Citation: Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230302. doi: 10.3866/PKU.WHXB202303028 shu

RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production

  • Corresponding author: Hao Huang, huanghao881015@163.com Yu Chen, ndchenyu@gmail.com Shu-Ni Li, lishuni@snnu.edu.cn
  • Received Date: 13 March 2023
    Revised Date: 3 April 2023
    Accepted Date: 4 April 2023
    Available Online: 10 April 2023

    Fund Project: the National Natural Science Foundation of China 21972089the National Natural Science Foundation of China 22002083the Science and Technology Innovation Team of Shaanxi Province 2023-CX-TD-27the Fundamental Research Funds for the Central Universities GK202202001

  • 'Green hydrogen' is a promising clean energy carrier for use instead of traditional fuels. For obtaining 'green hydrogen', electrochemical water splitting has been receiving considerable attention due to its eco-friendly and low-cost properties. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) reduces the efficiency of hydrogen production. Accordingly, the hydrazine oxidation reaction (HzOR) with low theoretical potential (−0.33 V vs. RHE) has been proposed as a reasonable alternative for the OER. In this study, graphene aerogel (GA) was utilized as a conductive substrate with a 3D porous framework. Ru-polyethyleneimine (Ru-PEI) complexes were adsorbed on the GA surface. Phytic acid (PA) was further adsorbed to form Ru-PEI-GA-PA hybrids through the hydrogen bond interaction between PA and PEI, which can serve as a precursor to synthesize RuP nanoparticles anchored on N-doped GA (RuP/N-GA) through the phosphorization reaction. In the pyrolysis process, the ultra-small RuP was formed at the GA surface. Additionally, the decomposition of PEI and PA can introduce abundant N and P heteroatoms into the structure of GA. As a result, RuP/N-GA hybrids achieve efficient HzOR with a low working potential of −54 mV at 10 mA∙cm−2. Moreover, the novel RuP/N-GA hybrids with low Ru loading also exhibit a promising hydrogen evolution reaction (HER) activity with an overpotential of −19.6 mV at 10 mA∙cm−2. Among various RuP/N-GA hybrids, the Tafel plot of HER at RuP/N-GA-900 reveals the smallest value to be 37.03 mV∙dec−1, which affords the fastest HER kinetics. Meanwhile, the result suggests that the HER at RuP/N-GA-900 undergoes a Heyrovsky mechanism similar to that of Pt. The theoretical results revealed that the anchored structure and the presence of N heteroatoms can promote the HzOR on RuP nanoparticles. The free energy of hydrazine molecular adsorption on RuP/N-GA was −0.68 eV, indicating that N-doping in the RuP/N-GA structure can adjust the electronic structure of the Ru active site, which also contributes to the enhanced HzOR activity of the Ru site. Additionally, RuP/N-GA hybrids exhibited excellent cycling and long-term stability for both HER and HzOR, superior to those of commercial Pt/C. Based on the bifunctional activity of RuP/N-GA hybrids, the constructed two-electrode hydrazine split system exhibits an extremely low cell voltage of 41 mV at 10 mA∙cm−2 for the hydrogen production, which achieves the goal of energy-saved hydrogen production at low voltage. The excellent electrocatalytic activity of RuP/N-GA hybrids is attributed to the ultrasmall RuP nanoparticles for abundant Ru active sites. Meanwhile, the synergistic effect between N-doping in GA frameworks with RuP nanoparticles contributes to the activity enhancement of RuP/N-GA hybrids, in which the 3D porous N-GA with few-layer morphology accelerates the electron and mass transfer and the electron interaction between N-GA and RuP nanoparticles promotes the electrocatalytic activity of RuP nanoparticles for both HER and HzOR. This study extends the bifunctional electrocatalyst for the HER and HzOR to achieve energy-saved hydrogen production and sheds new light on the design and synthesis of advanced electrocatalysts via the adsorption-phosphatization method.
  • 加载中
    1. [1]

      Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Acta Phys. -Chim. Sin. 2021, 37, 2010025.  doi: 10.3866/PKU.WHXB202010025

    2. [2]

      Wang, T. J.; Jiang, Y. C.; He, J. W.; Li, F. M.; Ding, Y.; Chen, P.; Chen, Y. Carbon Energy 2022, 4, 283. doi: 10.1002/cey2.170  doi: 10.1002/cey2.170

    3. [3]

      Hong, Q. L.; Miao, B. Q.; Wang, T. J.; Li, F. M.; Chen, Y.; Energy Lab. 2023, 1, 220022. doi: 10.54227/elab.20220022  doi: 10.54227/elab.20220022

    4. [4]

      Qin, R.; Wang, P. Y.; Lin, C.; Cao, F.; Zhang, J. Y.; Chen, L.; Mu S. C. Acta Phys. -Chim. Sin. 2021, 37, 2009099.  doi: 10.3866/PKU.WHXB202009099

    5. [5]

      Lei, Z. N.; Ma, X. Y.; Hu, X. Y.; Fan, J.; Liu, E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049.  doi: 10.3866/PKU.WHXB202110049

    6. [6]

      Xue, Q.; Bai, X. Y.; Zhao, Y.; Li, Y. N.; Wang, T. J.; Li, Y. N.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B.; et al. J. Energy Chem. 2022, 65, 94. doi: 10.1016/j.jechem.2021.05.034  doi: 10.1016/j.jechem.2021.05.034

    7. [7]

      Song, W.; Li, M.; Wang, C.; Lu, X. Carbon Energy 2021, 3, 101. doi: 10.1002/cey2.85  doi: 10.1002/cey2.85

    8. [8]

      Zhao, T. W.; Wang, Y.; Karuturi, S.; Catchpole, K.; Zhang, Q.; Zhao, C. Carbon Energy 2020, 2, 582. doi: 10.1002/cey2.79  doi: 10.1002/cey2.79

    9. [9]

      Liu, Y.; Li, W. D.; Wu, H.; Lu, S. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009082.  doi: 10.3866/PKU.WHXB202009082

    10. [10]

      Hu, Q.; Gao, K.; Wang, X.; Zheng, H. J.; Cao, J. G.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Nat. Commun. 2022, 13, 3958. doi: 10.1038/s41467-022-31660-2  doi: 10.1038/s41467-022-31660-2

    11. [11]

      Li, C.; Jang, H.; Kim, M. G.; Hou, L.; Liu, X.; Cho, J. Appl. Catal. B 2022, 307, 121204. doi: 10.1016/j.apcatb.2022.121204  doi: 10.1016/j.apcatb.2022.121204

    12. [12]

      Ding, Y.; Cao, K. W.; He, J. W.; Li, F. M.; Huang, H.; Chen, P.; Chen, Y. Chin. J. Catal. 2022, 43, 1535. doi: 10.1016/S1872-2067(21)63977-3  doi: 10.1016/S1872-2067(21)63977-3

    13. [13]

      Zhang, F.; Zhu, Y. L.; Chen, Y.; Lu, Y.; Lin, Q.; Zhang L.; Tao, S. W.; Zhang, X. W.; Wang, H. T. J. Mater. Chem. A 2020, 8, 12810. doi: 10.1039/D0TA04491A  doi: 10.1039/D0TA04491A

    14. [14]

      Chang, Q. B.; Ma, J. W.; Zhu, Y. Z.; Li, Z.; Xu, D. Y.; Duan, X. Z.; Peng, W. C.; Li, Y.; Zhang, G.L.; Zhang, F. B. ACS Sustain. Chem. Eng. 2018, 6, 6388. doi: 10.1021/acssuschemeng.8b00187  doi: 10.1021/acssuschemeng.8b00187

    15. [15]

      Chi, J. Q.; Gao, W. K.; Lin, J. H.; Dong, B.; Yan, K. L.; Qin, J. F.; Liu, Bin.; Chai, Y. M.; Liu, C.G. ChemSusChem 2018, 11, 743. doi: 10.1002/cssc.201702010  doi: 10.1002/cssc.201702010

    16. [16]

      Guo, L.; Luo, F.; Guo, F.; Zhang, Q.; Qu, K.; Yang, Z. H.; Cai, W. W. Chem. Commun. 2019, 55, 7623. doi: 10.1039/C9CC03675J  doi: 10.1039/C9CC03675J

    17. [17]

      Li, Y.; Luo, Y.; Zhang, Z. Q.; Yu, Li, C. Zhang, Q.; Zheng, Z.; Liu, H. K.; Liu, B. L.; Dou, S. X. Carbon 2021, 183, 362. doi: 10.1016/j.carbon.2021.07.039  doi: 10.1016/j.carbon.2021.07.039

    18. [18]

      Chen, Y. J.; Li, J.; Wang, N.; Zhou, Y. N.; Zheng, J.; Chu, W. J. Energy Chem. 2022, 448, 137611. doi: 10.1016/j.cej.2022.137611  doi: 10.1016/j.cej.2022.137611

    19. [19]

      Zhu, Y.; Zhang, J.; Qian, Q.; Li, Y.; Li, Z.; Liu, Y.; Xiao, C.; Zhang, G. Q.; Xie Y. Angew. Chem. Int. Ed. 2022, 61, e202113082. doi: 10.1002/anie.202113082  doi: 10.1002/anie.202113082

    20. [20]

      Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C.; Zhang G. Q.; Xie, Y. Angew. Chem. Int. Ed. 2021, 60, 5984. doi: 10.1002/anie.202014362  doi: 10.1002/anie.202014362

    21. [21]

      Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. Adv. Energy Mater. 2019, 9, 1900390. doi: 10.1002/aenm.201900390  doi: 10.1002/aenm.201900390

    22. [22]

      Liu, Y.; Zhang, J.; Li, Y.; Qian, Li, Q. Z.; Zhu, Y.; Zhang G. Q. Nat. Commun. 2020, 11, 1853. doi: 10.1038/s41467-020-15563-8  doi: 10.1038/s41467-020-15563-8

    23. [23]

      Cui, S. F.; Wu, W.; Liu, C.; Wang, Y.; Chen, Q. M.; Liu, X. R. Nanoscale 2021, 13, 18247. doi: 10.1039/D1NR04075H  doi: 10.1039/D1NR04075H

    24. [24]

      Xue, Q.; Ding, Y.; Xue, Y. Y.; Li, F. M.; Chen, P.; Chen, Y. Carbon 2018, 139, 137. doi: 10.1016/j.Carbon.2018.06.052  doi: 10.1016/j.Carbon.2018.06.052

    25. [25]

      Wang, Y. H.; Li, R. Q.; Li, H. B.; Huang, H. L.; Guo, Z. J.; Chen, H. Y.; Zheng, Y.; Qu, K. G. Rare Metals 2021, 40, 1040. doi: 10.1007/s12598-020-01665-1  doi: 10.1007/s12598-020-01665-1

    26. [26]

      Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Nat. Commun. 2014, 5, 5291. doi: 10.1038/ncomms6291  doi: 10.1038/ncomms6291

    27. [27]

      Ge, R.; Wang, S.; Su, J.; Dong, Y.; Lin, Y.; Zhang, Q.; Chen, L. Nanoscale 2018, 10, 13930. doi: 10.1039/C8NR03554G  doi: 10.1039/C8NR03554G

    28. [28]

      Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M. H.; Yang, H.; Guo, S. Adv. Energy Mater. 2020, 10, 1903120. doi: 10.1002/aenm.201903120  doi: 10.1002/aenm.201903120

    29. [29]

      Li, Y.; Chu, F.; Liu, Y.; Kong, Y.; Tao, Y.; Li, Y.; Qin, Y. Chem. Commun. 2018, 54, 13076. doi: 10.1039/C8CC08276F  doi: 10.1039/C8CC08276F

    30. [30]

      Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Nat. Commun. 2020, 11, 1278. doi: 10.1038/s41467-020-15069-3  doi: 10.1038/s41467-020-15069-3

    31. [31]

      Sun, H. C.; Yang, J. M.; Li, J. G.; Li, Z. S.; Ao, X.; Liu, Y. Z.; Zhang, Y.; Li, Y.; Wang, C.; Tang, H. Appl. Catal. B 2020, 272, 118988. doi: 10.1016/j.apcatb.2020.118988  doi: 10.1016/j.apcatb.2020.118988

    32. [32]

      Zhao, Y. M.; Wang, X. W.; Cheng, G. Z.; Luo, W. ACS Catal. 2020, 10, 11751. doi: 10.1021/acscatal.0c03148  doi: 10.1021/acscatal.0c03148

    33. [33]

      Liu, X.; Liu, F.; Yu, J.; Xiong, G.; Zhao, L.; Sang, Y.; Zuo, S.; Zhang, J.; Liu, H.; Zhou, W. Adv. Sci. 2020, 7, 2001526. doi: 10.1002/advs.202001526  doi: 10.1002/advs.202001526

    34. [34]

      Guo, J. X.; Yan, D. Y.; Qiu, K. W.; Mu, C.; Jiao, D.; Wang, H.; Lin, T. J. Energy Chem. 2019, 37, 143. doi: 10.1016/j.jechem.2018.12.011  doi: 10.1016/j.jechem.2018.12.011

    35. [35]

      Xu, J.; Wang, S. I.; Yang, C. L.; Li, T. T.; Liu, Q. C.; Kong, X. Chem. Eng. J. 2021, 421, 129741. doi: 10.1016/j.cej.2021.129741  doi: 10.1016/j.cej.2021.129741

    36. [36]

      Muthurasu, A.; Chhetri, K.; Dahal, B.; Kim, H. Y. Nanoscale 2022, 14, 6557. doi: 10.1039/D2NR00060A  doi: 10.1039/D2NR00060A

    37. [37]

      Yang, Q.; Zhu, B.; Wang, F.; Zhang, C.; Cai, J. J. Nano Res. 2022, 15, 5134. doi: 10.1007/s12274-022-4148-2  doi: 10.1007/s12274-022-4148-2

    38. [38]

      Li, J.; Zhang, C.; Zhang, C.; Ma, H.; Yang, Y.; Guo, Z.; Wang, Y.; Ma, H. Chem. Eng. J. 2022, 430, 132953. doi: 10.1016/j.cej.2021.132953  doi: 10.1016/j.cej.2021.132953

    39. [39]

      Wang, J.; Guan, X.; Li, H.; Zeng, S.; Li, R.; Yao, Q.; Chen, H.; Zheng, Y.; Qu, K. Nano Energy, 2022, 100, 107467. doi: 10.1016/j.nanoen.2022.107467  doi: 10.1016/j.nanoen.2022.107467

    40. [40]

      Li, Y.; Zhang, J.; Liu, Y.; Qian, Q.; Li, Z.; Zhu, Y.; Zhang, G. Sci. Adv. 2020, 6, 131099. doi: 10.1126/sciadv.abb4197  doi: 10.1126/sciadv.abb4197

    41. [41]

      Yang, Q. F.; Cui, Y. C.; Li, Q. Y.; Cai, J. H.; Wang, D.; Feng L. Chem. Eng. 2020, 8, 12089. doi: 10.1021/acssuschemeng.0c03410  doi: 10.1021/acssuschemeng.0c03410

    42. [42]

      Li, Y.; Wang, W.; Cheng, M.; Qian, Q.; Zhu, Y.; Zhang, G. Catal. Sci. Technol. 2022, 12, 6258. doi: 10.1039/D2CY00055E  doi: 10.1039/D2CY00055E

    43. [43]

      Wang, H.; Tao, S. Nanoscale Adv. 2021, 3, 2280. doi: 10.1039/D1NA00043H  doi: 10.1039/D1NA00043H

    44. [44]

      Zhou, B.; Li, M. Y.; Li, Y. Y.; Liu, Y. B.; Lu, Y. X.; Li, W.; Wu, Y. J.; Huo, J.; Wang, Y. Y.; Tao, L.; Wang, S. Y. Chin. J. Catal. 2022, 43, 1131. doi: 10.1016/S1872-2067(21)63951-7  doi: 10.1016/S1872-2067(21)63951-7

    45. [45]

      Ao, Y.; Chen, S.; Wang, C.; Lu, X. J. Colloid Interface Sci. 2021, 601, 495. doi: 10.1016/j.jcis.2021.05.119  doi: 10.1016/j.jcis.2021.05.119

    46. [46]

      Chen, S.; Wang, C.; Liu, S.; Huang, M.; Lu, J. J. Phys. Chem. Lett. 2021, 12, 4849. doi: 10.1021/acs.jpclett.1c00963  doi: 10.1021/acs.jpclett.1c00963

    47. [47]

      Zhang, J.; Liu, Y.; Li, J.; Jin, X.; Li, Y.; Qian, Q.; Wang, Y.; El-Harairy, A.; Li, Z.; Zhu, Y. et al. ACS Appl. Mater. Interfaces 2021, 13, 3881. doi: 10.1021/acsami.0c18684  doi: 10.1021/acsami.0c18684

    48. [48]

      Deng, K.; Mao, Q.; Wang, W.; Wang, P.; Wang, Z.; Xu, Y.; Li, X.; Wang, H. J.; Wang, L. Appl. Catal. B 2022, 310, 121338. doi: 10.1016/j.apcatb.2022  doi: 10.1016/j.apcatb.2022

    49. [49]

      Zhang, M.; Wang, Z.; Duan, Z.; Wang, S.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. J. Mater. Chem. A 2021, 9, 18323. doi: 10.1039/D1TA05564J  doi: 10.1039/D1TA05564J

    50. [50]

      Song, Q.; Li, J.; Wang, S.; Liu, J.; Liu, X.; Pang, L. Y.; Li, H.; Liu, H. Small 2019, 15, e1903395. doi: 10.1002/smll.201903395  doi: 10.1002/smll.201903395

    51. [51]

      Zhou, L.; Shao, M.; Zhang, C.; Zhao, J.; He, S.; Rao, D.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2017, 29, 1604080. doi: 10.1002/adma.201604080  doi: 10.1002/adma.201604080

  • 加载中
    1. [1]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    2. [2]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    3. [3]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    4. [4]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    5. [5]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    6. [6]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    7. [7]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    8. [8]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    9. [9]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    10. [10]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    11. [11]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    12. [12]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    13. [13]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    16. [16]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    17. [17]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    18. [18]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    19. [19]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(9)
  • Abstract views(1133)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return