Citation: Qing Xue, Shengyi Li, Yanan Zhao, Peng Sheng, Li Xu, Zhengxi Li, Bo Zhang, Hui Li, Bo Wang, Libin Yang, Yuliang Cao, Zhongxue Chen. Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230304. doi: 10.3866/PKU.WHXB202303041
-
As the most advanced battery technology to date, lithium-ion battery has occupied the main battery markets for electric vehicles and grid scale energy storage systems. However, the limited lithium reserves as well as the high price raise concerns about the sustainability of lithium-ion battery. Although sodium-ion battery is proposed as a good supplement to lithium-ion battery, expensive and flammable electrolyte components, harsh assembly environments and potential safety hazards have limited the rapid development to a certain extent. The organic electrolyte was replaced with an aqueous solution to construct a new type of aqueous sodium ion battery capacitor (ASIBC). It is of great significance for next-generation energy storage system owing to its low cost, high power, and inherent safety. However, applicable ASIBC system is rarely reported so far. Here, a rechargeable alkaline sodium ion battery capacitors constructed by using Na0.44MnO2 cathode, activated carbon (AC) anode, 6 mol∙L-1 NaOH electrolyte, and cheap stainless-steel current collector. Because of high overcharge tolerance of Na0.44MnO2 cathode in alkaline electrolyte, the shortcomings of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode can be resolved by in situ overcharging pre-activation process during first charging. The available capacity of Na0.44MnO2 in half cell largely increased from ~40 mAh∙g-1 (neutral electrolyte) to 77.3 mAh∙g-1 (alkaline electrolyte) due to broadened Na+ intercalation potential region. Thus, the AC||Na0.44MnO2 ASIBC delivers outstanding electrochemical properties with a high energy density of 26.6 Wh∙kg-1 at a power density of 85 W∙kg-1 and long cycling stability with a capacity retention of 89% after 10,000 cycles. The advantages of the alkaline electrolyte for the AC||Na0.44MnO2 ASIBC can be concluded as follows: (1) through the in situ electrochemical pre-activation process, the overcharging oxygen evolution reaction during first charging process can balance the adverse effects of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode on the energy density of full cell; (2) the overcharging self-protection function can promote the generated oxygen to be eliminated at anode during overcharging, which improves the system safety; (3) the low-cost materials in alkaline environment can be scaled up to construct AC||Na0.44MnO2 ASIBC. In addition, the AC||Na0.44MnO2 ASIBC also possesses wide operating temperature range, achieving satisfied electrochemical performance at a high temperature of 50 ℃ and a low temperature of -20 ℃. Considering the merits of low-cost, high safety, no toxicity and environment-friendly, we believe the AC||Na0.44MnO2 rechargeable alkaline sodium-ion battery capacitors have the potential to be applied to large-scale energy storage.
-
-
[1]
(1) Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14, 200. doi: 10.1038/s41565-019-0371-8
-
[2]
(2) Cao, W.; Zhang, J.; Li, H. Energy Stor. Mater. 2020, 26, 46. doi: 10.1016/j.ensm.2019.12.024
-
[3]
(3) Niu, Y.; Zhao, Y.; Xu, M. Carbon Neutralization 2023, 2, 15. doi: 10.1002/cnl2.4
-
[4]
(4) Li, J.; Hu, H.; Wang, J.; Xiao, X. Carbon Neutralization 2022, 1, 96. doi: 10.1002/cnl2.19
-
[5]
(5) Simon, P.; Gogotsi, Y. Nat. Mater. 2020, 19, 1151. doi: 10.1038/s41563-020-0747-z
-
[6]
(6) Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew. Chem. Int. Ed. 2021, 60, 21310. doi: 10.1002/anie.202104167
-
[7]
(7) Rajalekshmi, A.; Divya, M.; Lee, Y.; Aravindan, V. Battery Energy 2022, 1, 2021000. doi: 10.1002/BTE2.202100
-
[8]
(8) Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457. doi: 10.1021/acs.chemrev.8b00116
-
[9]
(9) Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C. Battery Energy 2022, 1, 20220031. doi: 10.1002/bte2.20220031
-
[10]
-
[11]
(11) Yang, Q.; Cui, S.; Ge, Y.; Tang, Z.; Liu, Z.; Li, H.; Li, N.; Zhang, H.; Liang, J.; Zhi, C. Nano Energy 2018, 50, 623. doi: 10.1016/j.nanoen.2018.06.017
-
[12]
(12) Wu, Y.; Sun, Y.; Tong, Y.; Liu, X.; Zheng, J.; Han, D.; Li, H.; Niu, L. Energy Stor. Mater. 2021, 41, 108. doi: 10.1016/j.ensm.2021.05.045
-
[13]
(13) Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.; Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155. doi: 10.1002/adma.201100904
-
[14]
(14) Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 11689. doi: 10.1021/acsami.8b00478
-
[15]
(15) Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427
-
[16]
(16) Whitacre, J.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12, 463. doi: 10.1016/j.elecom.2010.01.020
-
[17]
(17) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y.-S.; Yang, W. Nat. Commun. 2015, 6, 6401. doi: 10.1038/ncomms7401
-
[18]
-
[19]
-
[20]
(20) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods 2019, 3, 1800272. doi: 10.1002/smtd.201800272
-
[21]
(21) Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Adv. Energy Mater. 2018, 8, 1703008. doi: 10.1002/aenm.201703008
-
[22]
(22) Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 34108. doi: 10.1021/acsami.8b08297
-
[23]
-
[24]
(24) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598
-
[25]
(25) He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M. C.; Liu, H.; Gallash, T. Nano Energy 2016, 27, 602. doi: 10.1016/j.nanoen.2016.07.021
-
[26]
(26) Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorg. Chem. 2007, 46, 3289. doi: 10.1021/ic0700250
-
[27]
(27) Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102. doi: 10.1016/j.jpowsour.2016.01.101
-
[28]
(28) Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T. J. Power Sources 2019, 436, 226882. doi: 10.1016/j.jpowsour.2019.226882
-
[29]
(29) Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.-E.; Sui, J.; Cao, G. Nano Energy 2018, 47, 224. doi: 10.1016/j.nanoen.2018.03.002
-
[30]
(30) Cha, C.; Yu, J.; Zhang, J. J. Power Sources 2004, 129, 347. doi: 10.1016/j.jpowsour.2003.11.043
-
[31]
(31) Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P. J. Power Sources 1999, 83, 93. doi: 10.1016/S0378-7753(99)00272-4
-
[32]
(32) Qu, Q.; Shi, Y.; Tian, S.; Chen, Y.; Wu, Y.; Holze, R. J. Power Sources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068
-
[33]
(33) Zhang, B.; Liu, Y.; Chang, Z.; Yang, Y.; Wen, Z.; Wu, Y.; Holze, R. J. Power Sources 2014, 253, 98. doi: 10.1016/j.jpowsour.2013.12.011
-
[34]
(34) Lim, H.; Jung, J. H.; Park, Y. M.; Lee, H.-N.; Kim, H.-J. Appl. Surf. Sci. 2018, 446, 131. doi: 10.1016/j.apsusc.2018.02.021
-
[35]
(35) Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J. F. J. Electrochem. Soc. 2015, 162, A803. doi: 10.1149/2.0121506jes
-
[1]
-
-
[1]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[2]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[3]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[4]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[5]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[6]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[9]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[11]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[12]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[13]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[14]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[15]
Wei Gao , Jinyue Yang , Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008
-
[16]
Hongyan Chen , Zhuoxun Wei , Chengyong Su , Song Gao . Introduction to Undergraduate Education and Teaching Reform in Basic Disciplines: the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 1-7. doi: 10.12461/PKU.DXHX202409125
-
[17]
Laiying Zhang , Weitai Wu , Yiru Wang , Shunliu Deng , Zhaobin Chen , Jiajia Chen , Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032
-
[18]
Haiyan Liu , Xiaojun Wu , Ying Yang , Qiong Ding , Faqiong Zhao . Meticulous Preparation for Basic Chemistry Experimental Teaching: a Case of Wuhan University. University Chemistry, 2024, 39(10): 318-324. doi: 10.12461/PKU.DXHX202405132
-
[19]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[20]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(94)
- HTML views(10)