Citation: Xin Feng, Kexin Guo, Chunguang Jia, Bowen Liu, Suqin Ci, Junxiang Chen, Zhenhai Wen. 耦合甘油高选择性转化为甲酸盐与制氢的酸碱双电解液流动电解器[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230305. doi: 10.3866/PKU.WHXB202303050
-
氢气因其高能量密度、可持续性和燃烧后无污染等优点,被认为是取代传统化石燃料的最具前途的新兴能源载体之一。其中,电解水制氢技术因为其高效和绿色的特性而备受关注。然而电解水制氢过程通常受到阳极析氧反应(Oxygen Evolution Reaction,OER)的限制,因此这种方法的大规模应用面临重大挑战。克服这一难题的一个有前途的解决方法是在阳极上使用电催化甘油氧化反应(Glycerol Oxidation Reaction,GOR)代替OER,这种替代反应可以实现节能降耗的同时提高电解水制氢的效率,进一步推动氢气作为清洁能源的发展。然而,这一目标的实现需要高效、低成本且高选择性的GOR电催化剂。在这篇文章中,我们报告了一种新型的酸碱双电解质流电解器(AADEF-electrolyzer),用于在碱性阳极GOR耦合酸性阴极析氢反应(Hydrogen Evolution Reaction,HER)。我们通过一种简单的水热煅烧方法制备了一种在镍泡沫(NF)上原位生长的自支撑的NiCo2O4纳米针电极材料(NiCo2O4/NF)。该电极在GOR中表现出优异的电催化性能,在低电位下实现了高的电解电流密度,对甲酸盐的生产表现出优异的选择性,法拉第效率超过85%。密度泛函理论计算表明,NiCo2O4对GOR具有较低的反应能垒,Ni的存在有利于降低Co的电子态密度,从而实现NiCo2O4与中间体的高效解离,促进甲酸的生成。基于NiCo2O4/NF出色的GOR性能和电化学中和能(ENE)理论,我们构建了一个新型的AADEF-electrolyzer,利用NiCo2O4/NF作为GOR的阳极,配合酸性阴极进行析氢反应(HER)。实验结果表明,AADEF-electrolyzer对GOR具有低过电位和高选择性产甲酸的优异性能,仅需0.36 V的电压即可实现10 mA·cm-2的电流密度,平均产甲酸的法拉第效率为85%。同时该电解槽表现出良好的长期稳定性和辅助产氢性能,阴极产氢的法拉第效率接近100%。这种低成本、易于制备的自支撑电极材料和新型酸碱双电解质流动电解器为促进化学品的增值转化和开发新型混合电解系统或其他相关电化学反应的混合电解装置提供了创新策略。
-
-
[1]
(1) Su, H.; Jiang, J.; Song, S.; An, B.; Li, N.; Gao, Y.; Ge, L. Chin. J. Catal. 2023, 44, 7. doi: 10.1016/s1872-2067(22)64149-4
-
[2]
(2) Chen, H.; Chen, J.; He, H.; Chen, X.; Jia, C.; Chen, D.; Liang, J.; Yu, D.; Yao, X.; Qin, L.; et al. Appl. Catal. B 2023, 323, 122187. doi: 10.1016/j.apcatb.2022.122187
-
[3]
-
[4]
(4) Moreira, R.; Bimbela, F.; Gandía, L. M.; Ferreira, A.; Sánchez, J. L.; Portugal, A. Renew. Sust. Energ. Rev. 2021, 148, 111299. doi: 10.1016/j.rser.2021.111299
-
[5]
(5) Li, X.; Hao, X.; Abudula, A.; Guan, G. J. Mater. Chem. A 2016, 4 (31), 11973. doi: 10.1039/c6ta02334g
-
[6]
(6) Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45 (9), 2603. doi: 10.1039/c5cs00838g
-
[7]
(7) Sun, L.; Dai, Z.; Zhong, L.; Zhao, Y.; Cheng, Y.; Chong, S.; Chen, G.; Yan, C.; Zhang, X.; Tan, H.; et al. Appl. Catal. B 2021, 297, 120477. doi: 10.1016/j.apcatb.2021.120477
-
[8]
(8) Yang, S.; Du, R.; Yu, Y.; Zhang, Z.; Wang, F. Nano Energy 2020, 77, 105057. doi: 10.1016/j.nanoen.2020.105057
-
[9]
(9) Ding, M.; Chen, J.; Jiang, M.; Zhang, X.; Wang, G. J. Mater. Chem. A 2019, 7 (23), 14163. doi: 10.1039/c9ta00708c
-
[10]
-
[11]
-
[12]
(12) Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue, X.; Xiao, Z.; Zou, Y.; Wang, S. J. Energy Chem. 2021, 61, 179. doi: 10.1016/j.jechem.2021.02.026
-
[13]
(13) Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J. Y.; Shao, M. Appl. Catal. B 2022, 312, 121400. doi: 10.1016/j.apcatb.2022.121400
-
[14]
(14) Xie, Y.; Zhou, Z.; Yang, N.; Zhao, G. Adv. Funct. Mater. 2021, 31 (34), 2102886. doi: 10.1002/adfm.202102886
-
[15]
(15) Li, J.; Wei, R.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y.; Cabot, A.; Cui, C. Angew. Chem. Int. Ed. 2020, 59 (47), 20826. doi: 10.1002/anie.202004301
-
[16]
(16) Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu, Y.; Liu, J.; Wang, Y.;et al. Angew. Chem. Int. Ed. 2021, 60 (42), 22908. doi: 10.1002/anie.202109211
-
[17]
(17) Zheng, D.; Li, J.; Ci, S.; Cai, P.; Ding, Y.; Zhang, M.; Wen, Z. Appl. Catal. B 2020, 277, 119178. doi: 10.1016/j.apcatb.2020.119178
-
[18]
(18) Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J. L.; Fu, X. Z. Adv. Funct. Mater. 2020, 30 (10), 1909610. doi: 10.1002/adfm.201909610
-
[19]
(19) Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S.; et al. Nat. Commun. 2020, 11 (1), 265. doi: 10.1038/s41467-019-14157-3
-
[20]
(20) Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.; Jin, S. ACS Catal. 2020, 10 (12), 6741. doi: 10.1021/acscatal.0c01498
-
[21]
(21) Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723. doi: 10.1016/j.apcatb.2021.120723
-
[22]
(22) Talebian-Kiakalaieh, A.; Amin, N. A. S.; Rajaei, K.; Tarighi, S. Appl. Energy 2018, 230, 1347. doi: 10.1016/j.apenergy.2018.09.006
-
[23]
(23) Jamil, F.; Al-Haj, L.; Al-Muhtaseb, A. H.; Al-Hinai, M. A; Baawain, M.; Rashid, U.; Ahmad, M. N. M. Rev. Chem. Eng. 2018, 34 (2), 267. doi: 10.1515/revce-2016-0026
-
[24]
(24) Deng, C.-Q.; Deng, J.; Fu, Y. Green Chem. 2022, 24 (21), 8477. doi: 10.1039/d2gc03235j
-
[25]
(25) Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. J. Am. Chem. Soc. 2022, 144 (16), 7224. doi: 10.1021/jacs.1c13740
-
[26]
(26) Fan, L.; Liu, B.; Liu, X.; Senthilkumar, N.; Wang, G.; Wen, Z. Energy Technol. 2020, 9 (2), 2000804. doi: 10.1002/ente.202000804
-
[27]
(27) Duan, Y.; Liu, Z.; Zhao, B.; Liu, J. RSC Adv. 2020, 10 (27), 15769. doi: 10.1039/d0ra00564a
-
[28]
(28) Bai, J.; Huang, H.; Li, F.-M.; Zhao, Y.; Chen, P.; Jin, P.-J.; Li, S.-N.; Yao, H.-C.; Zeng, J.-H.; Chen, Y. J. Mater. Chem. A 2019, 7 (37), 21149. doi: 10.1039/c9ta08806g
-
[29]
(29) Brix, A. C.; Morales, D. M.; Braun, M.; Jambrec, D.; Junqueira, J. R.; Cychy, S.; Seisel, S.; Masa, J.; Muhler, M.; Andronescu, C.; et al. ChemElectroChem 2021, 8 (12), 2336. doi: 10.1002/celc.202100739
-
[30]
(30) Kim, H. J.; Kim, Y.; Lee, D.; Kim, J.-R.; Chae, H.-J.; Jeong, S.-Y.; Kim, B.-S.; Lee, J.; Huber, G. W.; Byun, J.; et al. ACS Sustain Chem. Eng. 2017, 5 (8), 6626. doi: 10.1021/acssuschemeng.7b00868
-
[31]
(31) Dodekatos, G.; Schünemann, S.; Tüysüz, H. ACS Catal. 2018, 8 (7), 6301. doi: 10.1021/acscatal.8b01317
-
[32]
(32) Alaba, P. A.; Lee, C. S.; Abnisa, F.; Aroua, M. K.; Cognet, P.; Pérès, Y.; Wan Daud, W. M. A. Rev. Chem. Eng. 2021, 37 (7), 779. doi: 10.1515/revce-2019-0013
-
[33]
(33) Yang, F.; Ye, J.; Yuan, Q.; Yang, X.; Xie, Z.; Zhao, F.; Zhou, Z.; Gu, L.; Wang, X. Adv. Funct. Mater. 2020, 30 (11), 1908235. doi: 10.1002/adfm.201908235
-
[34]
(34) Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017, 19 (8), 1958. doi: 10.1039/c7gc00371d
-
[35]
(35) Lee, S.; Kim, H. J.; Lim, E. J.; Kim, Y.; Noh, Y.; Huber, G. W.; Kim, W. B. Green Chem. 2016, 18 (9), 2877. doi: 10.1039/c5gc02865e
-
[36]
(36) De Souza, M. B.; Vicente, R. A.; Yukuhiro, V. Y.; Pires, C. T.; Cheuquepán, W.; Bott-Neto, J. L.; Solla-Gullón, J.; Fernández, P. S. ACS Catal. 2019, 9 (6), 5104. doi: 10.1021/acscatal.9b00190
-
[37]
(37) Zhou, Z.; Chen, C.; Gao, M.; Xia, B.; Zhang, J. Green Chem. 2019, 21 (24), 6699. doi: 10.1039/c9gc02880c
-
[38]
(38) Lu, Y.; Liu, T.; Dong, C. L.; Yang, C.; Zhou, L.; Huang, Y. C.; Li, Y.; Zhou, B.; Zou, Y.; Wang, S. Adv. Mater. 2022, 34 (2), e2107185. doi: 10.1002/adma.202107185
-
[39]
(39) Wang, Y.; Zhu, Y.-Q.; Xie, Z.; Xu, S.-M.; Xu, M.; Li, Z.; Ma, L.; Ge, R.; Zhou, H.; Li, Z.; et al. ACS Catal. 2022, 12432. doi: 10.1021/acscatal.2c03162
-
[40]
(40) Lv, J.; Wang, L.; Li, R.; Zhang, K.; Zhao, D.; Li, Y.; Li, X.; Huang, X.; Wang, G. ACS Catal. 2021, 14338. doi: 10.1021/acscatal.1c03960
-
[41]
(41) Zhou, H.; Zheng, M.; Pang, H. Chem. Eng. J. 2020, 38, 127884. doi: 10.1016/j.cej.2020.127884
-
[42]
(42) Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C.C. Adv. Mater. 2010, 22 (3), 347. doi: 10.1002/adma.200902175
-
[43]
(43) Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wang, Y.; Zhang, L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18 (13), e2106961. doi: 10.1002/smll.202106961
-
[44]
(44) Jo, H. J.; Shit, A.; Jhon, H. S.; Park, S. Y. J. Ind. Eng. Chem. 2020, 89, 485. doi: 10.1016/j.jiec.2020.06.028
-
[45]
(45) Hu, L.; Wu, L.; Liao, M.; Hu, X.; Fang, X. Adv. Funct. Mater. 2012, 22 (5), 998. doi: 10.1002/adfm.201102155
-
[46]
(46) Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Chem. Rev. 2017, 117 (15), 10121. doi: 10.1021/acs.chemrev.7b00051
-
[47]
(47) Ding, Y.; Cai, P.; Wen, Z. Chem. Soc. Rev. 2021, 50 (3), 1495. doi: 10.1039/d0cs01239d
-
[48]
(48) Zhang, C.; Ci, S.; Peng, X.; Huang, J.; Cai, P.; Ding, Y.; Wen, Z. J. Energy Chem. 2021, 54, 30. doi: 10.1016/j.jechem.2020.04.073
-
[49]
(49) Wang, G.; Chen, J.; Cai, P.; Jia, J.; Wen, Z. J. Mater. Chem. A 2018, 6 (36), 17763. doi: 10.1039/c8ta06827e
-
[50]
(50) Zhang, M.; Chen, J.; Li, H.; Cai, P.; Li, Y.; Wen, Z. Nano Energy 2019, 61, 576. doi: 10.1016/j.nanoen.2019.04.050
-
[51]
(51) Liu, B.; Wang, G.; Feng, X.; Dai, L.; Wen, Z.; Ci, S. Nanoscale 2022, 14, 12841. doi: 10.1039/d2nr02689a
-
[52]
(52) Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10 (1), 5335. doi: 10.1038/s41467-019-13375-z
-
[53]
(53) Xu, Y.; Liu, M.; Wang, S.; Ren, K.; Wang, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Appl. Catal. B 2021, 298, 120493. doi: 10.1016/j.apcatb.2021.120493
-
[54]
(54) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; et al. J. Phys. Condens. Matter 2009, 21 (39), 395502. doi: 10.1088/0953-8984/21/39/395502
-
[55]
(55) Yan, X.; Zhang, W.-D.; Hu, Q.-T.; Liu, J.; Li, T.; Liu, Y.; Gu, Z.-G. Int. J. Hydrogen Energy 2019, 44 (51), 27664. doi: 10.1016/j.ijhydene.2019.09.004
-
[56]
(56) Sun, B.; Miao, F.; Tao, B.; Wang, Y.; Zang, Y.; Chu, P. K. J. Phys. Chem. Solids 2021, 158, 110255. doi: 10.1016/j.jpcs.2021.110255
-
[57]
(57) Qian, L.; Luo, S.; Wu, L.; Hu, X.; Chen, W.; Wang, X. Appl. Surf. Sci. 2020, 503, 144306. doi: 10.1016/j.apsusc.2019.144306
-
[58]
(58) Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108 (46), 17886. doi: 10.1021/jp047349j
-
[59]
(59) Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1 (1), 37. doi: 10.1038/nchem.121
-
[1]
-
-
[1]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[2]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[5]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[6]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[7]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[10]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[11]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[12]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[13]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[14]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[15]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[16]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[17]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[18]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[19]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[20]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(83)
- HTML views(1)