Progress in the Trapping and Manipulation Volume of Optical Tweezers
- Corresponding author: Yang Yang, yangyang@xmu.edu.cn
Citation: Chun-An Huo, Sheng-Jie Qiu, Qing-Man Liang, Bi-Jun Geng, Zhi-Chao Lei, Gan Wang, Yu-Ling Zou, Zhong-Qun Tian, Yang Yang. Progress in the Trapping and Manipulation Volume of Optical Tweezers[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230303. doi: 10.3866/PKU.WHXB202303037
Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S. Opt. Lett. 1986, 11, 288. doi: 10.1364/ol.11.000288
doi: 10.1364/ol.11.000288
Jamshidi, A.; Pauzauskie, P. J.; Schuck, P. J.; Ohta, A. T.; Chiou, P. -Y.; Chou, J.; Yang, P.; Wu, M. C. Nat. Photonics 2008, 2, 86. doi: 10.1038/nphoton.2007.277
doi: 10.1038/nphoton.2007.277
Ghosh, S.; Das, S.; Paul, S.; Thomas, P.; Roy, B.; Mitra, P.; Roy, S.; Banerjee, A. J. Mater. Chem. C 2017, 5, 6718. doi: 10.1039/c7tc01941f
doi: 10.1039/c7tc01941f
Parkin, S. J.; Vogel, R.; Persson, M.; Funk, M.; Loke, V. L. Y.; Nieminen, T. A.; Heckenberg, N. R.; Rubinsztein-Dunlop, H. Opt. Express 2009, 17, 21944. doi: 10.1364/OE.17.021944
doi: 10.1364/OE.17.021944
Zhan, J. X.; Feng, F.; Xu, M.; Yao, L.; Ge, M. F. Acta Phys. -Chim. Sin. 2020, 36, 1905076.
doi: 10.3866/PKU.WHXB201905076
Badman, R. P.; Ye, F.; Wang, M. D. Curr. Opin. Chem. Biol. 2019, 53, 158. doi: 10.1016/j.cbpa.2019.09.008
doi: 10.1016/j.cbpa.2019.09.008
Bolognesi, G.; Friddin, M. S.; Salehi-Reyhani, A.; Barlow, N. E.; Brooks, N. J.; Ces, O.; Elani, Y. Nat. Commun. 2018, 9, 1882. doi: 10.1038/s41467-018-04282-w
doi: 10.1038/s41467-018-04282-w
Kulin, S.; Kishore, R.; Hubbard, J. B.; Helmerson, K. Biophys. J. 2002, 83, 1965. doi: 10.1016/S0006-3495(02)73958-1
doi: 10.1016/S0006-3495(02)73958-1
Tsuboi, Y.; Naka, S.; Yamanishi, D.; Nagai, T.; Yuyama, K.; Shoji, T.; Ohtani, B.; Tamura, M.; Iida, T.; Kameyama, T.; et al. ACS Appl. Nano Mater. 2021, 4, 11743. doi: 10.1021/acsanm.1c02335
doi: 10.1021/acsanm.1c02335
Brown, M. O.; Muleady, S. R.; Dworschack, W. J.; Lewis-Swan, R. J.; Rey, A. M.; Romero-Isart, O.; Regal, C. A. Nat. Phys. 2023, 19, 569. doi: 10.1038/s41567-022-01890-8
doi: 10.1038/s41567-022-01890-8
Wang, Y. B.; Shevate, S.; Wintermantel, T. M.; Morgado, M.; Lochead, G.; Whitlock, S. NPJ Quantum Inform. 2020, 6, 54. doi: 10.1038/s41534-020-0285-1
doi: 10.1038/s41534-020-0285-1
Neupane, K.; Hoffer, N. Q.; Woodside, M. T. Phys. Rev. Lett. 2018, 121, 018102. doi: 10.1103/PhysRevLett.121.018102
doi: 10.1103/PhysRevLett.121.018102
Quinto-Su, P. A. Nat. Commun. 2014, 5, 5889. doi: 10.1038/ncomms6889
doi: 10.1038/ncomms6889
Thoumine, O.; Bard, L.; Saint-Michel, E.; Dequidt, C.; Choquet, D. Cell. Mol. Bioeng. 2008, 1, 301. doi: 10.1007/s12195-008-0034-6
doi: 10.1007/s12195-008-0034-6
Tinoco, I.; Li, P. T. X.; Bustamante, C. Q. Rev. Biophys. 2006, 39, 325. doi: 10.1017/S0033583506004446
doi: 10.1017/S0033583506004446
Kulin, S.; Kishore, R.; Helmerson, K.; Locascio, L. Langmuir 2003, 19, 8206. doi: 10.1021/la0344433
doi: 10.1021/la0344433
Garcia-Manyes, S.; Beedle, A. E. M. Nat. Rev. Chem. 2017, 1, 0083. doi: 10.1038/s41570-017-0083
doi: 10.1038/s41570-017-0083
Clark, M. G.; Gonzalez, G. A.; Luo, Y. Y.; Aldana-Mendoza, J. A.; Carlsen, M. S.; Eakins, G.; Dai, M. J.; Zhang, C. Nat. Commun. 2022, 13, 4343. doi: 10.1038/s41467-022-32071-z
doi: 10.1038/s41467-022-32071-z
Wang, T.; Oehrlein, S.; Somoza, M. M.; Perez, J. R. S.; Kershner, R.; Cerrina, F. Lab Chip 2011, 11, 1629. doi: 10.1039/c0lc00577k
doi: 10.1039/c0lc00577k
Chen, Y. X.; Wang, L. J.; Yao, Z. B.; Hao, L. D.; Tan, X. Y.; Masa, J. T.; Robertson, A. L.; Sun, Z. Y. Acta Phys. -Chim. Sin. 2022, 38, 2207024.
doi: 10.3866/PKU.WHXB202207024
Hao, R.; Guan, W. X.; Liu, F.; Zhang, L. L.; Wang, A. Q. Acta Phys. -Chim. Sin. 2022, 38, 2205027.
doi: 10.3866/PKU.WHXB202205027
Lu, H. R.; Wei, Y. Q.; Long, R. Acta Phys. -Chim. Sin. 2022, 38, 2006064.
doi: 10.3866/PKU.WHXB202006064
Li, H.; Cao, Y. Y.; Zhou, L. M.; Xu, X. H.; Zhu, T. T.; Shi, Y. Z.; Qiu, C. W.; Ding, W. Q. Adv. Opt. Photonics 2020, 12, 288. doi: 10.1364/AOP.378390
doi: 10.1364/AOP.378390
Dholakia, K.; Reece, P.; Gu, M. Chem. Soc. Rev. 2008, 37, 42. doi: 10.1039/b512471a
doi: 10.1039/b512471a
Zhan, C.; Wang, G.; Yi, J.; Wei, J. Y.; Li, Z. H.; Chen, Z. B.; Shi, J.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Matter 2020, 3, 1350. doi: 10.1016/j.matt.2020.07.019
doi: 10.1016/j.matt.2020.07.019
Marago, O. M.; Jones, P. H.; Gucciardi, P. G.; Volpe, G.; Ferrari, A. C. Nat. Nanotechnol. 2013, 8, 807. doi: 10.1038/NNANO.2013.208
doi: 10.1038/NNANO.2013.208
Kladwang, W.; Hum, J.; Das, R. Sci. Rep. 2012, 2, 517. doi: 10.1038/srep00517
doi: 10.1038/srep00517
Chen, H. R.; Li, R. X.; Li, S. M.; Andreasson, J.; Choi, J. H. J. Am. Chem. Soc. 2017, 139, 1380. doi: 10.1021/jacs.6b10821
doi: 10.1021/jacs.6b10821
Fanjul-Velez, F.; Ortega-Quijano, N.; Solana-Quiros, J. R.; Arce-Diego, J. L. Int. J. Thermophys. 2009, 30, 1423. doi: 10.1007/s10765-009-0626-y
doi: 10.1007/s10765-009-0626-y
Kabata, H.; Kurosawa, O.; Arai, I.; Washizu, M.; Margarson, S. A.; Glass, R. E.; Shimamoto, N. Science 1993, 262, 1561. doi: 10.1126/science.8248804
doi: 10.1126/science.8248804
Harada, Y.; Funatsu, T.; Murakami, K.; Nonoyama, Y.; Ishihama, A.; Yanagida, T. Biophys. J. 1999, 76, 709. doi: 10.1016/S0006-3495(99)77237-1
doi: 10.1016/S0006-3495(99)77237-1
Rebane, A. A.; Ma, L.; Zhang, Y. L. Biophys. J. 2016, 110, 441. doi: 10.1016/j.bpj.2015.12.003
doi: 10.1016/j.bpj.2015.12.003
Yamamoto, T.; Kurosawa, O.; Kabata, H.; Shimamoto, N.; Washizu, M. IEEE Trans. Ind. Appl. 2000, 36, 1010. doi: 10.1109/28.855954
doi: 10.1109/28.855954
Masuda, A.; Takao, H.; Shimokawa, F.; Terao, K. Sci. Rep. 2021, 11, 7961. doi: 10.1038/s41598-021-87238-3
doi: 10.1038/s41598-021-87238-3
Ti, C.; Shen, Y.; Ho Thanh, M. -T.; Wen, Q.; Liu, Y. Sci. Rep. 2020, 10, 20099. doi: 10.1038/s41598-020-77067-1
doi: 10.1038/s41598-020-77067-1
Zhao, X. T.; Zhao, N.; Shi, Y.; Xin, H. B.; Li, B. J. Micromachines 2020, 11, 114. doi: 10.3390/mi11020114
doi: 10.3390/mi11020114
Constable, A.; Kim, J.; Mervis, J.; Zarinetchi, F.; Prentiss, M. Opt. Lett. 1993, 18, 1867. doi: 10.1364/OL.18.001867
doi: 10.1364/OL.18.001867
Xin, H. B.; Li, B. J. Light-Sci. Appl. 2014, 3, e205. doi: 10.1038/lsa.2014.86
doi: 10.1038/lsa.2014.86
Taguchi, K.; Ueno, H.; Hiramatsu, T.; Ikeda, M. Electron. Lett. 1997, 33, 413. doi: 10.1049/el:19970247
doi: 10.1049/el:19970247
Xin, H. B.; Xu, R.; Li, B. J. Sci. Rep. 2012, 2, 818. doi: 10.1038/srep00818
doi: 10.1038/srep00818
Katagiri, T.; Morisaki, Y.; Matsuura, Y. Hollow Fiber-based Raman Tweezers. In Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI, Conference on Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI, San Francisco, California, United States, JAN 22–23, 2011; Gannot, I., Ed.; SPIE-INT SOC OPTICAL ENGINEERING, Bellingham, 2011, 78940U.
Liu, X.; Yuan, J.; Wu, D.; Zou, X.; Zheng, Q.; Zhang, W.; Lei, H. Nanophotonics 2020, 9, 611. doi: 10.1515/nanoph-2019-0318
doi: 10.1515/nanoph-2019-0318
Volpe, G.; Volpe, G.; Gigan, S. Engineering Particle Trajectories in Microfluidic Flows Using Speckle Light Fields. In Optical Trapping and Optical Micromanipulation XI, Conference on Optical Trapping and Optical Micromanipulation XI, San Diego, California, United States, AUG 17–21, 2014; Dholakia, K.; Spalding, G. C. Eds.; SPIE-INT SOC OPTICAL ENGINEERING, Bellingham, 2014, 91640I.
Deng, H.; Chen, D.; Wang, R.; Li, F.; Luo, Z.; Deng, S.; Yin, J.; Yu, L.; Zhang, W.; Yuan, L. Nanoscale 2022, 14, 6941. doi: 10.1039/D1NR08348A
doi: 10.1039/D1NR08348A
Tang, X. Y.; Zhang, Y.; Su, W. J.; Zhang, Y. X.; Liu, Z. H.; Yang, X. H.; Zhang, J. Z.; Yang, J.; Yuan, L. B. Opt. Lett. 2019, 44, 5165. doi: 10.1364/OL.44.005165
doi: 10.1364/OL.44.005165
Fang, L.; Wang, J. Phys. Rev. Lett. 2021, 127, 233902. doi: 10.1103/PhysRevLett.127.233902
doi: 10.1103/PhysRevLett.127.233902
Solomon, M. L.; Saleh, A. A. E.; Poulikakos, L. V.; Abendroth, J. M.; Tadesse, L. F.; Dionne, J. A. Acc. Chem. Res. 2020, 53, 588. doi: 10.1021/acs.accounts.9b00460
doi: 10.1021/acs.accounts.9b00460
Psaltis, D.; Quake, S. R.; Yang, C. H. Nature 2006, 442, 381. doi: 10.1038/nature05060
doi: 10.1038/nature05060
Lin, S. Y.; Chow, E.; Hietala, V.; Villeneuve, P. R.; Joannopoulos, J. D. Science 1998, 282, 274. doi: 10.1126/science.282.5387.274
doi: 10.1126/science.282.5387.274
Mekis, A.; Chen, J. C.; Kurland, I.; Fan, S. H.; Villeneuve, P. R.; Joannopoulos, J. D. Phys. Rev. Lett. 1996, 77, 3787. doi: 10.1103/PhysRevLett.77.3787
doi: 10.1103/PhysRevLett.77.3787
Knight, J. C.; Birks, T. A.; Russell, P. S.; Atkin, D. M. Opt. Lett. 1996, 21, 1547. doi: 10.1364/OL.21.001547
doi: 10.1364/OL.21.001547
Mumtaz, F.; Yaseen, G.; Roman, M.; Abbas, L. G.; Ashraf, M. A.; Fiaz, M. A.; Dai, Y. T. J. Opt. Soc. Am. B-Opt. Phys. 2023, 40, 142. doi: 10.1364/JOSAB.478468
doi: 10.1364/JOSAB.478468
Thi, T. N.; Trong, D. H.; Van, L. C. Opt. Quantum Electron. 2023, 55, 93. doi: 10.1007/s11082-022-04351-x
doi: 10.1007/s11082-022-04351-x
Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059. doi: 10.1103/PhysRevLett.58.2059
doi: 10.1103/PhysRevLett.58.2059
John, S. Phys. Rev. Lett. 1987, 58, 2486. doi: 10.1103/PhysRevLett.58.2486
doi: 10.1103/PhysRevLett.58.2486
Yablonovitch, E. J. Phys. -Condes. Matter 1993, 5, 2443. doi: 10.1088/0953-8984/5/16/004
doi: 10.1088/0953-8984/5/16/004
Hu, S.; Khater, M.; Salas-Montiel, R.; Kratschmer, E.; Engelmann, S.; Green, W. M. J.; Weiss, S. M. Sci. Adv. 2018, 4, eaat2355. doi: 10.1126/sciadv.aat2355
doi: 10.1126/sciadv.aat2355
Li, P.; Shi, K. B.; Liu, Z. W. Opt. Lett. 2005, 30, 156. doi: 10.1364/OL.30.000156
doi: 10.1364/OL.30.000156
Mandal, S.; Serey, X.; Erickson, D. Nano Lett. 2010, 10, 99. doi: 10.1021/nl9029225
doi: 10.1021/nl9029225
Chen, Y. F.; Serey, X.; Sarkar, R.; Chen, P.; Erickson, D. Nano Lett. 2012, 12, 1633. doi: 10.1021/nl204561r
doi: 10.1021/nl204561r
Jing, P. F.; Wu, J. D.; Liu, G. W.; Keeler, E. G.; Pun, S. H.; Lin, L. Y. Sci. Rep. 2016, 6, 19924. doi: 10.1038/srep19924
doi: 10.1038/srep19924
Shi, B. J.; Cao, Y. Y.; Zhu, T. T.; Li, H.; Zhang, Y. X.; Feng, R.; Sun, F. K.; Ding, W. Q. Photonics Res. 2022, 10, 297. doi: 10.1364/PRJ.441644
doi: 10.1364/PRJ.441644
Zhu, T. T.; Novitsky, A.; Cao, Y. Y.; Mahdy, M. R. C.; Wang, L.; Sun, F. K.; Jiang, Z. H.; Ding, W. Q. Appl. Phys. Lett. 2017, 111, 061105. doi: 10.1063/1.4997924
doi: 10.1063/1.4997924
Wang, L.; Cao, Y. Y.; Zhu, T. T.; Feng, R.; Sun, F. K.; Ding, W. Q. Opt. Express 2017, 25, 29761. doi: 10.1364/OE.25.029761
doi: 10.1364/OE.25.029761
Kawata, S.; Sugiura, T. Opt. Lett. 1992, 17, 772. doi: 10.1364/OL.17.000772
doi: 10.1364/OL.17.000772
Zhu, T. T.; Mahdy, M. R. C.; Cao, Y. Y.; Lv, H. Y.; Sun, F. K.; Jiang, Z. H.; Ding, W. Q. Opt. Express 2016, 24, 18436. doi: 10.1364/OE.24.018436
doi: 10.1364/OE.24.018436
Zhao, X. K.; Yao, Y.; Lang, P. L.; Guo, H. L.; Shen, X.; Wang, Y. G.; Yu, R. C. Chin. Phys. Lett. 2016, 33, 026802. doi: 10.1088/0256-307X/33/2/026802
doi: 10.1088/0256-307X/33/2/026802
Novotny, L.; Bian, R. X.; Xie, X. S. Phys. Rev. Lett. 1997, 79, 645. doi: 10.1103/PhysRevLett.79.645
doi: 10.1103/PhysRevLett.79.645
Xu, H. X.; Kall, M. Phys. Rev. Lett. 2002, 89, 246802. doi: 10.1103/PhysRevLett.89.246802
doi: 10.1103/PhysRevLett.89.246802
Righini, M.; Zelenina, A. S.; Girard, C.; Quidant, R. Nat. Phys. 2007, 3, 477. doi: 10.1038/nphys624
doi: 10.1038/nphys624
Zhang, W. H.; Huang, L. N.; Santschi, C.; Martin, O. J. F. Nano Lett. 2010, 10, 1006. doi: 10.1021/nl904168f
doi: 10.1021/nl904168f
Ghosh, S.; Ghosh, A. Nat. Commun. 2019, 10, 4191. doi: 10.1038/s41467-019-12217-2
doi: 10.1038/s41467-019-12217-2
Grigorenko, A. N.; Roberts, N. W.; Dickinson, M. R.; Zhang, Y. Nat. Photonics 2008, 2, 365. doi: 10.1038/nphoton.2008.78
doi: 10.1038/nphoton.2008.78
Samadi, M.; Vasini, S.; Darbari, S.; Khorshad, A. A.; Reihani, S. N. S.; Moravvej-Farshi, M. K. Opt. Express 2019, 27, 14754. doi: 10.1364/OE.27.014754
doi: 10.1364/OE.27.014754
Khosravi, M. A.; Aqhili, A.; Vasini, S.; Khosravi, M. H.; Darbari, S.; Hajizadeh, F. Sci. Rep. 2020, 10, 19356. doi: 10.1038/s41598-020-76409-3
doi: 10.1038/s41598-020-76409-3
Kotsifaki, D. G.; Truong, V. G.; Chormaic, S. N. Nano Lett. 2020, 20, 3388. doi: 10.1021/acs.nanolett.0c00300
doi: 10.1021/acs.nanolett.0c00300
Juan, M. L.; Gordon, R.; Pang, Y. J.; Eftekhari, F.; Quidant, R. Nat. Phys. 2009, 5, 915. doi: 10.1038/NPHYS1422
doi: 10.1038/NPHYS1422
Pang, Y. J.; Gordon, R. Nano Lett. 2011, 11, 3763. doi: 10.1021/nl201807z
doi: 10.1021/nl201807z
Pang, Y. J.; Gordon, R. Nano Lett. 2012, 12, 402. doi: 10.1021/nl203719v
doi: 10.1021/nl203719v
Yang, K.; Yao, X.; Liu, B. W.; Ren, B. Adv. Mater. 2021, 33, 2007988. doi: 10.1002/adma.202007988
doi: 10.1002/adma.202007988
Shen, Y.; Zhou, J. H.; Liu, T. R.; Tao, Y. T.; Jiang, R. B.; Liu, M. X.; Xiao, G. H.; Zhu, J. H.; Zhou, Z. K.; Wang, X. H.; et al. Nat. Commun. 2013, 4, 2381. doi: 10.1038/ncomms3381
doi: 10.1038/ncomms3381
Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nat. Rev. Mater. 2016, 1, 16021. doi: 10.1038/natrevmats.2016.21
doi: 10.1038/natrevmats.2016.21
Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Chem. Soc. Rev. 2017, 46, 4042. doi: 10.1039/c7cs00238f
doi: 10.1039/c7cs00238f
Asano, M.; Bechu, M.; Tame, M.; Kaya Özdemir, Ş.; Ikuta, R.; Güney, D. Ö.; Yamamoto, T.; Yang, L.; Wegener, M.; Imoto, N. Sci. Rep. 2015, 5, 18313. doi: 10.1038/srep18313
doi: 10.1038/srep18313
Yang, K.; Wang, J. Y.; Yao, X.; Lyu, D. Y.; Zhu, J. F.; Yang, Z. L.; Liu, B. W.; Ren, B. Adv. Opt. Mater. 2021, 9, 2001375. doi: 10.1002/adom.202001375
doi: 10.1002/adom.202001375
Ma, Y. J.; Zhi, L. J. Acta Phys. -Chim. Sin. 2022, 38, 2101004.
doi: 10.3866/PKU.WHXB202101004
Shang, N. Z.; Cheng, Y.; Ao, S.; Tuerdi, G.; Li, M. W.; Wang, X. Y.; Hong, H.; Li, Z. H.; Zhang, X. Y.; Fu, W. Y.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2108041.
doi: 10.3866/PKU.WHXB202108041
Zhou, L.; Li, Y. F.; Zhang, Y. K.; Qiu, L. W.; Xing, Y. Acta Phys. -Chim. Sin. 2022, 38, 2112027.
doi: 10.3866/PKU.WHXB202112027
Torimoto, T.; Yamaguchi, N.; Maeda, Y.; Akiyoshi, K.; Kameyama, T.; Nagai, T.; Shoji, T.; Yamane, H.; Ishihara, H.; Tsuboi, Y. NPG Asia Mater. 2022, 14, 64. doi: 10.1038/s41427-022-00414-3
doi: 10.1038/s41427-022-00414-3
Lin, J. L.; Zhang, Y. M.; Zhang, H. L. Acta Phys. -Chim. Sin. 2021, 37, 2005010.
doi: 10.3866/PKU.WHXB202005010
Sun, H. T.; Liao, J. H.; Hou, S. M. Acta Phys. -Chim. Sin. 2021, 37, 1906027.
doi: 10.3866/PKU.WHXB201906027
Zhan, C.; Wang, G.; Zhang, X. G.; Li, Z. H.; Wei, J. Y.; Si, Y.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Angew. Chem. Int. Ed. 2019, 58, 14534. doi: 10.1002/anie.201907966
doi: 10.1002/anie.201907966
Zeng, B. F.; Wang, G.; Qian, Q. Z.; Chen, Z. X.; Zhang, X. G.; Lu, Z. X.; Zhao, S. Q.; Feng, A. N.; Shi, J.; Yang, Y.; et al. Small 2020, 16, 2004720. doi: 10.1002/smll.202004720
doi: 10.1002/smll.202004720
Zheng, Y.; Duan, P.; Zhou, Y.; Li, C. A.; Zhou, D. H.; Wang, Y. P.; Chen, L. C. A.; Zhu, Z. Y.; Li, X. H.; Bai, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202210097. doi: 10.1002/anie.202210097
doi: 10.1002/anie.202210097
Bai, J.; Li, X. H.; Zhu, Z. Y.; Zheng, Y.; Hong, W. J. Adv. Mater. 2021, 33, 2005883. doi: 10.1002/adma.202005883
doi: 10.1002/adma.202005883
Zhuang, X. Y.; Zhang, A. H.; Qiu, S. Y.; Tang, C.; Zhao, S. Q.; Li, H. C.; Zhang, Y. H.; Wang, Y. L.; Wang, B. J.; Fang, B. S.; et al. iScience 2020, 23, 101001. doi: 10.1016/j.isci.2020.101001
doi: 10.1016/j.isci.2020.101001
Zhu, Z. Y.; Qu, H.; Chen, Y. R.; Zhang, C. Y.; Li, R. H.; Zhao, Y.; Zhou, Y.; Chen, Z. X.; Liu, J. Y.; Xiao, Z. Y.; et al. J. Mater. Chem. C 2021, 9, 16192. doi: 10.1039/d1tc03506a
doi: 10.1039/d1tc03506a
Li, J.; Hou, S. J.; Yao, Y. R.; Zhang, C. Y.; Wu, Q. Q.; Wang, H. C.; Zhang, H. W.; Liu, X. Y.; Tang, C.; Wei, M. X.; et al. Nat. Mater. 2022, 21, 917. doi: 10.1038/s41563-022-01309-y
doi: 10.1038/s41563-022-01309-y
Zeng, B. F.; Wei, J. Y.; Zhang, X. G.; Liang, Q. M.; Hu, S.; Wang, G.; Lei, Z. C.; Zhao, S. Q.; Zhang, H. W.; Shi, J.; et al. Chem. Sci. 2022, 13, 7765. doi: 10.1039/d2sc01868c
doi: 10.1039/d2sc01868c
Zou, Y. L.; Liang, Q. M.; Lu, T. G.; Li, Y. G.; Zhao, S. Q.; Gao, J.; Yang, Z. X.; Feng, A. N.; Shi, J.; Hong, W. J.; et al. Sci. Adv. 2023, 9, eadf0425. doi: 10.1126/sciadv.adf0425
doi: 10.1126/sciadv.adf0425
Zeng, B. F.; Zou, Y. L.; Wang, G.; Hong, W. J.; Tian, Z. Q.; Yang, Y. Nano Today 2022, 47, 101660. doi: 10.1016/j.nantod.2022.101660
doi: 10.1016/j.nantod.2022.101660
Wang, M.; Wang, T.; Ojambati, O. S.; Duffin, T. J.; Kang, K.; Lee, T.; Scheer, E.; Xiang, D.; Nijhuis, C. A. Nat. Rev. Chem. 2022, 6, 681. doi: 10.1038/s41570-022-00423-4
doi: 10.1038/s41570-022-00423-4
Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X.; et al. Nat. Commun. 2011, 2, 305. doi: 10.1038/ncomms1310
doi: 10.1038/ncomms1310
Sun, Y.; Zhang, C. J.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Nanoscale 2020, 12, 23789. doi: 10.1039/d0nr06997c
doi: 10.1039/d0nr06997c
Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57, 11257. doi: 10.1002/anie.201805464
doi: 10.1002/anie.201805464
Tian, J. H.; Liu, B.; Li, X. L.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N. J.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128, 14748. doi: 10.1021/ja0648615
doi: 10.1021/ja0648615
Zeng, B. -F.; Deng, R.; Zou, Y. -L.; Huo, C. -A.; Wang, J. -Y.; Yang, W. -M.; Liang, Q. -M.; Qiu, S. -J.; Feng, A.; Shi, J.; et al. CCS Chemistry 2022, 5, 830. doi: 10.31635/ccschem.022.202202318
doi: 10.31635/ccschem.022.202202318
Zhang, S. R.; Guo, C. Y.; Ni, L. F.; Hans, K. M.; Zhang, W. Q.; Peng, S. J.; Zhao, Z. K.; Guhr, D. C.; Qi, Z.; Liu, H. T.; et al. Nano Today 2021, 39, 101226. doi: 10.1016/j.nantod.2021.101226
doi: 10.1016/j.nantod.2021.101226
Zhao, Z.; Guo, C.; Ni, L.; Zhao, X.; Zhang, S.; Xiang, D. Nanoscale Horiz. 2021, 6, 386. doi: 10.1039/D1NH00031D
doi: 10.1039/D1NH00031D
Gao, R.; He, Y.; Zhang, D.; Sun, G.; He, J. -X.; Li, J. -F.; Li, M. -D.; Yang, Z. Nat. Commun. 2023, 14, 485. doi: 10.1038/s41467-023-36127-6
doi: 10.1038/s41467-023-36127-6
Zhan, C.; Liu, B. W.; Huang, Y. F.; Hu, S.; Ren, B.; Moskovits, M.; Tian, Z. Q. Nat. Commun. 2019, 10, 2671. doi: 10.1038/s41467-019-10771-3
doi: 10.1038/s41467-019-10771-3
Wu, Q.; Yin, L.; Yang, Q.; Yuan, Y. X.; Zhang, C. J.; Xu, M. M.; Yao, J. L. J. Colloid Interface Sci. 2023, 629, 864. doi: 10.1016/j.jcis.2022.08.161
doi: 10.1016/j.jcis.2022.08.161
Crocker, J. C.; Grier, D. G. Phys. Rev. Lett. 1996, 77, 1897. doi: 10.1103/PhysRevLett.77.1897
doi: 10.1103/PhysRevLett.77.1897
Crocker, J. C.; Grier, D. G. Phys. Rev. Lett. 1994, 73, 352. doi: 10.1103/PhysRevLett.73.352
doi: 10.1103/PhysRevLett.73.352
Wright, L. G.; Wu, F. O.; Christodoulides, D. N.; Wise, F. W. Nat. Phys. 2022, 18, 1018. doi: 10.1038/s41567-022-01691-z
doi: 10.1038/s41567-022-01691-z
Woerdemann, M.; Alpmann, C.; Esseling, M.; Denz, C. Laser Photon. Rev. 2013, 7, 839. doi: 10.1002/lpor.201200058
doi: 10.1002/lpor.201200058
Dang, Y.; Chen, P.; Zhong, H.; Wu, H.; Wang, W.; Jiang, C.; Gao, B. Opt. Lett. 2023, 48, 530. doi: 10.1364/OL.479190
doi: 10.1364/OL.479190
La Porta, A.; Wang, M. D. Phys. Rev. Lett. 2004, 92, 190801. doi: 10.1103/PhysRevLett.92.190801
doi: 10.1103/PhysRevLett.92.190801
Rodriguez-Otazo, M.; Augier-Calderin, A.; Galaup, J. -P.; Lamère, J. -F.; Fery-Forgues, S. Appl. Opt. 2009, 48, 2720. doi: 10.1364/AO.48.002720
doi: 10.1364/AO.48.002720
Bishop, A. I.; Nieminen, T. A.; Heckenberg, N. R.; Rubinsztein-Dunlop, H. Phys. Rev. Lett. 2004, 92, 198104. doi: 10.1103/PhysRevLett.92.198104
doi: 10.1103/PhysRevLett.92.198104
Friese, M. E. J.; Nieminen, T. A.; Heckenberg, N. R.; Rubinsztein-Dunlop, H. Nature 1998, 394, 348. doi: 10.1038/28566
doi: 10.1038/28566
Hong, C. C.; Yang, S.; Ndukaife, J. C. Nat. Nanotechnol. 2020, 15, 908. doi: 10.1038/s41565-020-0760-z
doi: 10.1038/s41565-020-0760-z
Zhang, Y. Q.; Min, C. J.; Dou, X. J.; Wang, X. Y.; Urbach, H. P.; Somekh, M. G.; Yuan, X. C. Light-Sci. Appl. 2021, 10, 59. doi: 10.1038/s41377-021-00474-0
doi: 10.1038/s41377-021-00474-0
Xu, L.; Rahmani, M.; Ma, Y. X.; Smirnova, D. A.; Kamali, K. Z.; Deng, F.; Chiang, Y. K.; Huang, L. J.; Zhang, H. Y.; Gould, S.; et al. Adv. Photonics 2020, 2, 026003. doi: 10.1117/1.AP.2.2.026003
doi: 10.1117/1.AP.2.2.026003
Spector, M.; Ang, A. S.; Minin, O. V.; Minin, I. V.; Karabchevsky, A. Nanoscale Adv. 2020, 2, 2595. doi: 10.1039/c9na00759h
doi: 10.1039/c9na00759h
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225