Citation: Qing Xue,  Shengyi Li,  Yanan Zhao,  Peng Sheng,  Li Xu,  Zhengxi Li,  Bo Zhang,  Hui Li,  Bo Wang,  Libin Yang,  Yuliang Cao,  Zhongxue Chen. Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230304. doi: 10.3866/PKU.WHXB202303041 shu

Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan

  • Corresponding author: Yuliang Cao,  Zhongxue Chen, 
  • Received Date: 20 March 2023
    Revised Date: 14 April 2023
    Accepted Date: 17 April 2023

    Fund Project: The project was supported by the Science and Technology Project of State Grid Corporation of China (5500-202158251A-0-0-00).

  • As the most advanced battery technology to date, lithium-ion battery has occupied the main battery markets for electric vehicles and grid scale energy storage systems. However, the limited lithium reserves as well as the high price raise concerns about the sustainability of lithium-ion battery. Although sodium-ion battery is proposed as a good supplement to lithium-ion battery, expensive and flammable electrolyte components, harsh assembly environments and potential safety hazards have limited the rapid development to a certain extent. The organic electrolyte was replaced with an aqueous solution to construct a new type of aqueous sodium ion battery capacitor (ASIBC). It is of great significance for next-generation energy storage system owing to its low cost, high power, and inherent safety. However, applicable ASIBC system is rarely reported so far. Here, a rechargeable alkaline sodium ion battery capacitors constructed by using Na0.44MnO2 cathode, activated carbon (AC) anode, 6 mol∙L-1 NaOH electrolyte, and cheap stainless-steel current collector. Because of high overcharge tolerance of Na0.44MnO2 cathode in alkaline electrolyte, the shortcomings of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode can be resolved by in situ overcharging pre-activation process during first charging. The available capacity of Na0.44MnO2 in half cell largely increased from ~40 mAh∙g-1 (neutral electrolyte) to 77.3 mAh∙g-1 (alkaline electrolyte) due to broadened Na+ intercalation potential region. Thus, the AC||Na0.44MnO2 ASIBC delivers outstanding electrochemical properties with a high energy density of 26.6 Wh∙kg-1 at a power density of 85 W∙kg-1 and long cycling stability with a capacity retention of 89% after 10,000 cycles. The advantages of the alkaline electrolyte for the AC||Na0.44MnO2 ASIBC can be concluded as follows: (1) through the in situ electrochemical pre-activation process, the overcharging oxygen evolution reaction during first charging process can balance the adverse effects of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode on the energy density of full cell; (2) the overcharging self-protection function can promote the generated oxygen to be eliminated at anode during overcharging, which improves the system safety; (3) the low-cost materials in alkaline environment can be scaled up to construct AC||Na0.44MnO2 ASIBC. In addition, the AC||Na0.44MnO2 ASIBC also possesses wide operating temperature range, achieving satisfied electrochemical performance at a high temperature of 50 ℃ and a low temperature of -20 ℃. Considering the merits of low-cost, high safety, no toxicity and environment-friendly, we believe the AC||Na0.44MnO2 rechargeable alkaline sodium-ion battery capacitors have the potential to be applied to large-scale energy storage.
  • 加载中
    1. [1]

      (1) Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14, 200. doi: 10.1038/s41565-019-0371-8

    2. [2]

      (2) Cao, W.; Zhang, J.; Li, H. Energy Stor. Mater. 2020, 26, 46. doi: 10.1016/j.ensm.2019.12.024

    3. [3]

      (3) Niu, Y.; Zhao, Y.; Xu, M. Carbon Neutralization 2023, 2, 15. doi: 10.1002/cnl2.4

    4. [4]

      (4) Li, J.; Hu, H.; Wang, J.; Xiao, X. Carbon Neutralization 2022, 1, 96. doi: 10.1002/cnl2.19

    5. [5]

      (5) Simon, P.; Gogotsi, Y. Nat. Mater. 2020, 19, 1151. doi: 10.1038/s41563-020-0747-z

    6. [6]

      (6) Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew. Chem. Int. Ed. 2021, 60, 21310. doi: 10.1002/anie.202104167

    7. [7]

      (7) Rajalekshmi, A.; Divya, M.; Lee, Y.; Aravindan, V. Battery Energy 2022, 1, 2021000. doi: 10.1002/BTE2.202100

    8. [8]

      (8) Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457. doi: 10.1021/acs.chemrev.8b00116

    9. [9]

      (9) Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C. Battery Energy 2022, 1, 20220031. doi: 10.1002/bte2.20220031

    10. [10]

    11. [11]

      (11) Yang, Q.; Cui, S.; Ge, Y.; Tang, Z.; Liu, Z.; Li, H.; Li, N.; Zhang, H.; Liang, J.; Zhi, C. Nano Energy 2018, 50, 623. doi: 10.1016/j.nanoen.2018.06.017

    12. [12]

      (12) Wu, Y.; Sun, Y.; Tong, Y.; Liu, X.; Zheng, J.; Han, D.; Li, H.; Niu, L. Energy Stor. Mater. 2021, 41, 108. doi: 10.1016/j.ensm.2021.05.045

    13. [13]

      (13) Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.; Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155. doi: 10.1002/adma.201100904

    14. [14]

      (14) Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 11689. doi: 10.1021/acsami.8b00478

    15. [15]

      (15) Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427

    16. [16]

      (16) Whitacre, J.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12, 463. doi: 10.1016/j.elecom.2010.01.020

    17. [17]

      (17) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y.-S.; Yang, W. Nat. Commun. 2015, 6, 6401. doi: 10.1038/ncomms7401

    18. [18]

    19. [19]

    20. [20]

      (20) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods 2019, 3, 1800272. doi: 10.1002/smtd.201800272

    21. [21]

      (21) Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Adv. Energy Mater. 2018, 8, 1703008. doi: 10.1002/aenm.201703008

    22. [22]

      (22) Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 34108. doi: 10.1021/acsami.8b08297

    23. [23]

    24. [24]

      (24) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598

    25. [25]

      (25) He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M. C.; Liu, H.; Gallash, T. Nano Energy 2016, 27, 602. doi: 10.1016/j.nanoen.2016.07.021

    26. [26]

      (26) Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorg. Chem. 2007, 46, 3289. doi: 10.1021/ic0700250

    27. [27]

      (27) Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102. doi: 10.1016/j.jpowsour.2016.01.101

    28. [28]

      (28) Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T. J. Power Sources 2019, 436, 226882. doi: 10.1016/j.jpowsour.2019.226882

    29. [29]

      (29) Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.-E.; Sui, J.; Cao, G. Nano Energy 2018, 47, 224. doi: 10.1016/j.nanoen.2018.03.002

    30. [30]

      (30) Cha, C.; Yu, J.; Zhang, J. J. Power Sources 2004, 129, 347. doi: 10.1016/j.jpowsour.2003.11.043

    31. [31]

      (31) Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P. J. Power Sources 1999, 83, 93. doi: 10.1016/S0378-7753(99)00272-4

    32. [32]

      (32) Qu, Q.; Shi, Y.; Tian, S.; Chen, Y.; Wu, Y.; Holze, R. J. Power Sources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068

    33. [33]

      (33) Zhang, B.; Liu, Y.; Chang, Z.; Yang, Y.; Wen, Z.; Wu, Y.; Holze, R. J. Power Sources 2014, 253, 98. doi: 10.1016/j.jpowsour.2013.12.011

    34. [34]

      (34) Lim, H.; Jung, J. H.; Park, Y. M.; Lee, H.-N.; Kim, H.-J. Appl. Surf. Sci. 2018, 446, 131. doi: 10.1016/j.apsusc.2018.02.021

    35. [35]

      (35) Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J. F. J. Electrochem. Soc. 2015, 162, A803. doi: 10.1149/2.0121506jes

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    9. [9]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(3)
  • Abstract views(191)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return