Citation: Xin Feng,  Kexin Guo,  Chunguang Jia,  Bowen Liu,  Suqin Ci,  Junxiang Chen,  Zhenhai Wen. 耦合甘油高选择性转化为甲酸盐与制氢的酸碱双电解液流动电解器[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230305. doi: 10.3866/PKU.WHXB202303050 shu

耦合甘油高选择性转化为甲酸盐与制氢的酸碱双电解液流动电解器

  • Received Date: 28 March 2023
    Revised Date: 31 May 2023
    Accepted Date: 1 June 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22168025) and the Natural Science Foundation of Jiangxi Province (20192BAB203013, 20202ACBL203003).

  • 氢气因其高能量密度、可持续性和燃烧后无污染等优点,被认为是取代传统化石燃料的最具前途的新兴能源载体之一。其中,电解水制氢技术因为其高效和绿色的特性而备受关注。然而电解水制氢过程通常受到阳极析氧反应(Oxygen Evolution Reaction,OER)的限制,因此这种方法的大规模应用面临重大挑战。克服这一难题的一个有前途的解决方法是在阳极上使用电催化甘油氧化反应(Glycerol Oxidation Reaction,GOR)代替OER,这种替代反应可以实现节能降耗的同时提高电解水制氢的效率,进一步推动氢气作为清洁能源的发展。然而,这一目标的实现需要高效、低成本且高选择性的GOR电催化剂。在这篇文章中,我们报告了一种新型的酸碱双电解质流电解器(AADEF-electrolyzer),用于在碱性阳极GOR耦合酸性阴极析氢反应(Hydrogen Evolution Reaction,HER)。我们通过一种简单的水热煅烧方法制备了一种在镍泡沫(NF)上原位生长的自支撑的NiCo2O4纳米针电极材料(NiCo2O4/NF)。该电极在GOR中表现出优异的电催化性能,在低电位下实现了高的电解电流密度,对甲酸盐的生产表现出优异的选择性,法拉第效率超过85%。密度泛函理论计算表明,NiCo2O4对GOR具有较低的反应能垒,Ni的存在有利于降低Co的电子态密度,从而实现NiCo2O4与中间体的高效解离,促进甲酸的生成。基于NiCo2O4/NF出色的GOR性能和电化学中和能(ENE)理论,我们构建了一个新型的AADEF-electrolyzer,利用NiCo2O4/NF作为GOR的阳极,配合酸性阴极进行析氢反应(HER)。实验结果表明,AADEF-electrolyzer对GOR具有低过电位和高选择性产甲酸的优异性能,仅需0.36 V的电压即可实现10 mA·cm-2的电流密度,平均产甲酸的法拉第效率为85%。同时该电解槽表现出良好的长期稳定性和辅助产氢性能,阴极产氢的法拉第效率接近100%。这种低成本、易于制备的自支撑电极材料和新型酸碱双电解质流动电解器为促进化学品的增值转化和开发新型混合电解系统或其他相关电化学反应的混合电解装置提供了创新策略。
  • 加载中
    1. [1]

      (1) Su, H.; Jiang, J.; Song, S.; An, B.; Li, N.; Gao, Y.; Ge, L. Chin. J. Catal. 2023, 44, 7. doi: 10.1016/s1872-2067(22)64149-4

    2. [2]

      (2) Chen, H.; Chen, J.; He, H.; Chen, X.; Jia, C.; Chen, D.; Liang, J.; Yu, D.; Yao, X.; Qin, L.; et al. Appl. Catal. B 2023, 323, 122187. doi: 10.1016/j.apcatb.2022.122187

    3. [3]

    4. [4]

      (4) Moreira, R.; Bimbela, F.; Gandía, L. M.; Ferreira, A.; Sánchez, J. L.; Portugal, A. Renew. Sust. Energ. Rev. 2021, 148, 111299. doi: 10.1016/j.rser.2021.111299

    5. [5]

      (5) Li, X.; Hao, X.; Abudula, A.; Guan, G. J. Mater. Chem. A 2016, 4 (31), 11973. doi: 10.1039/c6ta02334g

    6. [6]

      (6) Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45 (9), 2603. doi: 10.1039/c5cs00838g

    7. [7]

      (7) Sun, L.; Dai, Z.; Zhong, L.; Zhao, Y.; Cheng, Y.; Chong, S.; Chen, G.; Yan, C.; Zhang, X.; Tan, H.; et al. Appl. Catal. B 2021, 297, 120477. doi: 10.1016/j.apcatb.2021.120477

    8. [8]

      (8) Yang, S.; Du, R.; Yu, Y.; Zhang, Z.; Wang, F. Nano Energy 2020, 77, 105057. doi: 10.1016/j.nanoen.2020.105057

    9. [9]

      (9) Ding, M.; Chen, J.; Jiang, M.; Zhang, X.; Wang, G. J. Mater. Chem. A 2019, 7 (23), 14163. doi: 10.1039/c9ta00708c

    10. [10]

    11. [11]

    12. [12]

      (12) Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue, X.; Xiao, Z.; Zou, Y.; Wang, S. J. Energy Chem. 2021, 61, 179. doi: 10.1016/j.jechem.2021.02.026

    13. [13]

      (13) Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J. Y.; Shao, M. Appl. Catal. B 2022, 312, 121400. doi: 10.1016/j.apcatb.2022.121400

    14. [14]

      (14) Xie, Y.; Zhou, Z.; Yang, N.; Zhao, G. Adv. Funct. Mater. 2021, 31 (34), 2102886. doi: 10.1002/adfm.202102886

    15. [15]

      (15) Li, J.; Wei, R.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y.; Cabot, A.; Cui, C. Angew. Chem. Int. Ed. 2020, 59 (47), 20826. doi: 10.1002/anie.202004301

    16. [16]

      (16) Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu, Y.; Liu, J.; Wang, Y.;et al. Angew. Chem. Int. Ed. 2021, 60 (42), 22908. doi: 10.1002/anie.202109211

    17. [17]

      (17) Zheng, D.; Li, J.; Ci, S.; Cai, P.; Ding, Y.; Zhang, M.; Wen, Z. Appl. Catal. B 2020, 277, 119178. doi: 10.1016/j.apcatb.2020.119178

    18. [18]

      (18) Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J. L.; Fu, X. Z. Adv. Funct. Mater. 2020, 30 (10), 1909610. doi: 10.1002/adfm.201909610

    19. [19]

      (19) Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S.; et al. Nat. Commun. 2020, 11 (1), 265. doi: 10.1038/s41467-019-14157-3

    20. [20]

      (20) Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.; Jin, S. ACS Catal. 2020, 10 (12), 6741. doi: 10.1021/acscatal.0c01498

    21. [21]

      (21) Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723. doi: 10.1016/j.apcatb.2021.120723

    22. [22]

      (22) Talebian-Kiakalaieh, A.; Amin, N. A. S.; Rajaei, K.; Tarighi, S. Appl. Energy 2018, 230, 1347. doi: 10.1016/j.apenergy.2018.09.006

    23. [23]

      (23) Jamil, F.; Al-Haj, L.; Al-Muhtaseb, A. H.; Al-Hinai, M. A; Baawain, M.; Rashid, U.; Ahmad, M. N. M. Rev. Chem. Eng. 2018, 34 (2), 267. doi: 10.1515/revce-2016-0026

    24. [24]

      (24) Deng, C.-Q.; Deng, J.; Fu, Y. Green Chem. 2022, 24 (21), 8477. doi: 10.1039/d2gc03235j

    25. [25]

      (25) Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. J. Am. Chem. Soc. 2022, 144 (16), 7224. doi: 10.1021/jacs.1c13740

    26. [26]

      (26) Fan, L.; Liu, B.; Liu, X.; Senthilkumar, N.; Wang, G.; Wen, Z. Energy Technol. 2020, 9 (2), 2000804. doi: 10.1002/ente.202000804

    27. [27]

      (27) Duan, Y.; Liu, Z.; Zhao, B.; Liu, J. RSC Adv. 2020, 10 (27), 15769. doi: 10.1039/d0ra00564a

    28. [28]

      (28) Bai, J.; Huang, H.; Li, F.-M.; Zhao, Y.; Chen, P.; Jin, P.-J.; Li, S.-N.; Yao, H.-C.; Zeng, J.-H.; Chen, Y. J. Mater. Chem. A 2019, 7 (37), 21149. doi: 10.1039/c9ta08806g

    29. [29]

      (29) Brix, A. C.; Morales, D. M.; Braun, M.; Jambrec, D.; Junqueira, J. R.; Cychy, S.; Seisel, S.; Masa, J.; Muhler, M.; Andronescu, C.; et al. ChemElectroChem 2021, 8 (12), 2336. doi: 10.1002/celc.202100739

    30. [30]

      (30) Kim, H. J.; Kim, Y.; Lee, D.; Kim, J.-R.; Chae, H.-J.; Jeong, S.-Y.; Kim, B.-S.; Lee, J.; Huber, G. W.; Byun, J.; et al. ACS Sustain Chem. Eng. 2017, 5 (8), 6626. doi: 10.1021/acssuschemeng.7b00868

    31. [31]

      (31) Dodekatos, G.; Schünemann, S.; Tüysüz, H. ACS Catal. 2018, 8 (7), 6301. doi: 10.1021/acscatal.8b01317

    32. [32]

      (32) Alaba, P. A.; Lee, C. S.; Abnisa, F.; Aroua, M. K.; Cognet, P.; Pérès, Y.; Wan Daud, W. M. A. Rev. Chem. Eng. 2021, 37 (7), 779. doi: 10.1515/revce-2019-0013

    33. [33]

      (33) Yang, F.; Ye, J.; Yuan, Q.; Yang, X.; Xie, Z.; Zhao, F.; Zhou, Z.; Gu, L.; Wang, X. Adv. Funct. Mater. 2020, 30 (11), 1908235. doi: 10.1002/adfm.201908235

    34. [34]

      (34) Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017, 19 (8), 1958. doi: 10.1039/c7gc00371d

    35. [35]

      (35) Lee, S.; Kim, H. J.; Lim, E. J.; Kim, Y.; Noh, Y.; Huber, G. W.; Kim, W. B. Green Chem. 2016, 18 (9), 2877. doi: 10.1039/c5gc02865e

    36. [36]

      (36) De Souza, M. B.; Vicente, R. A.; Yukuhiro, V. Y.; Pires, C. T.; Cheuquepán, W.; Bott-Neto, J. L.; Solla-Gullón, J.; Fernández, P. S. ACS Catal. 2019, 9 (6), 5104. doi: 10.1021/acscatal.9b00190

    37. [37]

      (37) Zhou, Z.; Chen, C.; Gao, M.; Xia, B.; Zhang, J. Green Chem. 2019, 21 (24), 6699. doi: 10.1039/c9gc02880c

    38. [38]

      (38) Lu, Y.; Liu, T.; Dong, C. L.; Yang, C.; Zhou, L.; Huang, Y. C.; Li, Y.; Zhou, B.; Zou, Y.; Wang, S. Adv. Mater. 2022, 34 (2), e2107185. doi: 10.1002/adma.202107185

    39. [39]

      (39) Wang, Y.; Zhu, Y.-Q.; Xie, Z.; Xu, S.-M.; Xu, M.; Li, Z.; Ma, L.; Ge, R.; Zhou, H.; Li, Z.; et al. ACS Catal. 2022, 12432. doi: 10.1021/acscatal.2c03162

    40. [40]

      (40) Lv, J.; Wang, L.; Li, R.; Zhang, K.; Zhao, D.; Li, Y.; Li, X.; Huang, X.; Wang, G. ACS Catal. 2021, 14338. doi: 10.1021/acscatal.1c03960

    41. [41]

      (41) Zhou, H.; Zheng, M.; Pang, H. Chem. Eng. J. 2020, 38, 127884. doi: 10.1016/j.cej.2020.127884

    42. [42]

      (42) Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C.C. Adv. Mater. 2010, 22 (3), 347. doi: 10.1002/adma.200902175

    43. [43]

      (43) Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wang, Y.; Zhang, L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18 (13), e2106961. doi: 10.1002/smll.202106961

    44. [44]

      (44) Jo, H. J.; Shit, A.; Jhon, H. S.; Park, S. Y. J. Ind. Eng. Chem. 2020, 89, 485. doi: 10.1016/j.jiec.2020.06.028

    45. [45]

      (45) Hu, L.; Wu, L.; Liao, M.; Hu, X.; Fang, X. Adv. Funct. Mater. 2012, 22 (5), 998. doi: 10.1002/adfm.201102155

    46. [46]

      (46) Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Chem. Rev. 2017, 117 (15), 10121. doi: 10.1021/acs.chemrev.7b00051

    47. [47]

      (47) Ding, Y.; Cai, P.; Wen, Z. Chem. Soc. Rev. 2021, 50 (3), 1495. doi: 10.1039/d0cs01239d

    48. [48]

      (48) Zhang, C.; Ci, S.; Peng, X.; Huang, J.; Cai, P.; Ding, Y.; Wen, Z. J. Energy Chem. 2021, 54, 30. doi: 10.1016/j.jechem.2020.04.073

    49. [49]

      (49) Wang, G.; Chen, J.; Cai, P.; Jia, J.; Wen, Z. J. Mater. Chem. A 2018, 6 (36), 17763. doi: 10.1039/c8ta06827e

    50. [50]

      (50) Zhang, M.; Chen, J.; Li, H.; Cai, P.; Li, Y.; Wen, Z. Nano Energy 2019, 61, 576. doi: 10.1016/j.nanoen.2019.04.050

    51. [51]

      (51) Liu, B.; Wang, G.; Feng, X.; Dai, L.; Wen, Z.; Ci, S. Nanoscale 2022, 14, 12841. doi: 10.1039/d2nr02689a

    52. [52]

      (52) Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10 (1), 5335. doi: 10.1038/s41467-019-13375-z

    53. [53]

      (53) Xu, Y.; Liu, M.; Wang, S.; Ren, K.; Wang, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Appl. Catal. B 2021, 298, 120493. doi: 10.1016/j.apcatb.2021.120493

    54. [54]

      (54) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; et al. J. Phys. Condens. Matter 2009, 21 (39), 395502. doi: 10.1088/0953-8984/21/39/395502

    55. [55]

      (55) Yan, X.; Zhang, W.-D.; Hu, Q.-T.; Liu, J.; Li, T.; Liu, Y.; Gu, Z.-G. Int. J. Hydrogen Energy 2019, 44 (51), 27664. doi: 10.1016/j.ijhydene.2019.09.004

    56. [56]

      (56) Sun, B.; Miao, F.; Tao, B.; Wang, Y.; Zang, Y.; Chu, P. K. J. Phys. Chem. Solids 2021, 158, 110255. doi: 10.1016/j.jpcs.2021.110255

    57. [57]

      (57) Qian, L.; Luo, S.; Wu, L.; Hu, X.; Chen, W.; Wang, X. Appl. Surf. Sci. 2020, 503, 144306. doi: 10.1016/j.apsusc.2019.144306

    58. [58]

      (58) Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108 (46), 17886. doi: 10.1021/jp047349j

    59. [59]

      (59) Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1 (1), 37. doi: 10.1038/nchem.121

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(0)
  • Abstract views(83)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return