Citation: Heran Wang, Kai Chen, Shuo Fu, Haoxuan Wang, Jiaxuan Yuan, Xingyi Hu, Wenjuan Xu, Baoxiu Mi. Isomeric Bisbenzophenothiazines: Synthesis, Theoretical Calculations, and Photophysical Properties[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230304. doi: 10.3866/PKU.WHXB202303047 shu

Isomeric Bisbenzophenothiazines: Synthesis, Theoretical Calculations, and Photophysical Properties

  • Corresponding author: Wenjuan Xu, iamwjxu@njupt.edu.cn Baoxiu Mi, iambxmi@njupt.edu.cn
  • Received Date: 23 March 2023
    Revised Date: 15 May 2023
    Accepted Date: 17 May 2023
    Available Online: 25 May 2023

    Fund Project: the National Natural Science Foundation of China 21671109the Priority Academic Program Development of Jiangsu Higher Education Institutions PAPDthe Priority Academic Program Development of Jiangsu Higher Education Institutions YX030003

  • Phenothiazines (PTZs), have received a lot of attention for many optoelectronic applications, such as hole-transporting layers, functioning as host materials for organic light-emitting diodes; dye sensitizers in dye-sensitized solar cells; and hole-transporting materials for perovskite solar cells. However, studies on benzophenothiazine materials are limited. In this study, we synthesize three isomeric bis-benzophenothiazine compounds (D-PTZa, D-PTZb, and D-PTZc), all bearing an aromatic ring at the 1, 2-, 2, 3-, and 3, 4-positions, respectively. Next, we systematically investigate the relationship between their structures and properties and compare them with bis-phenothiazine compounds (D-PTZ). The highest occupied molecular orbital (HOMO) distributions for D-PTZb and D-PTZc are dispersed over benzophenothiazine moities, whereas the lowest unoccupied molecular orbitals (LUMOs) are localized at the middle phenyl- and naphthyl-groups, which are similar frontier orbital distribuitions to the D-PTZ case. For D-PTZa, the steric hindrance between the phenyl groups at the 1, 2- and middle positions increases, significantly distorting its spatial structure. Therefore, its HOMO and LUMO distributions differ from those of D-PTZb and D-PTZc. Notably, the HOMOs in D-PTZa are dispersed over the middle phenyl group and nitrogen atom, whereas the LUMOs are localized at the naphthyl group. The hole/electron excitation and frontier orbital analyses demonstrate that strong local ππ* transition mixing with weak charge transfer transition is responsible for the luminescence of D-PTZb and D-PTZc. Interestingly, the ultraviolet–visible absorption spectra of all samples exhibit strong ππ* transition absorption and weak nπ* transition absorption. Furthermore, the conjugated length of the molecule can be effectively increased with the introduction of an aromatic ring, resulting in a red-shift in the maximum absorption wavelength. Compared to D-PTZ, D-PTZa emits yellow-green light with a photoluminescence quantum efficiency (PLQE) of 14%. In addition, the introduction of a phenyl group at the 2, 3-position effectively stabilizes the HOMO energy level, slightly increasing its ππ* transition gap, while also emitting blue light with a PLQE of 1.7%. For D-PTZc, the introduction of a phenyl group at the 3, 4-position better linearizes the LUMO distribution, thereby stabilizing the LUMO energy level and reducing its ππ* transition gap. The maximum emission peak is observed at 520 nm, emitting yellow-green light with a PLQE of 13%. Overall, our molecular design and results on structure–property relationships can provide fundamental guidance for the design of phenothiazine derivatives with specific photoelectric performance.
  • 加载中
    1. [1]

      Al-Busaidi, I. J.; Haque, A.; Al Rasbi, N. K.; Khan, M. S. Synth. Met. 2019, 257. 116189. doi: 10.1016/j.synthmet.2019.116189  doi: 10.1016/j.synthmet.2019.116189

    2. [2]

      Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.; Chandrabose, R. S.; Karazhanov, S. Int. J. Energy Res. 2021, 45, 6584. doi: 10.1002/er.6348  doi: 10.1002/er.6348

    3. [3]

      Pandolfi, F.; Rocco, D.; Mattiello, L. Org. Biomol. Chem. 2019, 17, 3018. doi: 10.1039/c8ob03077d  doi: 10.1039/c8ob03077d

    4. [4]

      Thokala, S.; Singh, S. P. ACS Omega 2020, 5, 5608. doi: 10.1021/acsomega.0c00065  doi: 10.1021/acsomega.0c00065

    5. [5]

      Simkus, G.; Tomkeviciene, A.; Volyniuk, D.; Mimaite, V.; Sini, G.; Budreckiene, R.; Grazulevicius, J. V. J. Photochem. Photobiol. A 2017, 340, 62. doi: 10.1016/j.jphotochem.2017.03.004  doi: 10.1016/j.jphotochem.2017.03.004

    6. [6]

      Reddy, G.; Duvva, N.; Seetharaman, S.; D'Souza, F.; Giribabu, L. Phys. Chem. Chem. Phys. 2018, 20, 27418. doi: 10.1039/c8cp05509b  doi: 10.1039/c8cp05509b

    7. [7]

      Liu, A, V.; Wong, S. -W. K. -T. Mater. Sci. Eng. R-Rep. 2018, 124, 1. doi: 10.1016/j.mser.2018.01.001  doi: 10.1016/j.mser.2018.01.001

    8. [8]

      Giri, D.; Raut, S. K.; Patra, S. K. Dyes Pigm. 2020, 174, 108032. doi: 10.1016/j.dyepig.2019.108032  doi: 10.1016/j.dyepig.2019.108032

    9. [9]

      Ochieng, M. A.; Ponder, J. F.; Reynolds, J. R. Polym. Chem. 2020, 11, 2173. doi: 10.1039/c9py01720h  doi: 10.1039/c9py01720h

    10. [10]

      Wang, Z.; Gu, P.; Liu, G.; Yao, H.; Wu, Y.; Li, Y.; Rakesh, G.; Zhu, J.; Fu, H.; Zhang, Q. Chem. Commun. 2017, 53, 7772. doi: 10.1039/c7cc03898d  doi: 10.1039/c7cc03898d

    11. [11]

      Zhang, Z.; Wang, Z.; Aratani, N.; Zhu, X.; Zhang, Q. CCS Chem. 2022, 4, 3491. doi: 10.31635/ccschem.022.202202013  doi: 10.31635/ccschem.022.202202013

    12. [12]

      Bernthsen, A. Ber. Chem. Ges. 1883, 16, 2896. doi: 10.1002/cber.188301602249  doi: 10.1002/cber.188301602249

    13. [13]

      McDowell, J. J. H. Acta Crystallogr. B-Struct. Sci. Cryst. Eng. Mater. 1975, 32, 5. doi: 10.1107/S0567740876002215  doi: 10.1107/S0567740876002215

    14. [14]

      Gangadhar, P. S.; Reddy, G.; Prasanthkumar, S.; Giribabu, L. Phys. Chem. Chem. Phys. 2021, 23, 14969. doi: 10.1039/d1cp01185e  doi: 10.1039/d1cp01185e

    15. [15]

      Al-Ghamdi, S. N.; Al-Ghamdi, H. A.; El-Shishtawy, R. M.; Asiri, A. M. Dyes Pigm. 2021, 194, 109638. doi: 10.1016/j.dyepig.2021.109638  doi: 10.1016/j.dyepig.2021.109638

    16. [16]

      Ye, X.; Zhao, X.; Li, Q.; Ma, Y.; Song, W.; Quan, Y. -Y.; Wang, Z.; Wang, M.; Huang, Z. -S. Dyes Pigm. 2019, 164, 407. doi: 10.1016/j.dyepig.2019.01.059  doi: 10.1016/j.dyepig.2019.01.059

    17. [17]

      Nobuyasu, R. S.; Ren, Z.; Griffiths, G. C.; Batsanov, A. S.; Data, P.; Yan, S.; Monkman, A. P.; Bryce, M. R.; Dias, F. B. Adv. Opt. Mater. 2016, 4, 597. doi: 10.1002/adom.201500689  doi: 10.1002/adom.201500689

    18. [18]

      Zhao, Y.; Yang, H.; Ma, H.; Li, Y.; Qian, L.; Yu, T.; Su, W. Synth. Met. 2020, 265, 116406. doi: 10.1016/j.synthmet.2020.116406  doi: 10.1016/j.synthmet.2020.116406

    19. [19]

      Periyasamy, K.; Sakthivel, P.; Vennila, P.; Anbarasan, P. M.; Venkatesh, G.; Sheena Mary, Y. J. Photochem. Photobiol. A 2021, 413, 113269. doi: 10.1016/j.jphotochem.2021.113269  doi: 10.1016/j.jphotochem.2021.113269

    20. [20]

      Shanmugasundaram, K.; Chitumalla, R. K.; Jang, J.; Choe, Y. New J. Chem. 2017, 41, 9668. doi: 10.1039/c7nj00976c  doi: 10.1039/c7nj00976c

    21. [21]

      Cheng, Y. -J.; Yu, S. -Y.; Lin, S. -C.; Lin, J. T.; Chen, L. -Y.; Hsiu, D. -S.; Wen, Y. S.; Lee, M. M.; Sun, S. -S. J. Mater. Chem. C 2016, 4, 9499. doi: 10.1039/c6tc03335k  doi: 10.1039/c6tc03335k

    22. [22]

      Ran, Q.; Zhang, Y. -L.; Hua, X.; Fung, M. -K.; Liao, L. -S.; Fan, J. Dyes Pigm. 2019, 162, 632. doi: 10.1016/j.dyepig.2018.10.076  doi: 10.1016/j.dyepig.2018.10.076

    23. [23]

      Kim, S. -K.; Lee, C. -J.; Kang, I. -N.; Park, J. -W.; Lee, J. -H.; Kim, K. -S.; Choi, C. -K.; Lee, S. -D. Mol. Cryst. Liq. Cryst. 2006, 462, 135. doi: 10.1080/07370650601013054  doi: 10.1080/07370650601013054

    24. [24]

      Yang, W.; Yang, Y.; Cao, X.; Liu, Y.; Chen, Z.; Huang, Z.; Gong, S.; Yang, C. Chem. Eng. J. 2021, 415, 128909. doi: 10.1016/j.cej.2021.128909  doi: 10.1016/j.cej.2021.128909

    25. [25]

      Wang, Y.; Zhang, W.; Yang, J.; Gong, Y.; Zhang, J.; Fang, M.; Yang, Q. -H.; Li, Z. Matter 2022, 5, 4467. doi: 10.1016/j.matt.2022.09.008  doi: 10.1016/j.matt.2022.09.008

    26. [26]

      Wang, Y.; Yang, J.; Fang, M.; Gong, Y.; Ren, J.; Tu, L.; Tang, B. Z.; Li, Z. Adv. Funct. Mater. 2021, 31, 2101719. doi: 10.1002/adfm.202101719  doi: 10.1002/adfm.202101719

    27. [27]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision A. 01; Gaussian Inc. : Wallingford CT, 2016.

    28. [28]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001  doi: 10.1021/j100096a001

    29. [29]

      McLean, A. D.; Chandler, G. S. J. Chem. Phys. 2008, 72, 5639. doi: 10.1063/1.438980  doi: 10.1063/1.438980

    30. [30]

      Jacquemin, D.; Planchat, A.; Adamo, C. Mennucci, B. J. Chem. Theory Comput. 2012, 8, 2359. doi: 10.1021/ct300326f  doi: 10.1021/ct300326f

    31. [31]

      Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011  doi: 10.1016/j.cplett.2004.06.011

    32. [32]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885  doi: 10.1002/jcc.22885

    33. [33]

      Lu, T.; Chen, Q. Comput. Theor. Chem. 2021, 1200, 113249. doi: 10.1016/j.comptc.2021.113249  doi: 10.1016/j.comptc.2021.113249

    34. [34]

      Liu, Z.; Lu, T.; Chen, Q. Carbon 2020, 165, 461. doi: 10.1016/j.carbon.2020.05.023  doi: 10.1016/j.carbon.2020.05.023

    35. [35]

      Shen, Y.; Chen, P.; Liu, J.; Ding, J.; Xue, P. Dyes Pigm. 2018, 150, 354. doi: 10.1016/j.dyepig.2017.12.034  doi: 10.1016/j.dyepig.2017.12.034

    36. [36]

      Li, J.; Ding, Y.; Liu, S.; Ding, W.; Fang, D.; Chen, H.; Jiao, Y.; Mi, B.; Xu, W.; Gao, Z. Synth. Met. 2022, 287, 117067. doi: 10.1016/j.synthmet.2022.117067  doi: 10.1016/j.synthmet.2022.117067

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    11. [11]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    14. [14]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

Metrics
  • PDF Downloads(17)
  • Abstract views(1052)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return