RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production
- Corresponding author: Hao Huang, huanghao881015@163.com Yu Chen, ndchenyu@gmail.com Shu-Ni Li, lishuni@snnu.edu.cn
Citation: Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230302. doi: 10.3866/PKU.WHXB202303028
Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Acta Phys. -Chim. Sin. 2021, 37, 2010025.
doi: 10.3866/PKU.WHXB202010025
Wang, T. J.; Jiang, Y. C.; He, J. W.; Li, F. M.; Ding, Y.; Chen, P.; Chen, Y. Carbon Energy 2022, 4, 283. doi: 10.1002/cey2.170
doi: 10.1002/cey2.170
Hong, Q. L.; Miao, B. Q.; Wang, T. J.; Li, F. M.; Chen, Y.; Energy Lab. 2023, 1, 220022. doi: 10.54227/elab.20220022
doi: 10.54227/elab.20220022
Qin, R.; Wang, P. Y.; Lin, C.; Cao, F.; Zhang, J. Y.; Chen, L.; Mu S. C. Acta Phys. -Chim. Sin. 2021, 37, 2009099.
doi: 10.3866/PKU.WHXB202009099
Lei, Z. N.; Ma, X. Y.; Hu, X. Y.; Fan, J.; Liu, E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049.
doi: 10.3866/PKU.WHXB202110049
Xue, Q.; Bai, X. Y.; Zhao, Y.; Li, Y. N.; Wang, T. J.; Li, Y. N.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B.; et al. J. Energy Chem. 2022, 65, 94. doi: 10.1016/j.jechem.2021.05.034
doi: 10.1016/j.jechem.2021.05.034
Song, W.; Li, M.; Wang, C.; Lu, X. Carbon Energy 2021, 3, 101. doi: 10.1002/cey2.85
doi: 10.1002/cey2.85
Zhao, T. W.; Wang, Y.; Karuturi, S.; Catchpole, K.; Zhang, Q.; Zhao, C. Carbon Energy 2020, 2, 582. doi: 10.1002/cey2.79
doi: 10.1002/cey2.79
Liu, Y.; Li, W. D.; Wu, H.; Lu, S. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009082.
doi: 10.3866/PKU.WHXB202009082
Hu, Q.; Gao, K.; Wang, X.; Zheng, H. J.; Cao, J. G.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Nat. Commun. 2022, 13, 3958. doi: 10.1038/s41467-022-31660-2
doi: 10.1038/s41467-022-31660-2
Li, C.; Jang, H.; Kim, M. G.; Hou, L.; Liu, X.; Cho, J. Appl. Catal. B 2022, 307, 121204. doi: 10.1016/j.apcatb.2022.121204
doi: 10.1016/j.apcatb.2022.121204
Ding, Y.; Cao, K. W.; He, J. W.; Li, F. M.; Huang, H.; Chen, P.; Chen, Y. Chin. J. Catal. 2022, 43, 1535. doi: 10.1016/S1872-2067(21)63977-3
doi: 10.1016/S1872-2067(21)63977-3
Zhang, F.; Zhu, Y. L.; Chen, Y.; Lu, Y.; Lin, Q.; Zhang L.; Tao, S. W.; Zhang, X. W.; Wang, H. T. J. Mater. Chem. A 2020, 8, 12810. doi: 10.1039/D0TA04491A
doi: 10.1039/D0TA04491A
Chang, Q. B.; Ma, J. W.; Zhu, Y. Z.; Li, Z.; Xu, D. Y.; Duan, X. Z.; Peng, W. C.; Li, Y.; Zhang, G.L.; Zhang, F. B. ACS Sustain. Chem. Eng. 2018, 6, 6388. doi: 10.1021/acssuschemeng.8b00187
doi: 10.1021/acssuschemeng.8b00187
Chi, J. Q.; Gao, W. K.; Lin, J. H.; Dong, B.; Yan, K. L.; Qin, J. F.; Liu, Bin.; Chai, Y. M.; Liu, C.G. ChemSusChem 2018, 11, 743. doi: 10.1002/cssc.201702010
doi: 10.1002/cssc.201702010
Guo, L.; Luo, F.; Guo, F.; Zhang, Q.; Qu, K.; Yang, Z. H.; Cai, W. W. Chem. Commun. 2019, 55, 7623. doi: 10.1039/C9CC03675J
doi: 10.1039/C9CC03675J
Li, Y.; Luo, Y.; Zhang, Z. Q.; Yu, Li, C. Zhang, Q.; Zheng, Z.; Liu, H. K.; Liu, B. L.; Dou, S. X. Carbon 2021, 183, 362. doi: 10.1016/j.carbon.2021.07.039
doi: 10.1016/j.carbon.2021.07.039
Chen, Y. J.; Li, J.; Wang, N.; Zhou, Y. N.; Zheng, J.; Chu, W. J. Energy Chem. 2022, 448, 137611. doi: 10.1016/j.cej.2022.137611
doi: 10.1016/j.cej.2022.137611
Zhu, Y.; Zhang, J.; Qian, Q.; Li, Y.; Li, Z.; Liu, Y.; Xiao, C.; Zhang, G. Q.; Xie Y. Angew. Chem. Int. Ed. 2022, 61, e202113082. doi: 10.1002/anie.202113082
doi: 10.1002/anie.202113082
Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C.; Zhang G. Q.; Xie, Y. Angew. Chem. Int. Ed. 2021, 60, 5984. doi: 10.1002/anie.202014362
doi: 10.1002/anie.202014362
Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. Adv. Energy Mater. 2019, 9, 1900390. doi: 10.1002/aenm.201900390
doi: 10.1002/aenm.201900390
Liu, Y.; Zhang, J.; Li, Y.; Qian, Li, Q. Z.; Zhu, Y.; Zhang G. Q. Nat. Commun. 2020, 11, 1853. doi: 10.1038/s41467-020-15563-8
doi: 10.1038/s41467-020-15563-8
Cui, S. F.; Wu, W.; Liu, C.; Wang, Y.; Chen, Q. M.; Liu, X. R. Nanoscale 2021, 13, 18247. doi: 10.1039/D1NR04075H
doi: 10.1039/D1NR04075H
Xue, Q.; Ding, Y.; Xue, Y. Y.; Li, F. M.; Chen, P.; Chen, Y. Carbon 2018, 139, 137. doi: 10.1016/j.Carbon.2018.06.052
doi: 10.1016/j.Carbon.2018.06.052
Wang, Y. H.; Li, R. Q.; Li, H. B.; Huang, H. L.; Guo, Z. J.; Chen, H. Y.; Zheng, Y.; Qu, K. G. Rare Metals 2021, 40, 1040. doi: 10.1007/s12598-020-01665-1
doi: 10.1007/s12598-020-01665-1
Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Nat. Commun. 2014, 5, 5291. doi: 10.1038/ncomms6291
doi: 10.1038/ncomms6291
Ge, R.; Wang, S.; Su, J.; Dong, Y.; Lin, Y.; Zhang, Q.; Chen, L. Nanoscale 2018, 10, 13930. doi: 10.1039/C8NR03554G
doi: 10.1039/C8NR03554G
Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M. H.; Yang, H.; Guo, S. Adv. Energy Mater. 2020, 10, 1903120. doi: 10.1002/aenm.201903120
doi: 10.1002/aenm.201903120
Li, Y.; Chu, F.; Liu, Y.; Kong, Y.; Tao, Y.; Li, Y.; Qin, Y. Chem. Commun. 2018, 54, 13076. doi: 10.1039/C8CC08276F
doi: 10.1039/C8CC08276F
Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Nat. Commun. 2020, 11, 1278. doi: 10.1038/s41467-020-15069-3
doi: 10.1038/s41467-020-15069-3
Sun, H. C.; Yang, J. M.; Li, J. G.; Li, Z. S.; Ao, X.; Liu, Y. Z.; Zhang, Y.; Li, Y.; Wang, C.; Tang, H. Appl. Catal. B 2020, 272, 118988. doi: 10.1016/j.apcatb.2020.118988
doi: 10.1016/j.apcatb.2020.118988
Zhao, Y. M.; Wang, X. W.; Cheng, G. Z.; Luo, W. ACS Catal. 2020, 10, 11751. doi: 10.1021/acscatal.0c03148
doi: 10.1021/acscatal.0c03148
Liu, X.; Liu, F.; Yu, J.; Xiong, G.; Zhao, L.; Sang, Y.; Zuo, S.; Zhang, J.; Liu, H.; Zhou, W. Adv. Sci. 2020, 7, 2001526. doi: 10.1002/advs.202001526
doi: 10.1002/advs.202001526
Guo, J. X.; Yan, D. Y.; Qiu, K. W.; Mu, C.; Jiao, D.; Wang, H.; Lin, T. J. Energy Chem. 2019, 37, 143. doi: 10.1016/j.jechem.2018.12.011
doi: 10.1016/j.jechem.2018.12.011
Xu, J.; Wang, S. I.; Yang, C. L.; Li, T. T.; Liu, Q. C.; Kong, X. Chem. Eng. J. 2021, 421, 129741. doi: 10.1016/j.cej.2021.129741
doi: 10.1016/j.cej.2021.129741
Muthurasu, A.; Chhetri, K.; Dahal, B.; Kim, H. Y. Nanoscale 2022, 14, 6557. doi: 10.1039/D2NR00060A
doi: 10.1039/D2NR00060A
Yang, Q.; Zhu, B.; Wang, F.; Zhang, C.; Cai, J. J. Nano Res. 2022, 15, 5134. doi: 10.1007/s12274-022-4148-2
doi: 10.1007/s12274-022-4148-2
Li, J.; Zhang, C.; Zhang, C.; Ma, H.; Yang, Y.; Guo, Z.; Wang, Y.; Ma, H. Chem. Eng. J. 2022, 430, 132953. doi: 10.1016/j.cej.2021.132953
doi: 10.1016/j.cej.2021.132953
Wang, J.; Guan, X.; Li, H.; Zeng, S.; Li, R.; Yao, Q.; Chen, H.; Zheng, Y.; Qu, K. Nano Energy, 2022, 100, 107467. doi: 10.1016/j.nanoen.2022.107467
doi: 10.1016/j.nanoen.2022.107467
Li, Y.; Zhang, J.; Liu, Y.; Qian, Q.; Li, Z.; Zhu, Y.; Zhang, G. Sci. Adv. 2020, 6, 131099. doi: 10.1126/sciadv.abb4197
doi: 10.1126/sciadv.abb4197
Yang, Q. F.; Cui, Y. C.; Li, Q. Y.; Cai, J. H.; Wang, D.; Feng L. Chem. Eng. 2020, 8, 12089. doi: 10.1021/acssuschemeng.0c03410
doi: 10.1021/acssuschemeng.0c03410
Li, Y.; Wang, W.; Cheng, M.; Qian, Q.; Zhu, Y.; Zhang, G. Catal. Sci. Technol. 2022, 12, 6258. doi: 10.1039/D2CY00055E
doi: 10.1039/D2CY00055E
Wang, H.; Tao, S. Nanoscale Adv. 2021, 3, 2280. doi: 10.1039/D1NA00043H
doi: 10.1039/D1NA00043H
Zhou, B.; Li, M. Y.; Li, Y. Y.; Liu, Y. B.; Lu, Y. X.; Li, W.; Wu, Y. J.; Huo, J.; Wang, Y. Y.; Tao, L.; Wang, S. Y. Chin. J. Catal. 2022, 43, 1131. doi: 10.1016/S1872-2067(21)63951-7
doi: 10.1016/S1872-2067(21)63951-7
Ao, Y.; Chen, S.; Wang, C.; Lu, X. J. Colloid Interface Sci. 2021, 601, 495. doi: 10.1016/j.jcis.2021.05.119
doi: 10.1016/j.jcis.2021.05.119
Chen, S.; Wang, C.; Liu, S.; Huang, M.; Lu, J. J. Phys. Chem. Lett. 2021, 12, 4849. doi: 10.1021/acs.jpclett.1c00963
doi: 10.1021/acs.jpclett.1c00963
Zhang, J.; Liu, Y.; Li, J.; Jin, X.; Li, Y.; Qian, Q.; Wang, Y.; El-Harairy, A.; Li, Z.; Zhu, Y. et al. ACS Appl. Mater. Interfaces 2021, 13, 3881. doi: 10.1021/acsami.0c18684
doi: 10.1021/acsami.0c18684
Deng, K.; Mao, Q.; Wang, W.; Wang, P.; Wang, Z.; Xu, Y.; Li, X.; Wang, H. J.; Wang, L. Appl. Catal. B 2022, 310, 121338. doi: 10.1016/j.apcatb.2022
doi: 10.1016/j.apcatb.2022
Zhang, M.; Wang, Z.; Duan, Z.; Wang, S.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. J. Mater. Chem. A 2021, 9, 18323. doi: 10.1039/D1TA05564J
doi: 10.1039/D1TA05564J
Song, Q.; Li, J.; Wang, S.; Liu, J.; Liu, X.; Pang, L. Y.; Li, H.; Liu, H. Small 2019, 15, e1903395. doi: 10.1002/smll.201903395
doi: 10.1002/smll.201903395
Zhou, L.; Shao, M.; Zhang, C.; Zhao, J.; He, S.; Rao, D.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2017, 29, 1604080. doi: 10.1002/adma.201604080
doi: 10.1002/adma.201604080
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010