Citation:
Tao Xu, Wei Sun, Tianci Kong, Jie Zhou, Yitai Qian. Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance[J]. Acta Physico-Chimica Sinica,
;2024, 40(2): 230302.
doi:
10.3866/PKU.WHXB202303021
-
Graphite has been extensively employed as commercial anode material in Li-ion batteries due to its high abundance, low cost, and negative electrode potential. Furthermore, it has demonstrated significant potential for use in K-ion batteries. However, distinct structural damage caused by the larger radius of K-ion (0.138 nm) compared to that of Li-ion (0.076 nm) leads to obvious capacity decay and unstable cycle life. It is crucial to improve the cycling stability of graphite in potassium ion batteries (PIBs). Herein, we design a stable interface of graphite anode by graphene coating with a simple and efficient microwave method. According to X-ray photoelectron spectroscopy (XPS), microwave reduction can effectively remove the oxygen group of graphene oxide (GO) within 10 s. The graphene coating can buffer the volume expansion of the graphite to suppress structural collapse; it can also accelerate electronic transmission to improve rate performance. As a result, the graphene-coating graphite anode, named GCG, exhibits super cycling stability with a capacity of 262 mAh∙g-1after 3000 cycles at a current density of 0.2 A∙g-1, which means it can operate smoothly for one year. In contrast, at the same current density, graphite exhibits capacity fading to less than 150 mAh∙g-1 after 150 cycles. Moreover, compared to graphite, GCG demonstrates better rate performance achieving a capacity of 161.2 mAh∙g-1 at 500 mA∙g-1. Further electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) tests show that GCG exhibits faster electrical conductivity and ion diffusion compared to graphite. Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) images after cycling verify that the graphene buffer interface benefits the integrity of the electrode structure and improves the stability of the solid electrolyte interphase (SEI). Compared to graphite, the GCG anode exhibits better performance, as follows: 1) The graphene coating inhibits exfoliation of graphite during cycling, solving the problem of graphite anode’ short cycling life, and 2) the graphene protective layer improves the ion diffusion rate, resulting in better rate performance of the GCG. In addition, this approach offers the advantages of simple operation and low cost, hopefully enabling large-scale applications of potassium-ion batteries.
-
Keywords:
- Potassium ion battery,
- Anode,
- Graphene,
- Microwave reduction,
- Interface
-
-
-
[1]
(1) Goodenough, J. B. Nat. Electron. 2018, 1 (3), 204. doi: 10.1038/s41928-018-0048-6
-
[2]
(2) Tarascon, J.-M. Nat. Chem. 2010, 2 (6), 510. doi: 10.1038/nchem.680
-
[3]
(3) Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7 (1), 19. doi: 10.1038/nchem.2085
-
[4]
(4) Eftekhari, A.; Jian, Z.; Ji, X. ACS Appl. Mater. Interfaces 2017, 9 (5), 4404. doi: 10.1021/acsami.6b07989
-
[5]
(5) Wu, X.; Leonard, D. P.; Ji, X. Chem. Mater. 2017, 29 (12), 5031. doi: 10.1021/acs.chemmater.7b01764
-
[6]
(6) Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. Adv. Energy Mater. 2017, 7 (24), 1602911. doi: 10.1002/aenm.201602911
-
[7]
(7) Zhao, J.; Zou, X.; Zhu, Y.; Xu, Y.; Wang, C. Adv. Funct. Mater. 2016, 26 (44), 8103. doi: 10.1002/adfm.201602248
-
[8]
(8) Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Electrochem. Commun. 2015, 60, 172. doi: 10.1016/j.elecom.2015.09.002
-
[9]
(9) Kim, H.; Hyun, J. C.; Jung, J. I.; Lee, J. B.; Choi, J.; Cho, S. Y.; Jin, H.-J.; Yun, Y. S. J. Mater. Chem. A 2022, 10 (4), 2055. doi: 10.1039/d1ta08981a
-
[10]
(10) Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Adv. Energy Mater. 2016, 6 (3), 1501874. doi: 10.1002/aenm.201501874
-
[11]
(11) Jian, Z.; Luo, W.; Ji, X. J. Am. Chem. Soc. 2015, 137 (36), 11566. doi: 10.1021/jacs.5b06809
-
[12]
(12) Zhang, R.; Huang, J.; Deng, W.; Bao, J.; Pan, Y.; Huang, S.; Sun, C.-F. Angew. Chem. Int. Ed. 2019, 58 (46), 16474. doi: 10.1002/anie.201909202
-
[13]
(13) Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-S.; Kudo, T.; Honma, I. Nano Lett. 2008, 8 (8), 2277. doi: 10.1021/nl800957b
-
[14]
(14) Liang, K.; Li, M.; Hao, Y.; Yan, W.; Cao, M.; Fan, S.; Han, W.; Su, J. Chem. Eng. J. 2020, 394, 124956. doi: 10.1016/j.cej.2020.124956
-
[15]
(15) Liu, C.; Fang, Z.; Li, X.; Zhou, J.; Yang, G.; Peng, L.; Guo, X.; Ding, W.; Hou, W. Nano Res. 2022, 16 (2), 2463. doi: 10.1007/s12274-022-4994-y
-
[16]
-
[17]
(17) Liu, W.; Li, H.; Jin, J.; Wang, Y.; Zhang, Z.; Chen, Z.; Wang, Q.; Chen, Y.; Paek, E.; Mitlin, D. Angew. Chem. Int. Ed. 2019, 58 (46), 16590. doi: 10.1002/anie.201906612
-
[18]
(18) Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. Science 2016, 353 (6306), 1413. doi: 10.1126/science.aah3398
-
[19]
(19) Zhang, Y.; Chen, X.; Cen, W.; Ren, W.; Guo, H.; Vvu, S.; Xiao, Y.; Chen, S.; Guo, Y.; Xiao, D.; et al. Nano Res. 2022, 15 (5), 4083. doi: 10.1007/s12274-021-4023-6
-
[20]
(20) Baddour-Hadjean, R.; Pereira-Ramos, J.-P. Chem. Rev. 2010, 110 (3), 1278. doi: 10.1021/cr800344k
-
[21]
(21) Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012. doi: 10.1038/nenergy.2017.12
-
[22]
(22) Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy. 2018, 3 (9), 739. doi: 10.1038/s41560-018-0199-8
-
[23]
(23) Lou, S.; Cheng, X.; Wang, L.; Gao, J.; Li, Q.; Ma, Y.; Gao, Y.; Zuo, P.; Du, C.; Yin, G. J. Power Sources 2017, 361, 80. doi: 10.1016/j.jpowsour.2017.06.023
-
[24]
(24) Kim, H.; Hong, J.; Park, Y.-U.; Kim, J.; Hwang, I.; Kang, K. Adv. Funct. Mater. 2015, 25 (4), 534. doi: 10.1002/adfm.201402984
-
[25]
(25) Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7 (5), 1597. doi: 10.1039/c3ee44164d
-
[26]
(26) Qin, L.; Xiao, N.; Zheng, J.; Lei, Y.; Zhai, D.; Wu, Y. Adv. Energy Mater. 2019, 9 (44), 1902618. doi: 10.1002/aenm.201902618
-
[27]
(27) Lin, X.; Dong, Y.; Chen, X.; Liu, H.; Liu, Z.; Xing, T.; Li, A.; Song, H. J. Mater. Chem. A 2021, 9 (10), 6423. doi: 10.1039/d1ta00178g
-
[28]
(28) Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. J. Electrochem Soc. 2004, 151 (9), A1324. doi: 10.1149/1.1775218
-
[29]
(29) Funabiki, A.; Inaba, M.; Ogumi, Z.; Yuasa, S.; Otsuji, J.; Tasaka, A. J. Electrochem. Soc. 1998, 145 (1), 172. doi: 10.1149/1.1838231
-
[30]
(30) Meng, C.; Yuan, M.; Cao, B.; Lin, X.; Zhang, J.; Li, A.; Chen, X.; Jia, M.; Song, H. Carbon 2022, 192, 347. doi: 10.1016/j.carbon.2022.02.039
-
[31]
(31) Li, Q.; Zhang, Y.; Chen, Z.; Zhang, J.; Tao, Y.; Yang, Q.-H. Adv. Energy Mater. 2022, 12 (35), 2201574. doi: 10.1002/aenm.202201574
-
[32]
(32) Fan, L.; Ma, R.; Zhang, Q.; Jia, X.; Lu, B. Angew. Chem. Int. Ed. 2019, 58 (31), 10500. doi: 10.1002/anie.201904258
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[3]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[6]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[7]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[8]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[9]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[10]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[11]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[12]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[13]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[14]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[15]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[16]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[17]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[18]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[19]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[20]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(187)
- HTML views(18)