67, 597. doi: 10.1016/j.rser.2016.09.044  doi: 10.1016/j.rser.2016.09.044

    7. [7]

      Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. J. Am. Chem. Soc. 2020, 142, 11901. doi: 10.1021/jacs.0c04867  doi: 10.1021/jacs.0c04867

    8. [8]

      Shi, Z.; Wang, X.; Ge, J.; Liu, C.; Xing, W. Nanoscale 2020, 12, 13249. doi: 10.1039/d0nr02410d  doi: 10.1039/d0nr02410d

    9. [9]

      Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Chem. Soc. Rev. 2017, 46, 337. doi: 10.1039/c6cs00328a  doi: 10.1039/c6cs00328a

    10. [10]

      Zhang, K.; Zou, R. Small 2021, 17, e2100129. doi: 10.1002/smll.202100129  doi: 10.1002/smll.202100129

    11. [11]

      Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148. doi: 10.1039/c4cs00448e  doi: 10.1039/c4cs00448e

    12. [12]

      Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Adv. Funct. Mater. 2020, 30, 1910274. doi: 10.1002/adfm.201910274  doi: 10.1002/adfm.201910274

    13. [13]

      Mohammed-Ibrahim, J. J. Power Sources 2020, 448, 227375. doi: 10.1016/j.jpowsour.2019.227375  doi: 10.1016/j.jpowsour.2019.227375

    14. [14]

      Gao, R.; Yan, D. Adv. Energy Mater. 2019, 10, 1900954. doi: 10.1002/aenm.201900954  doi: 10.1002/aenm.201900954

    15. [15]

      Lv, L.; Yang, Z.; Chen, K.; Wang, C.; Xiong, Y. Adv. Energy Mater. 2019, 9, 1803358. doi: 10.1002/aenm.201803358  doi: 10.1002/aenm.201803358

    16. [16]

      Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Adv. Mater. 2017, 29, 1701546. doi: 10.1002/adma.201701546  doi: 10.1002/adma.201701546

    17. [17]

      Liang, H.; Meng, F.; Caban-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Nano Lett. 2015, 15, 1421. doi: 10.1021/nl504872s  doi: 10.1021/nl504872s

    18. [18]

      Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135, 8452. doi: 10.1021/ja4027715  doi: 10.1021/ja4027715

    19. [19]

      Zhou, D.; Cai, Z.; Lei, X.; Tian, W.; Bi, Y.; Jia, Y.; Han, N.; Gao, T.; Zhang, Q.; Kuang, Y.; et al. Adv. Energy Mater. 2018, 8, 1701905. doi: 10.1002/aenm.201701905  doi: 10.1002/aenm.201701905

    20. [20]

      Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; et al. Nat. Commun. 2021, 12, 4587. doi: 10.1038/s41467-021-24828-9  doi: 10.1038/s41467-021-24828-9

    21. [21]

      Li, P.; Wang, M.; Duan, X.; Zheng, L.; Cheng, X.; Zhang, Y.; Kuang, Y.; Li, Y.; Ma, Q.; Feng, Z.; et al. Nat. Commun. 2019, 10, 1711. doi: 10.1038/s41467-019-09666-0  doi: 10.1038/s41467-019-09666-0

    22. [22]

      Hu, Y.; Luo, G.; Wang, L.; Liu, X.; Qu, Y.; Zhou, Y.; Zhou, F.; Li, Z.; Li, Y.; Yao, T.; et al. Adv. Energy Mater. 2020, 11, 2002816. doi: 10.1002/aenm.202002816  doi: 10.1002/aenm.202002816

    23. [23]

      Xie, Q.; Cai, Z.; Li, P.; Zhou, D.; Bi, Y.; Xiong, X.; Hu, E.; Li, Y.; Kuang, Y.; Sun, X. Nano Res. 2018, 11, 4524. doi: 10.1007/s12274-018-2033-9  doi: 10.1007/s12274-018-2033-9

    24. [24]

      Xiong, X.; Cai, Z.; Zhou, D.; Zhang, G.; Zhang, Q.; Jia, Y.; Duan, X.; Xie, Q.; Lai, S.; Xie, T.; et al. Sci. China Mater. 2018, 61, 939. doi: 10.1007/s40843-017-9214-9  doi: 10.1007/s40843-017-9214-9

    25. [25]

      Li, P.; Zhao, X.; Duan, X.; Li, Y.; Kuang, Y.; Sun, X. Sci. China Mater. 2019, 63, 356. doi: 10.1007/s40843-019-1215-9  doi: 10.1007/s40843-019-1215-9

    26. [26]

      Zhou, D.; Cai, Z.; Bi, Y.; Tian, W.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q.; Wang, J.; Li, Y.; et al. Nano Res. 2018, 11, 1358. doi: 10.1007/s12274-017-1750-9  doi: 10.1007/s12274-017-1750-9

    27. [27]

      Li, P.; Duan, X.; Kuang, Y.; Li, Y.; Zhang, G.; Liu, W.; Sun, X. Adv. Energy Mater. 2018, 8, 1703341. doi: 10.1002/aenm.201703341  doi: 10.1002/aenm.201703341

    28. [28]

      Chen, Q. Q.; Hou, C. C.; Wang, C. J.; Yang, X.; Shi, R.; Chen, Y. Chem. Commun. 2018, 54, 6400. doi: 10.1039/c8cc02872a  doi: 10.1039/c8cc02872a

    29. [29]

      Zhou, Y. -N.; Yu, W. -L.; Cao, Y. -N.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F. -L.; Fan, R. -Y.; Zhou, Y. -L.; Chai, Y. -M. Appl. Catal. B 2021, 292, 120150. doi: 10.1016/j.apcatb.2021.120150  doi: 10.1016/j.apcatb.2021.120150

    30. [30]

      Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; et al. Science 2016, 352, 6283. doi: 10.1126/science.aaf1525  doi: 10.1126/science.aaf1525

    31. [31]

      Duan, X.; Li, P.; Zhou, D.; Wang, Y.; Liu, H.; Wang, Z.; Zhang, X.; Yang, G.; Zhang, Z.; Tan, G.; et al. Chem. Eng. J. 2022, 446, 136962. doi: 10.1016/j.cej.2022.136962  doi: 10.1016/j.cej.2022.136962

    32. [32]

      Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X. Chem. Commun. 2014, 50, 6479. doi: 10.1039/c4cc01625d  doi: 10.1039/c4cc01625d

    33. [33]

      Li, P.; Duan, X.; Kuang, Y.; Sun, X. Small 2021, 17, e2102078. doi: 10.1002/smll.202102078  doi: 10.1002/smll.202102078

    34. [34]

      Ženíšek, J.; Ondračka, P.; Čechal, J.; Souček, P.; Holec, D.; Vašina, P. Appl. Surf. Sci. 2022, 586, 152824. doi: 10.1016/j.apsusc.2022.152824  doi: 10.1016/j.apsusc.2022.152824

    35. [35]

      Yang, J.; Liu, H.; Martens, W. N.; Frost, R. L. J. Phys. Chem. C 2010, 114, 111. doi: 10.1021/jp908548f  doi: 10.1021/jp908548f

    36. [36]

      Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. ChemCatChem 2011, 3, 1159. doi: 10.1002/cctc.201000397  doi: 10.1002/cctc.201000397

    37. [37]

      Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. J. Am. Chem. Soc. 2013, 135, 13521. doi: 10.1021/ja405997s  doi: 10.1021/ja405997s

    38. [38]

      Yang, Y.; Wang, W. -J.; Yang, Y. -B.; Guo, P. -F.; Zhu, B.; Wang, K.; Wang, W. -T.; He, Z. -H.; Liu, Z. -T. J. Electrochem. Soc. 2022, 169, 024503. doi: 10.1149/1945-7111/ac4cda  doi: 10.1149/1945-7111/ac4cda

    39. [39]

      Bi, Y.; Cai, Z.; Zhou, D.; Tian, Y.; Zhang, Q.; Zhang, Q.; Kuang, Y.; Li, Y.; Sun, X.; Duan, X. J. Catal. 2018, 358, 100. doi: 10.1016/j.jcat.2017.11.028  doi: 10.1016/j.jcat.2017.11.028

    40. [40]

      Xu, H.; Wang, B.; Shan, C.; Xi, P.; Liu, W.; Tang, Y. ACS Appl. Mater. Interfaces 2018, 10, 6336. doi: 10.1021/acsami.7b17939  doi: 10.1021/acsami.7b17939

    41. [41]

      Zhang, Y.; Cheng, C. -Q.; Kuai, C. -G.; Sokaras, D.; Zheng, X. -L.; Sainio, S.; Lin, F.; Dong, C. -K.; Nordlund, D.; Du, X. -W. J. Mater. Chem. A 2020, 8, 17471. doi: 10.1039/d0ta06353c  doi: 10.1039/d0ta06353c

    42. [42]

      Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A.; et al. Nature 2021, 593, 67. doi: 10.1038/s41586-021-03454-x  doi: 10.1038/s41586-021-03454-x

  • 加载中
    1. [1]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    2. [2]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    3. [3]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    4. [4]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    5. [5]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    6. [6]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    7. [7]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    8. [8]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    9. [9]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    10. [10]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    11. [11]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    18. [18]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    19. [19]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    20. [20]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

Metrics
  • PDF Downloads(11)
  • Abstract views(727)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return