Citation: Chun-An Huo, Sheng-Jie Qiu, Qing-Man Liang, Bi-Jun Geng, Zhi-Chao Lei, Gan Wang, Yu-Ling Zou, Zhong-Qun Tian, Yang Yang. Progress in the Trapping and Manipulation Volume of Optical Tweezers[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230303. doi: 10.3866/PKU.WHXB202303037 shu

Progress in the Trapping and Manipulation Volume of Optical Tweezers

  • Corresponding author: Yang Yang, yangyang@xmu.edu.cn
  • Received Date: 16 March 2023
    Revised Date: 15 April 2023
    Accepted Date: 18 April 2023
    Available Online: 9 May 2023

    Fund Project: the National Natural Science Foundation of China T2222002the National Natural Science Foundation of China 21973079the National Natural Science Foundation of China 21991130the Natural Science Foundation of Fujian Province 2021J06008

  • The continuous developments in physical chemistry, improved methodology, and advanced techniques have spurred interest in chemical reaction at the microscopic scale. Experimental manipulation techniques at the microscopic level are demanded to enable in-depth studies regarding the regulation of chemical reactions, material structures, and properties. The development and application of microscopic research methods have become an emerging trend in physical chemistry. Techniques featuring the use of optical, magnetic, and acoustic tweezers have been developed to manipulate objects at the microscopic scale. Optical tweezers use momentum transfer between light and objects to manipulate objects and can stably trap and manipulate mesoscopic particles, even single molecules, by exerting pico-newton force. With advantages including non-invasiveness, non-damaging, and ultra-high sensitivity, optical tweezers are ideal for studying individual molecules, molecular aggregates, condensed matter, chemical bonds, and intermolecular interactions. This technique has the potential to revolutionize the fields of chemistry, physics, information technology, and life sciences. Arthur Ashkin was awarded the 2018 Nobel Prize in Physics for his contribution to the development of this technique. The trapping force of the conventional optical tweezers technique originates from the light intensity gradient. Because of the diffraction limit of light, the trapping and manipulation of micro-nano objects < 100 nm in size with traditional optical tweezers is difficult. However, simply increasing the optical power used for trapping induces serious thermal effects and photodamage. By developing unique materials and structures coupled with optical tweezers, researchers have broken the diffraction limit of light and achieved sub-nanometer single-molecule trapping. In this review, we summarize the recent advances in the application of various optical tweezers techniques in physical chemistry and demonstrate the technical principles of fiber, photonic crystal, and plasmonic optical tweezers, respectively. We focus on the development and application of plasmonic optical tweezers and single-molecule plasmonic optical trapping based on tunable nanogaps. Generally, optical tweezers can realize the trapping and manipulation of molecular-scale particles via two main technical routes. The first route is improving the laser focusing ability through unique optical path design and optical component fabrication. The second involves enhancing the trapping field through ingenious auxiliary structure design. Finally, we present the promising future developments and applications of optical tweezers technology.
  • 加载中
    1. [1]

      Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S. Opt. Lett. 1986, 11, 288. doi: 10.1364/ol.11.000288  doi: 10.1364/ol.11.000288

    2. [2]

      Jamshidi, A.; Pauzauskie, P. J.; Schuck, P. J.; Ohta, A. T.; Chiou, P. -Y.; Chou, J.; Yang, P.; Wu, M. C. Nat. Photonics 2008, 2, 86. doi: 10.1038/nphoton.2007.277  doi: 10.1038/nphoton.2007.277

    3. [3]

      Ghosh, S.; Das, S.; Paul, S.; Thomas, P.; Roy, B.; Mitra, P.; Roy, S.; Banerjee, A. J. Mater. Chem. C 2017, 5, 6718. doi: 10.1039/c7tc01941f  doi: 10.1039/c7tc01941f

    4. [4]

      Parkin, S. J.; Vogel, R.; Persson, M.; Funk, M.; Loke, V. L. Y.; Nieminen, T. A.; Heckenberg, N. R.; Rubinsztein-Dunlop, H. Opt. Express 2009, 17, 21944. doi: 10.1364/OE.17.021944  doi: 10.1364/OE.17.021944

    5. [5]

      Zhan, J. X.; Feng, F.; Xu, M.; Yao, L.; Ge, M. F. Acta Phys. -Chim. Sin. 2020, 36, 1905076.  doi: 10.3866/PKU.WHXB201905076

    6. [6]

      Badman, R. P.; Ye, F.; Wang, M. D. Curr. Opin. Chem. Biol. 2019, 53, 158. doi: 10.1016/j.cbpa.2019.09.008  doi: 10.1016/j.cbpa.2019.09.008

    7. [7]

      Bolognesi, G.; Friddin, M. S.; Salehi-Reyhani, A.; Barlow, N. E.; Brooks, N. J.; Ces, O.; Elani, Y. Nat. Commun. 2018, 9, 1882. doi: 10.1038/s41467-018-04282-w  doi: 10.1038/s41467-018-04282-w

    8. [8]

      Kulin, S.; Kishore, R.; Hubbard, J. B.; Helmerson, K. Biophys. J. 2002, 83, 1965. doi: 10.1016/S0006-3495(02)73958-1  doi: 10.1016/S0006-3495(02)73958-1

    9. [9]

      Tsuboi, Y.; Naka, S.; Yamanishi, D.; Nagai, T.; Yuyama, K.; Shoji, T.; Ohtani, B.; Tamura, M.; Iida, T.; Kameyama, T.; et al. ACS Appl. Nano Mater. 2021, 4, 11743. doi: 10.1021/acsanm.1c02335  doi: 10.1021/acsanm.1c02335

    10. [10]

      Brown, M. O.; Muleady, S. R.; Dworschack, W. J.; Lewis-Swan, R. J.; Rey, A. M.; Romero-Isart, O.; Regal, C. A. Nat. Phys. 2023, 19, 569. doi: 10.1038/s41567-022-01890-8  doi: 10.1038/s41567-022-01890-8

    11. [11]

      Wang, Y. B.; Shevate, S.; Wintermantel, T. M.; Morgado, M.; Lochead, G.; Whitlock, S. NPJ Quantum Inform. 2020, 6, 54. doi: 10.1038/s41534-020-0285-1  doi: 10.1038/s41534-020-0285-1

    12. [12]

      Neupane, K.; Hoffer, N. Q.; Woodside, M. T. Phys. Rev. Lett. 2018, 121, 018102. doi: 10.1103/PhysRevLett.121.018102  doi: 10.1103/PhysRevLett.121.018102

    13. [13]

      Quinto-Su, P. A. Nat. Commun. 2014, 5, 5889. doi: 10.1038/ncomms6889  doi: 10.1038/ncomms6889

    14. [14]

      Thoumine, O.; Bard, L.; Saint-Michel, E.; Dequidt, C.; Choquet, D. Cell. Mol. Bioeng. 2008, 1, 301. doi: 10.1007/s12195-008-0034-6  doi: 10.1007/s12195-008-0034-6

    15. [15]

      Tinoco, I.; Li, P. T. X.; Bustamante, C. Q. Rev. Biophys. 2006, 39, 325. doi: 10.1017/S0033583506004446  doi: 10.1017/S0033583506004446

    16. [16]

      Kulin, S.; Kishore, R.; Helmerson, K.; Locascio, L. Langmuir 2003, 19, 8206. doi: 10.1021/la0344433  doi: 10.1021/la0344433

    17. [17]

      Garcia-Manyes, S.; Beedle, A. E. M. Nat. Rev. Chem. 2017, 1, 0083. doi: 10.1038/s41570-017-0083  doi: 10.1038/s41570-017-0083

    18. [18]

      Clark, M. G.; Gonzalez, G. A.; Luo, Y. Y.; Aldana-Mendoza, J. A.; Carlsen, M. S.; Eakins, G.; Dai, M. J.; Zhang, C. Nat. Commun. 2022, 13, 4343. doi: 10.1038/s41467-022-32071-z  doi: 10.1038/s41467-022-32071-z

    19. [19]

      Wang, T.; Oehrlein, S.; Somoza, M. M.; Perez, J. R. S.; Kershner, R.; Cerrina, F. Lab Chip 2011, 11, 1629. doi: 10.1039/c0lc00577k  doi: 10.1039/c0lc00577k

    20. [20]

      Chen, Y. X.; Wang, L. J.; Yao, Z. B.; Hao, L. D.; Tan, X. Y.; Masa, J. T.; Robertson, A. L.; Sun, Z. Y. Acta Phys. -Chim. Sin. 2022, 38, 2207024.  doi: 10.3866/PKU.WHXB202207024

    21. [21]

      Hao, R.; Guan, W. X.; Liu, F.; Zhang, L. L.; Wang, A. Q. Acta Phys. -Chim. Sin. 2022, 38, 2205027.  doi: 10.3866/PKU.WHXB202205027

    22. [22]

      Lu, H. R.; Wei, Y. Q.; Long, R. Acta Phys. -Chim. Sin. 2022, 38, 2006064.  doi: 10.3866/PKU.WHXB202006064

    23. [23]

      Li, H.; Cao, Y. Y.; Zhou, L. M.; Xu, X. H.; Zhu, T. T.; Shi, Y. Z.; Qiu, C. W.; Ding, W. Q. Adv. Opt. Photonics 2020, 12, 288. doi: 10.1364/AOP.378390  doi: 10.1364/AOP.378390

    24. [24]

      Dholakia, K.; Reece, P.; Gu, M. Chem. Soc. Rev. 2008, 37, 42. doi: 10.1039/b512471a  doi: 10.1039/b512471a

    25. [25]

      Zhan, C.; Wang, G.; Yi, J.; Wei, J. Y.; Li, Z. H.; Chen, Z. B.; Shi, J.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Matter 2020, 3, 1350. doi: 10.1016/j.matt.2020.07.019  doi: 10.1016/j.matt.2020.07.019

    26. [26]

      Marago, O. M.; Jones, P. H.; Gucciardi, P. G.; Volpe, G.; Ferrari, A. C. Nat. Nanotechnol. 2013, 8, 807. doi: 10.1038/NNANO.2013.208  doi: 10.1038/NNANO.2013.208

    27. [27]

      Kladwang, W.; Hum, J.; Das, R. Sci. Rep. 2012, 2, 517. doi: 10.1038/srep00517  doi: 10.1038/srep00517

    28. [28]

      Chen, H. R.; Li, R. X.; Li, S. M.; Andreasson, J.; Choi, J. H. J. Am. Chem. Soc. 2017, 139, 1380. doi: 10.1021/jacs.6b10821  doi: 10.1021/jacs.6b10821

    29. [29]

      Fanjul-Velez, F.; Ortega-Quijano, N.; Solana-Quiros, J. R.; Arce-Diego, J. L. Int. J. Thermophys. 2009, 30, 1423. doi: 10.1007/s10765-009-0626-y  doi: 10.1007/s10765-009-0626-y

    30. [30]

      Kabata, H.; Kurosawa, O.; Arai, I.; Washizu, M.; Margarson, S. A.; Glass, R. E.; Shimamoto, N. Science 1993, 262, 1561. doi: 10.1126/science.8248804  doi: 10.1126/science.8248804

    31. [31]

      Harada, Y.; Funatsu, T.; Murakami, K.; Nonoyama, Y.; Ishihama, A.; Yanagida, T. Biophys. J. 1999, 76, 709. doi: 10.1016/S0006-3495(99)77237-1  doi: 10.1016/S0006-3495(99)77237-1

    32. [32]

      Rebane, A. A.; Ma, L.; Zhang, Y. L. Biophys. J. 2016, 110, 441. doi: 10.1016/j.bpj.2015.12.003  doi: 10.1016/j.bpj.2015.12.003

    33. [33]

      Yamamoto, T.; Kurosawa, O.; Kabata, H.; Shimamoto, N.; Washizu, M. IEEE Trans. Ind. Appl. 2000, 36, 1010. doi: 10.1109/28.855954  doi: 10.1109/28.855954

    34. [34]

      Masuda, A.; Takao, H.; Shimokawa, F.; Terao, K. Sci. Rep. 2021, 11, 7961. doi: 10.1038/s41598-021-87238-3  doi: 10.1038/s41598-021-87238-3

    35. [35]

      Ti, C.; Shen, Y.; Ho Thanh, M. -T.; Wen, Q.; Liu, Y. Sci. Rep. 2020, 10, 20099. doi: 10.1038/s41598-020-77067-1  doi: 10.1038/s41598-020-77067-1

    36. [36]

      Zhao, X. T.; Zhao, N.; Shi, Y.; Xin, H. B.; Li, B. J. Micromachines 2020, 11, 114. doi: 10.3390/mi11020114  doi: 10.3390/mi11020114

    37. [37]

      Constable, A.; Kim, J.; Mervis, J.; Zarinetchi, F.; Prentiss, M. Opt. Lett. 1993, 18, 1867. doi: 10.1364/OL.18.001867  doi: 10.1364/OL.18.001867

    38. [38]

      Xin, H. B.; Li, B. J. Light-Sci. Appl. 2014, 3, e205. doi: 10.1038/lsa.2014.86  doi: 10.1038/lsa.2014.86

    39. [39]

      Taguchi, K.; Ueno, H.; Hiramatsu, T.; Ikeda, M. Electron. Lett. 1997, 33, 413. doi: 10.1049/el:19970247  doi: 10.1049/el:19970247

    40. [40]

      Xin, H. B.; Xu, R.; Li, B. J. Sci. Rep. 2012, 2, 818. doi: 10.1038/srep00818  doi: 10.1038/srep00818

    41. [41]

      Katagiri, T.; Morisaki, Y.; Matsuura, Y. Hollow Fiber-based Raman Tweezers. In Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI, Conference on Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI, San Francisco, California, United States, JAN 22–23, 2011; Gannot, I., Ed.; SPIE-INT SOC OPTICAL ENGINEERING, Bellingham, 2011, 78940U.

    42. [42]

      Liu, X.; Yuan, J.; Wu, D.; Zou, X.; Zheng, Q.; Zhang, W.; Lei, H. Nanophotonics 2020, 9, 611. doi: 10.1515/nanoph-2019-0318  doi: 10.1515/nanoph-2019-0318

    43. [43]

      Volpe, G.; Volpe, G.; Gigan, S. Engineering Particle Trajectories in Microfluidic Flows Using Speckle Light Fields. In Optical Trapping and Optical Micromanipulation XI, Conference on Optical Trapping and Optical Micromanipulation XI, San Diego, California, United States, AUG 17–21, 2014; Dholakia, K.; Spalding, G. C. Eds.; SPIE-INT SOC OPTICAL ENGINEERING, Bellingham, 2014, 91640I.

    44. [44]

      Deng, H.; Chen, D.; Wang, R.; Li, F.; Luo, Z.; Deng, S.; Yin, J.; Yu, L.; Zhang, W.; Yuan, L. Nanoscale 2022, 14, 6941. doi: 10.1039/D1NR08348A  doi: 10.1039/D1NR08348A

    45. [45]

      Tang, X. Y.; Zhang, Y.; Su, W. J.; Zhang, Y. X.; Liu, Z. H.; Yang, X. H.; Zhang, J. Z.; Yang, J.; Yuan, L. B. Opt. Lett. 2019, 44, 5165. doi: 10.1364/OL.44.005165  doi: 10.1364/OL.44.005165

    46. [46]

      Fang, L.; Wang, J. Phys. Rev. Lett. 2021, 127, 233902. doi: 10.1103/PhysRevLett.127.233902  doi: 10.1103/PhysRevLett.127.233902

    47. [47]

      Solomon, M. L.; Saleh, A. A. E.; Poulikakos, L. V.; Abendroth, J. M.; Tadesse, L. F.; Dionne, J. A. Acc. Chem. Res. 2020, 53, 588. doi: 10.1021/acs.accounts.9b00460  doi: 10.1021/acs.accounts.9b00460

    48. [48]

      Psaltis, D.; Quake, S. R.; Yang, C. H. Nature 2006, 442, 381. doi: 10.1038/nature05060  doi: 10.1038/nature05060

    49. [49]

      Lin, S. Y.; Chow, E.; Hietala, V.; Villeneuve, P. R.; Joannopoulos, J. D. Science 1998, 282, 274. doi: 10.1126/science.282.5387.274  doi: 10.1126/science.282.5387.274

    50. [50]

      Mekis, A.; Chen, J. C.; Kurland, I.; Fan, S. H.; Villeneuve, P. R.; Joannopoulos, J. D. Phys. Rev. Lett. 1996, 77, 3787. doi: 10.1103/PhysRevLett.77.3787  doi: 10.1103/PhysRevLett.77.3787

    51. [51]

      Knight, J. C.; Birks, T. A.; Russell, P. S.; Atkin, D. M. Opt. Lett. 1996, 21, 1547. doi: 10.1364/OL.21.001547  doi: 10.1364/OL.21.001547

    52. [52]

      Mumtaz, F.; Yaseen, G.; Roman, M.; Abbas, L. G.; Ashraf, M. A.; Fiaz, M. A.; Dai, Y. T. J. Opt. Soc. Am. B-Opt. Phys. 2023, 40, 142. doi: 10.1364/JOSAB.478468  doi: 10.1364/JOSAB.478468

    53. [53]

      Thi, T. N.; Trong, D. H.; Van, L. C. Opt. Quantum Electron. 2023, 55, 93. doi: 10.1007/s11082-022-04351-x  doi: 10.1007/s11082-022-04351-x

    54. [54]

      Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059. doi: 10.1103/PhysRevLett.58.2059  doi: 10.1103/PhysRevLett.58.2059

    55. [55]

      John, S. Phys. Rev. Lett. 1987, 58, 2486. doi: 10.1103/PhysRevLett.58.2486  doi: 10.1103/PhysRevLett.58.2486

    56. [56]

      Yablonovitch, E. J. Phys. -Condes. Matter 1993, 5, 2443. doi: 10.1088/0953-8984/5/16/004  doi: 10.1088/0953-8984/5/16/004

    57. [57]

      Hu, S.; Khater, M.; Salas-Montiel, R.; Kratschmer, E.; Engelmann, S.; Green, W. M. J.; Weiss, S. M. Sci. Adv. 2018, 4, eaat2355. doi: 10.1126/sciadv.aat2355  doi: 10.1126/sciadv.aat2355

    58. [58]

      Li, P.; Shi, K. B.; Liu, Z. W. Opt. Lett. 2005, 30, 156. doi: 10.1364/OL.30.000156  doi: 10.1364/OL.30.000156

    59. [59]

      Mandal, S.; Serey, X.; Erickson, D. Nano Lett. 2010, 10, 99. doi: 10.1021/nl9029225  doi: 10.1021/nl9029225

    60. [60]

      Chen, Y. F.; Serey, X.; Sarkar, R.; Chen, P.; Erickson, D. Nano Lett. 2012, 12, 1633. doi: 10.1021/nl204561r  doi: 10.1021/nl204561r

    61. [61]

      Jing, P. F.; Wu, J. D.; Liu, G. W.; Keeler, E. G.; Pun, S. H.; Lin, L. Y. Sci. Rep. 2016, 6, 19924. doi: 10.1038/srep19924  doi: 10.1038/srep19924

    62. [62]

      Shi, B. J.; Cao, Y. Y.; Zhu, T. T.; Li, H.; Zhang, Y. X.; Feng, R.; Sun, F. K.; Ding, W. Q. Photonics Res. 2022, 10, 297. doi: 10.1364/PRJ.441644  doi: 10.1364/PRJ.441644

    63. [63]

      Zhu, T. T.; Novitsky, A.; Cao, Y. Y.; Mahdy, M. R. C.; Wang, L.; Sun, F. K.; Jiang, Z. H.; Ding, W. Q. Appl. Phys. Lett. 2017, 111, 061105. doi: 10.1063/1.4997924  doi: 10.1063/1.4997924

    64. [64]

      Wang, L.; Cao, Y. Y.; Zhu, T. T.; Feng, R.; Sun, F. K.; Ding, W. Q. Opt. Express 2017, 25, 29761. doi: 10.1364/OE.25.029761  doi: 10.1364/OE.25.029761

    65. [65]

      Kawata, S.; Sugiura, T. Opt. Lett. 1992, 17, 772. doi: 10.1364/OL.17.000772  doi: 10.1364/OL.17.000772

    66. [66]

      Zhu, T. T.; Mahdy, M. R. C.; Cao, Y. Y.; Lv, H. Y.; Sun, F. K.; Jiang, Z. H.; Ding, W. Q. Opt. Express 2016, 24, 18436. doi: 10.1364/OE.24.018436  doi: 10.1364/OE.24.018436

    67. [67]

      Zhao, X. K.; Yao, Y.; Lang, P. L.; Guo, H. L.; Shen, X.; Wang, Y. G.; Yu, R. C. Chin. Phys. Lett. 2016, 33, 026802. doi: 10.1088/0256-307X/33/2/026802  doi: 10.1088/0256-307X/33/2/026802

    68. [68]

      Novotny, L.; Bian, R. X.; Xie, X. S. Phys. Rev. Lett. 1997, 79, 645. doi: 10.1103/PhysRevLett.79.645  doi: 10.1103/PhysRevLett.79.645

    69. [69]

      Xu, H. X.; Kall, M. Phys. Rev. Lett. 2002, 89, 246802. doi: 10.1103/PhysRevLett.89.246802  doi: 10.1103/PhysRevLett.89.246802

    70. [70]

      Righini, M.; Zelenina, A. S.; Girard, C.; Quidant, R. Nat. Phys. 2007, 3, 477. doi: 10.1038/nphys624  doi: 10.1038/nphys624

    71. [71]

      Zhang, W. H.; Huang, L. N.; Santschi, C.; Martin, O. J. F. Nano Lett. 2010, 10, 1006. doi: 10.1021/nl904168f  doi: 10.1021/nl904168f

    72. [72]

      Ghosh, S.; Ghosh, A. Nat. Commun. 2019, 10, 4191. doi: 10.1038/s41467-019-12217-2  doi: 10.1038/s41467-019-12217-2

    73. [73]

      Grigorenko, A. N.; Roberts, N. W.; Dickinson, M. R.; Zhang, Y. Nat. Photonics 2008, 2, 365. doi: 10.1038/nphoton.2008.78  doi: 10.1038/nphoton.2008.78

    74. [74]

      Samadi, M.; Vasini, S.; Darbari, S.; Khorshad, A. A.; Reihani, S. N. S.; Moravvej-Farshi, M. K. Opt. Express 2019, 27, 14754. doi: 10.1364/OE.27.014754  doi: 10.1364/OE.27.014754

    75. [75]

      Khosravi, M. A.; Aqhili, A.; Vasini, S.; Khosravi, M. H.; Darbari, S.; Hajizadeh, F. Sci. Rep. 2020, 10, 19356. doi: 10.1038/s41598-020-76409-3  doi: 10.1038/s41598-020-76409-3

    76. [76]

      Kotsifaki, D. G.; Truong, V. G.; Chormaic, S. N. Nano Lett. 2020, 20, 3388. doi: 10.1021/acs.nanolett.0c00300  doi: 10.1021/acs.nanolett.0c00300

    77. [77]

      Juan, M. L.; Gordon, R.; Pang, Y. J.; Eftekhari, F.; Quidant, R. Nat. Phys. 2009, 5, 915. doi: 10.1038/NPHYS1422  doi: 10.1038/NPHYS1422

    78. [78]

      Pang, Y. J.; Gordon, R. Nano Lett. 2011, 11, 3763. doi: 10.1021/nl201807z  doi: 10.1021/nl201807z

    79. [79]

      Pang, Y. J.; Gordon, R. Nano Lett. 2012, 12, 402. doi: 10.1021/nl203719v  doi: 10.1021/nl203719v

    80. [80]

      Yang, K.; Yao, X.; Liu, B. W.; Ren, B. Adv. Mater. 2021, 33, 2007988. doi: 10.1002/adma.202007988  doi: 10.1002/adma.202007988

    81. [81]

      Shen, Y.; Zhou, J. H.; Liu, T. R.; Tao, Y. T.; Jiang, R. B.; Liu, M. X.; Xiao, G. H.; Zhu, J. H.; Zhou, Z. K.; Wang, X. H.; et al. Nat. Commun. 2013, 4, 2381. doi: 10.1038/ncomms3381  doi: 10.1038/ncomms3381

    82. [82]

      Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nat. Rev. Mater. 2016, 1, 16021. doi: 10.1038/natrevmats.2016.21  doi: 10.1038/natrevmats.2016.21

    83. [83]

      Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Chem. Soc. Rev. 2017, 46, 4042. doi: 10.1039/c7cs00238f  doi: 10.1039/c7cs00238f

    84. [84]

      Asano, M.; Bechu, M.; Tame, M.; Kaya Özdemir, Ş.; Ikuta, R.; Güney, D. Ö.; Yamamoto, T.; Yang, L.; Wegener, M.; Imoto, N. Sci. Rep. 2015, 5, 18313. doi: 10.1038/srep18313  doi: 10.1038/srep18313

    85. [85]

      Yang, K.; Wang, J. Y.; Yao, X.; Lyu, D. Y.; Zhu, J. F.; Yang, Z. L.; Liu, B. W.; Ren, B. Adv. Opt. Mater. 2021, 9, 2001375. doi: 10.1002/adom.202001375  doi: 10.1002/adom.202001375

    86. [86]

      Ma, Y. J.; Zhi, L. J. Acta Phys. -Chim. Sin. 2022, 38, 2101004.  doi: 10.3866/PKU.WHXB202101004

    87. [87]

      Shang, N. Z.; Cheng, Y.; Ao, S.; Tuerdi, G.; Li, M. W.; Wang, X. Y.; Hong, H.; Li, Z. H.; Zhang, X. Y.; Fu, W. Y.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2108041.  doi: 10.3866/PKU.WHXB202108041

    88. [88]

      Zhou, L.; Li, Y. F.; Zhang, Y. K.; Qiu, L. W.; Xing, Y. Acta Phys. -Chim. Sin. 2022, 38, 2112027.  doi: 10.3866/PKU.WHXB202112027

    89. [89]

      Torimoto, T.; Yamaguchi, N.; Maeda, Y.; Akiyoshi, K.; Kameyama, T.; Nagai, T.; Shoji, T.; Yamane, H.; Ishihara, H.; Tsuboi, Y. NPG Asia Mater. 2022, 14, 64. doi: 10.1038/s41427-022-00414-3  doi: 10.1038/s41427-022-00414-3

    90. [90]

      Lin, J. L.; Zhang, Y. M.; Zhang, H. L. Acta Phys. -Chim. Sin. 2021, 37, 2005010.  doi: 10.3866/PKU.WHXB202005010

    91. [91]

      Sun, H. T.; Liao, J. H.; Hou, S. M. Acta Phys. -Chim. Sin. 2021, 37, 1906027.  doi: 10.3866/PKU.WHXB201906027

    92. [92]

      Zhan, C.; Wang, G.; Zhang, X. G.; Li, Z. H.; Wei, J. Y.; Si, Y.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Angew. Chem. Int. Ed. 2019, 58, 14534. doi: 10.1002/anie.201907966  doi: 10.1002/anie.201907966

    93. [93]

      Zeng, B. F.; Wang, G.; Qian, Q. Z.; Chen, Z. X.; Zhang, X. G.; Lu, Z. X.; Zhao, S. Q.; Feng, A. N.; Shi, J.; Yang, Y.; et al. Small 2020, 16, 2004720. doi: 10.1002/smll.202004720  doi: 10.1002/smll.202004720

    94. [94]

      Zheng, Y.; Duan, P.; Zhou, Y.; Li, C. A.; Zhou, D. H.; Wang, Y. P.; Chen, L. C. A.; Zhu, Z. Y.; Li, X. H.; Bai, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202210097. doi: 10.1002/anie.202210097  doi: 10.1002/anie.202210097

    95. [95]

      Bai, J.; Li, X. H.; Zhu, Z. Y.; Zheng, Y.; Hong, W. J. Adv. Mater. 2021, 33, 2005883. doi: 10.1002/adma.202005883  doi: 10.1002/adma.202005883

    96. [96]

      Zhuang, X. Y.; Zhang, A. H.; Qiu, S. Y.; Tang, C.; Zhao, S. Q.; Li, H. C.; Zhang, Y. H.; Wang, Y. L.; Wang, B. J.; Fang, B. S.; et al. iScience 2020, 23, 101001. doi: 10.1016/j.isci.2020.101001  doi: 10.1016/j.isci.2020.101001

    97. [97]

      Zhu, Z. Y.; Qu, H.; Chen, Y. R.; Zhang, C. Y.; Li, R. H.; Zhao, Y.; Zhou, Y.; Chen, Z. X.; Liu, J. Y.; Xiao, Z. Y.; et al. J. Mater. Chem. C 2021, 9, 16192. doi: 10.1039/d1tc03506a  doi: 10.1039/d1tc03506a

    98. [98]

      Li, J.; Hou, S. J.; Yao, Y. R.; Zhang, C. Y.; Wu, Q. Q.; Wang, H. C.; Zhang, H. W.; Liu, X. Y.; Tang, C.; Wei, M. X.; et al. Nat. Mater. 2022, 21, 917. doi: 10.1038/s41563-022-01309-y  doi: 10.1038/s41563-022-01309-y

    99. [99]

      Zeng, B. F.; Wei, J. Y.; Zhang, X. G.; Liang, Q. M.; Hu, S.; Wang, G.; Lei, Z. C.; Zhao, S. Q.; Zhang, H. W.; Shi, J.; et al. Chem. Sci. 2022, 13, 7765. doi: 10.1039/d2sc01868c  doi: 10.1039/d2sc01868c

    100. [100]

      Zou, Y. L.; Liang, Q. M.; Lu, T. G.; Li, Y. G.; Zhao, S. Q.; Gao, J.; Yang, Z. X.; Feng, A. N.; Shi, J.; Hong, W. J.; et al. Sci. Adv. 2023, 9, eadf0425. doi: 10.1126/sciadv.adf0425  doi: 10.1126/sciadv.adf0425

    101. [101]

      Zeng, B. F.; Zou, Y. L.; Wang, G.; Hong, W. J.; Tian, Z. Q.; Yang, Y. Nano Today 2022, 47, 101660. doi: 10.1016/j.nantod.2022.101660  doi: 10.1016/j.nantod.2022.101660

    102. [102]

      Wang, M.; Wang, T.; Ojambati, O. S.; Duffin, T. J.; Kang, K.; Lee, T.; Scheer, E.; Xiang, D.; Nijhuis, C. A. Nat. Rev. Chem. 2022, 6, 681. doi: 10.1038/s41570-022-00423-4  doi: 10.1038/s41570-022-00423-4

    103. [103]

      Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X.; et al. Nat. Commun. 2011, 2, 305. doi: 10.1038/ncomms1310  doi: 10.1038/ncomms1310

    104. [104]

      Sun, Y.; Zhang, C. J.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Nanoscale 2020, 12, 23789. doi: 10.1039/d0nr06997c  doi: 10.1039/d0nr06997c

    105. [105]

      Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57, 11257. doi: 10.1002/anie.201805464  doi: 10.1002/anie.201805464

    106. [106]

      Tian, J. H.; Liu, B.; Li, X. L.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N. J.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128, 14748. doi: 10.1021/ja0648615  doi: 10.1021/ja0648615

    107. [107]

      Zeng, B. -F.; Deng, R.; Zou, Y. -L.; Huo, C. -A.; Wang, J. -Y.; Yang, W. -M.; Liang, Q. -M.; Qiu, S. -J.; Feng, A.; Shi, J.; et al. CCS Chemistry 2022, 5, 830. doi: 10.31635/ccschem.022.202202318  doi: 10.31635/ccschem.022.202202318

    108. [108]

      Zhang, S. R.; Guo, C. Y.; Ni, L. F.; Hans, K. M.; Zhang, W. Q.; Peng, S. J.; Zhao, Z. K.; Guhr, D. C.; Qi, Z.; Liu, H. T.; et al. Nano Today 2021, 39, 101226. doi: 10.1016/j.nantod.2021.101226  doi: 10.1016/j.nantod.2021.101226

    109. [109]

      Zhao, Z.; Guo, C.; Ni, L.; Zhao, X.; Zhang, S.; Xiang, D. Nanoscale Horiz. 2021, 6, 386. doi: 10.1039/D1NH00031D  doi: 10.1039/D1NH00031D

    110. [110]

      Gao, R.; He, Y.; Zhang, D.; Sun, G.; He, J. -X.; Li, J. -F.; Li, M. -D.; Yang, Z. Nat. Commun. 2023, 14, 485. doi: 10.1038/s41467-023-36127-6  doi: 10.1038/s41467-023-36127-6

    111. [111]

      Zhan, C.; Liu, B. W.; Huang, Y. F.; Hu, S.; Ren, B.; Moskovits, M.; Tian, Z. Q. Nat. Commun. 2019, 10, 2671. doi: 10.1038/s41467-019-10771-3  doi: 10.1038/s41467-019-10771-3

    112. [112]

      Wu, Q.; Yin, L.; Yang, Q.; Yuan, Y. X.; Zhang, C. J.; Xu, M. M.; Yao, J. L. J. Colloid Interface Sci. 2023, 629, 864. doi: 10.1016/j.jcis.2022.08.161  doi: 10.1016/j.jcis.2022.08.161

    113. [113]

      Crocker, J. C.; Grier, D. G. Phys. Rev. Lett. 1996, 77, 1897. doi: 10.1103/PhysRevLett.77.1897  doi: 10.1103/PhysRevLett.77.1897

    114. [114]

      Crocker, J. C.; Grier, D. G. Phys. Rev. Lett. 1994, 73, 352. doi: 10.1103/PhysRevLett.73.352  doi: 10.1103/PhysRevLett.73.352

    115. [115]

      Wright, L. G.; Wu, F. O.; Christodoulides, D. N.; Wise, F. W. Nat. Phys. 2022, 18, 1018. doi: 10.1038/s41567-022-01691-z  doi: 10.1038/s41567-022-01691-z

    116. [116]

      Woerdemann, M.; Alpmann, C.; Esseling, M.; Denz, C. Laser Photon. Rev. 2013, 7, 839. doi: 10.1002/lpor.201200058  doi: 10.1002/lpor.201200058

    117. [117]

      Dang, Y.; Chen, P.; Zhong, H.; Wu, H.; Wang, W.; Jiang, C.; Gao, B. Opt. Lett. 2023, 48, 530. doi: 10.1364/OL.479190  doi: 10.1364/OL.479190

    118. [118]

      La Porta, A.; Wang, M. D. Phys. Rev. Lett. 2004, 92, 190801. doi: 10.1103/PhysRevLett.92.190801  doi: 10.1103/PhysRevLett.92.190801

    119. [119]

      Rodriguez-Otazo, M.; Augier-Calderin, A.; Galaup, J. -P.; Lamère, J. -F.; Fery-Forgues, S. Appl. Opt. 2009, 48, 2720. doi: 10.1364/AO.48.002720  doi: 10.1364/AO.48.002720

    120. [120]

      Bishop, A. I.; Nieminen, T. A.; Heckenberg, N. R.; Rubinsztein-Dunlop, H. Phys. Rev. Lett. 2004, 92, 198104. doi: 10.1103/PhysRevLett.92.198104  doi: 10.1103/PhysRevLett.92.198104

    121. [121]

      Friese, M. E. J.; Nieminen, T. A.; Heckenberg, N. R.; Rubinsztein-Dunlop, H. Nature 1998, 394, 348. doi: 10.1038/28566  doi: 10.1038/28566

    122. [122]

      Hong, C. C.; Yang, S.; Ndukaife, J. C. Nat. Nanotechnol. 2020, 15, 908. doi: 10.1038/s41565-020-0760-z  doi: 10.1038/s41565-020-0760-z

    123. [123]

      Zhang, Y. Q.; Min, C. J.; Dou, X. J.; Wang, X. Y.; Urbach, H. P.; Somekh, M. G.; Yuan, X. C. Light-Sci. Appl. 2021, 10, 59. doi: 10.1038/s41377-021-00474-0  doi: 10.1038/s41377-021-00474-0

    124. [124]

      Xu, L.; Rahmani, M.; Ma, Y. X.; Smirnova, D. A.; Kamali, K. Z.; Deng, F.; Chiang, Y. K.; Huang, L. J.; Zhang, H. Y.; Gould, S.; et al. Adv. Photonics 2020, 2, 026003. doi: 10.1117/1.AP.2.2.026003  doi: 10.1117/1.AP.2.2.026003

    125. [125]

      Spector, M.; Ang, A. S.; Minin, O. V.; Minin, I. V.; Karabchevsky, A. Nanoscale Adv. 2020, 2, 2595. doi: 10.1039/c9na00759h  doi: 10.1039/c9na00759h

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    3. [3]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    4. [4]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    7. [7]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    11. [11]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    12. [12]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    19. [19]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(37)
  • Abstract views(1061)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return