Citation: Qian Wu, Qingping Gao, Bin Shan, Wenzheng Wang, Yuping Qi, Xishi Tai, Xia Wang, Dongdong Zheng, Hong Yan, Binwu Ying, Yongsong Luo, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun. Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230301. doi: 10.3866/PKU.WHXB202303012 shu

Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation

  • Corresponding author: Qian Wu, qianwu@wfu.edu.cn Xia Wang, xiawangwfu@163.com Xuping Sun, xpsun@uestc.edu.cn; xpsun@sdnu.edu.cn
  • #These authors contributed equally to this work.
  • Received Date: 6 March 2023
    Revised Date: 5 April 2023
    Accepted Date: 5 April 2023
    Available Online: 12 April 2023

    Fund Project: the Deanship of Scientific Research at King Khalid University for funding support through Large Group Research Project RGP2/199/44

  • Seawater electrolysis is a promising and sustainable technology for green hydrogen production. However, some disadvantages include sluggish kinetics, competitive chlorine evolution reaction at the anode, chloride ion corrosion, and surface poisoning, which has led to a decline in activity and durability and low oxygen evolution reaction (OER) selectivity of the anodic electrodes. Benefiting from the lower interface resistance, larger active surface, and superior stability, the self-supported nanoarrays have emerged as advanced catalysts compared to conventional powder catalysts. Self-supported catalysts have more advantages than powder catalysts, particularly in practical large-scale hydrogen production applications requiring high current density. During electrolysis, due to the influx of bubbles generated on the electrode surface, the powdered nanomaterial is peeled off easily, resulting in reduced catalytic activity and even frequent replacement of the catalyst. In contrast, self-supported nanoarray possessing strong adhesion between the active species and the substrates ensures good electronic conductivity and high mechanical stability, which is conducive to long-term use and recycling. This minireview summarizes the recent progress of self-supported transition-metal-based catalysts for seawater oxidation, including (oxy)hydroxides, nitrides, phosphides, and chalcogenides, emphasizing the strategies in response to the corrosion and competitive reactions to ensure high activity and selectivity in OER processes. In general, constructing three-dimensional porous nanostructures with high porosity and roughness can enlarge the surface areas to expose more active sites for oxygen evolution, which is an efficient strategy for improving mass transfer and catalytic efficiency. Furthermore, the Cl barrier layer on the surface of catalyst, particularly that with both catalytic activity and protection, can effectively inhibit the competitive oxidation and corrosion of Cl, thereby delivering enhanced catalytic activity, selectivity, and stability of the catalysts. Moreover, developing super hydrophilic and hydrophobic surfaces is a promising strategy to increase the permeability of electrolytes and avoid the accumulation of large amounts of bubbles on the surface of the self-supported electrodes, thus promoting the effective utilization of active sites. Finally, perspectives and suggestions for future research in OER catalysts for seawater electrolysis are provided. In particular, the medium for seawater electrolysis should be transferred from simulated saline water to natural seawater. Considering the challenges faced in natural seawater splitting, in addition to designing and synthesizing self-supported catalysts with high activities, selectivity, and stability, developing simple and low-cost natural seawater pretreatment technologies to minimize corrosion and poisoning issues is also an important topic for the future development of seawater electrolysis. More importantly, a standardized, feasible evaluation system for self-supported electrocatalysts should be established. In addition, factors such as the intrinsic activity, density of accessible active sites, size, mass loading, substrate effects, and test conditions of the catalyst should be fully considered.
  • 加载中
    1. [1]

      Ren, J. T.; Wang, Y. S.; Chen, L.; Gao, L. J.; Tian, W. W.; Yuan, Z. Y. Chem. Eng. J. 2020, 389, 124408. doi: 10.1016/j.cej.2020.124408  doi: 10.1016/j.cej.2020.124408

    2. [2]

      Wang, H. Y.; Weng, C. C.; Ren, J. T.; Yuan, Z. Y. Front. Chem. Sci. Eng. 2021, 15, 1408. doi: 10.1007/s11705-021-2102-6  doi: 10.1007/s11705-021-2102-6

    3. [3]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    4. [4]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    5. [5]

      Davis, S. J.; Lewis, N. S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I. L.; Benson, S. M.; Bradley, T.; Brouwer, J.; Chiang, Y. M.; et al. Science 2018, 360, eaas9793. doi: 10.1126/science.aas9793  doi: 10.1126/science.aas9793

    6. [6]

      Gao, F. Y.; Yu, P. C.; Gao, M. R. Curr. Opin. Chem. Eng. 2022, 36, 100827. doi: 10.1016/j.coche.2022.100827  doi: 10.1016/j.coche.2022.100827

    7. [7]

      Lagadec, M. F.; Grimaud, A. Nat. Mater. 2020, 19, 1140. doi: 10.1038/s41563-020-0788-3  doi: 10.1038/s41563-020-0788-3

    8. [8]

      Elimelech, M.; William, A. P. Science 2011, 333, 712. doi: 10.1126/science.1200488  doi: 10.1126/science.1200488

    9. [9]

      Zhang, B.; Zhang, C.; Yuan, W.; Yang, O.; Liu, Y.; He, L.; Hu, Y.; Zhou, L.; Wang, J.; Wang, Z. L. ACS Appl. Mater. Interfaces 2022, 14, 9046. doi: 10.1021/acsami.1c22129  doi: 10.1021/acsami.1c22129

    10. [10]

      Liu, J.; Duan, S.; Shi, H.; Wang, T.; Yang, X.; Huang, Y.; Wu, G.; Li, Q. Angew. Chem. Int. Ed. 2022, 61, e202210753. doi: 10.1002/anie.202210753  doi: 10.1002/anie.202210753

    11. [11]

      Zeng, K.; Zhang, D. Prog. Energy Combust. Sci. 2010, 36, 307. doi: 10.1016/j.pecs.2009.11.002  doi: 10.1016/j.pecs.2009.11.002

    12. [12]

      Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X. Adv. Mater. 2016, 28, 215. doi: 10.1002/adma.201502696  doi: 10.1002/adma.201502696

    13. [13]

      Karlsson, R. K. B.; Cornell, A. Chem. Rev. 2016, 116, 2982. doi: 10.1021/acs.chemrev.5b00389  doi: 10.1021/acs.chemrev.5b00389

    14. [14]

      Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. ChemSusChem 2016, 9, 962. doi: 10.1002/cssc.201501581  doi: 10.1002/cssc.201501581

    15. [15]

      Song, Y.; Jiang, G.; Chen, Y.; Zhao, P.; Tian, Y. Sci. Rep. 2017, 7, 6865. doi: 10.1038/s41598-017-07245-1  doi: 10.1038/s41598-017-07245-1

    16. [16]

      Baniasadi, E.; Dincer, I.; Naterer, G. Int. J. Hydrog. Energy 2013, 38, 2589. doi: 10.1016/j.ijhydene.2012.11.106  doi: 10.1016/j.ijhydene.2012.11.106

    17. [17]

      Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Adv. Mater. 2016, 28, 77. doi: 10.1002/adma.201503906  doi: 10.1002/adma.201503906

    18. [18]

      Rahim, S.; Naveed, A.; Amir, A. R.; Yang, C.; Chen, Y.; Hu, J.; Zhao, X.; Peng, Y.; Deng, Z. Acta Phys. -Chim. Sin. 2019, 35 (12), 1382.  doi: 10.3866/PKU.WHXB201903060

    19. [19]

      Luo, F.; Liao, S.; Dang, D.; Zheng, Y.; Xu, D.; Nan, H.; Shu, T.; Fu, Z. ACS Catal. 2015, 5, 2242. doi: 10.1021/cs501429g  doi: 10.1021/cs501429g

    20. [20]

      Chen, Y.; Yu, G.; Chen, W.; Liu, Y.; Li, G. D.; Zhu, P.; Tao, Q.; Li, Q.; Liu, J.; Shen, X.; et al. J. Am. Chem. Soc. 2017, 139, 12370. doi: 10.1021/jacs.7b06337  doi: 10.1021/jacs.7b06337

    21. [21]

      Jiang, Y.; Zhang, X.; Ge, Q. Q.; Yu, B. B.; Zou, Y. G.; Jiang, W. J.; Song, W. G.; Wan, L. J.; Hu, J. S. Nano Lett. 2014, 14, 365. doi: 10.1021/nl404251p  doi: 10.1021/nl404251p

    22. [22]

      Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136, 7587. doi: 10.1021/ja503372r  doi: 10.1021/ja503372r

    23. [23]

      Ma, T. Y.; Dai, S.; Qiao, S. Z. Mater. Today 2016, 19, 265. doi: 10.1016/j.mattod.2015.10.012  doi: 10.1016/j.mattod.2015.10.012

    24. [24]

      Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. Adv. Mater. 2012, 24, 5166. doi: 10.1002/adma.201202146  doi: 10.1002/adma.201202146

    25. [25]

      Wang, Y.; Cao, Q.; Guan, C.; Cheng, C. Small 2020, 16, 2002902. doi: 10.1002/smll.202002902  doi: 10.1002/smll.202002902

    26. [26]

      Wang, P.; Jia, T.; Wang, B. J. Power Sources 2020, 474, 228621. doi: 10.1016/j.jpowsour.2020.228621  doi: 10.1016/j.jpowsour.2020.228621

    27. [27]

      Shan, X.; Liu, J.; Mu, H.; Xiao, Y.; Mei, B.; Liu, W.; Lin, G.; Jiang, Z.; Wen, L.; Jiang, L. Angew. Chem. Int. Ed. 2020, 59, 1659. doi: 10.1002/anie.201911617  doi: 10.1002/anie.201911617

    28. [28]

      Xu, W.; Lu, Z.; Sun, X.; Jiang, L.; Duan, X. Acc. Chem. Res. 2018, 51, 1590. doi: 10.1021/acs.accounts.8b00070  doi: 10.1021/acs.accounts.8b00070

    29. [29]

      Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Trends Chem. 2021, 3, 485. doi: 10.1016/j.trechm.2021.03.003  doi: 10.1016/j.trechm.2021.03.003

    30. [30]

      Zhuang, L.; Li, J.; Wang, K.; Li, Z.; Zhu, M.; Xu Z. Adv. Funct. Mater. 2022, 32, 2201127. doi: 10.1002/adfm.202201127  doi: 10.1002/adfm.202201127

    31. [31]

      Zhang, B.; Wang, J.; Wu, B.; Guo, X. W.; Wang, Y. J.; Chen, D.; Zhang, Y. C.; Du, K. E.; Oguzie, E.; Ma, X. L. Nat. Commun. 2018, 9, 2559. doi: 10.1038/s41467-018-04942-x  doi: 10.1038/s41467-018-04942-x

    32. [32]

      Dresp, S.; Dionigi, F.; Loos, S.; Araujo, J. F.; Spöri, C.; Gliech, M.; Dau, H.; Strasser, P. Adv. Energy Mater. 2018, 8, 1800338. doi: 10.1002/aenm.201800338  doi: 10.1002/aenm.201800338

    33. [33]

      Zheng, W.; Lee, L. Y. S.; Wong, K. Y. Nanoscale 2021, 13, 15177. doi: 10.1039/d1nr03294a  doi: 10.1039/d1nr03294a

    34. [34]

      Oh, B. S.; Oh, S. G.; Hwang, Y. Y.; Yu, H. W.; Kang, J. W.; Kim, I. S. Sci. Total Environ. 2010, 408, 5958. doi: 10.1016/j.scitotenv.2010.08.057  doi: 10.1016/j.scitotenv.2010.08.057

    35. [35]

      Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Chem. Mater. 2017, 29, 120. doi: 10.1021/acs.chemmater.6b02796  doi: 10.1021/acs.chemmater.6b02796

    36. [36]

      Peugeot, A.; Creissen, C. E.; Karapinar, D.; Tran, H. N.; Schreiber, M.; Fontecave, M. Joule 2021, 5, 1281. doi: 10.1016/j.joule.2021.03.022  doi: 10.1016/j.joule.2021.03.022

    37. [37]

      García-Osorio, D. A.; Jaimes, R.; VazquezArenas, J.; Lara, R. H.; Alvarez-Ramirez, J. J. Electrochem. Soc. 2017, 164, E3321. doi: 10.1149/2.0321711jes  doi: 10.1149/2.0321711jes

    38. [38]

      Liu, J.; Zhu, D.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. ACS Catal. 2018, 8, 6707. doi: 10.1021/acscatal.8b01715  doi: 10.1021/acscatal.8b01715

    39. [39]

      Yang, H.; Driess, M.; Menezes, P. W. Adv. Energy Mater. 2021, 11, 2102074. doi: 10.1002/aenm.202102074  doi: 10.1002/aenm.202102074

    40. [40]

      Kuang, Y.; Kenney, M. J.; Meng, Y.; Hung, W. H.; Liu, Y.; Huang, J. E.; Prasanna, R.; Li, P.; Li, Y.; Wang, L.; et al. Proc. Natl. Acad. Sci. USA 2019, 116, 6624. doi: 10.1073/pnas.1900556116  doi: 10.1073/pnas.1900556116

    41. [41]

      Wang, B.; Lu, M.; Chen, D.; Zhang, Q.; Wang, W.; Kang, Y.; Fang, Z.; Pang, G.; Feng, S. J. Mater. Chem. A 2021, 9, 13562. doi: 10.1039/d1ta01292d  doi: 10.1039/d1ta01292d

    42. [42]

      Li, R.; Li, Y.; Yang, P.; Ren, P.; Wang, D.; Lu, X.; Xu, R.; Li, Y.; Xue, J.; Zhang, J.; et al. Appl. Catal. B: Environ. 2022, 318, 121834. doi: 10.1016/j.apcatb.2022.121834  doi: 10.1016/j.apcatb.2022.121834

    43. [43]

      Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Adv. Mater. 2019, 32, 1806326. doi: 10.1002/adma.201806326  doi: 10.1002/adma.201806326

    44. [44]

      Yu, L.; Wu, L.; McElhenny, B.; Song, S.; Luo, D.; Zhang, F.; Yu, Y.; Chen, S.; Ren, Z. Energy Environ. Sci. 2020, 13, 3439. doi: 10.1039/d0ee00921k  doi: 10.1039/d0ee00921k

    45. [45]

      Li, L.; Zhang, G.; Wang, B.; Yang, S. Appl. Catal. B: Environ. 2022, 302, 120847. doi: 10.1016/j.apcatb.2021.120847  doi: 10.1016/j.apcatb.2021.120847

    46. [46]

      Liu, W.; Jiang, K.; Hu, Y.; Li, Q.; Deng, Y.; Bao, J.; Lei, Y. J. Colloid Interface Sci. 2021, 604, 767. doi: 10.1016/j.jcis.2021.07.022  doi: 10.1016/j.jcis.2021.07.022

    47. [47]

      Cui, B.; Shi, Y.; Li, G.; Chen, Y.; Chen, W.; Deng, Y.; Hu, W. Acta Phys. -Chim. Sin. 2022, 38 (6), 2106010.  doi: 10.3866/PKU.WHXB202106010

    48. [48]

      Li, Y.; Zhao, C. ACS Catal. 2017, 7, 2535. doi: 10.1021/acscatal.6b03497  doi: 10.1021/acscatal.6b03497

    49. [49]

      Han, L.; Dong, S.; Wang, E. Adv. Mater. 2016, 28, 9266. doi: 10.1002/adma.201602270  doi: 10.1002/adma.201602270

    50. [50]

      Cao, Y.; Wang, T.; Li, X.; Zhang, L.; Luo, Y.; Zhang, F.; Asiri, A. M.; Hu, J.; Liu, Q.; Sun X. Inorg. Chem. Front. 2021, 8, 3049. doi: 10.1039/D1QI00124H  doi: 10.1039/D1QI00124H

    51. [51]

      Ding, P.; Meng, C.; Liang, J.; Li, T.; Wang, Y.; Liu, Q.; Luo, Y.; Cui, G.; Asiri, A. M.; Lu, S.; et al. Inorg. Chem. 2021, 60, 12703. doi: 10.1021/acs.inorgchem.1c01783  doi: 10.1021/acs.inorgchem.1c01783

    52. [52]

      Deng, B.; Liang, J.; Yue, L.; Li, T.; Liu, Q.; Liu, Y.; Gao, S.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y.; et al. Chin. Chem. Lett. 2022, 33, 890. doi: 10.1016/j.cclet.2021.10.002  doi: 10.1016/j.cclet.2021.10.002

    53. [53]

      Wu, L.; Yu, L.; Zhu, Q.; McElhenny, B.; Zhang, F.; Wu, C.; Xing, X.; Bao, J.; Chen, S.; Ren, Z. Nano Energy 2021, 83, 105838. doi: 10.1016/j.nanoen.2021.105838  doi: 10.1016/j.nanoen.2021.105838

    54. [54]

      Zhang, F.; Liu, Y.; Wu, L.; Ning, M.; Song, S.; Xiao, X.; Hadjiev, V. G.; Fan, D. E.; Wang, D.; Yu, L.; et al. Mater. Today Phys. 2022, 27, 100841. doi: 10.1016/j.mtphys.2022.100841  doi: 10.1016/j.mtphys.2022.100841

    55. [55]

      Ning, M.; Wu, L.; Zhang, F.; Wang, D.; Song, S.; Tong, T.; Bao, J.; Chen, S.; Yu, L.; Ren, Z. Mater. Today Phys. 2021, 19, 100419. doi: 10.1016/j.mtphys.2021.100419  doi: 10.1016/j.mtphys.2021.100419

    56. [56]

      Ren, H.; Sun, X.; Du, C.; Zhao, J.; Liu, D.; Fang, W.; Kumar, S.; Chua, R.; Meng, S.; Kidkhunthod, P.; et al. ACS Nano 2019, 13, 12969. doi: 10.1021/acsnano.9b05571  doi: 10.1021/acsnano.9b05571

    57. [57]

      Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z.; Somsen, C.; Muhler, M.; Schuhmann, W. Adv. Energy Mater. 2016, 6, 1502313. doi: 10.1002/aenm.201502313  doi: 10.1002/aenm.201502313

    58. [58]

      Cai, W.; Chen, R.; Yang, H.; Tao, H. B.; Wang, H. Y.; Gao, J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Nano Lett. 2020, 20, 4278. doi: 10.1021/acs.nanolett.0c00840  doi: 10.1021/acs.nanolett.0c00840

    59. [59]

      Tu, Q.; Liu, W.; Jiang, M.; Wang, W.; Kang, Q.; Wang, P.; Zhou, W.; Zhou, F. ACS Appl. Energy Mater. 2021, 4, 4630. doi: 10.1021/acsaem.1c00262  doi: 10.1021/acsaem.1c00262

    60. [60]

      Pearson, R. G. J. Chem. Educ. 1968, 45, 581. doi: 10.1021/ed045p581  doi: 10.1021/ed045p581

    61. [61]

      Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.; Xiao, X.; Lee, J. M. Chem. Soc. Rev. 2021, 50, 1354. doi: 10.1039/d0cs00415d  doi: 10.1039/d0cs00415d

    62. [62]

      Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S.; et al. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-13092-7  doi: 10.1038/s41467-019-13092-7

    63. [63]

      Liu, H.; Lei, J.; Yang, S.; Qin, F.; Cui, L.; Kong, Y.; Zheng, X.; Duan, T.; Zhu, W.; He, R. Appl. Catal. B: Environ. 2021, 286, 119894. doi: 10.1016/j.apcatb.2021.119894  doi: 10.1016/j.apcatb.2021.119894

    64. [64]

      Jamil, R.; Ali, R.; Loomba, S.; Xian, J.; Yousaf, M.; Khan, K.; Shabbir, B.; McConville, C. F.; Mahmood, A.; Mahmood, N. Chem. Catal. 2021, 1, 802. doi: 10.1016/j.checat.2021.06.014  doi: 10.1016/j.checat.2021.06.014

    65. [65]

      Song, F.; Li, W.; Yang, J.; Han, G.; Liao, P.; Sun, Y. Nat. Commun. 2018, 9, 4531. doi: 10.1038/s41467-018-06728-7  doi: 10.1038/s41467-018-06728-7

    66. [66]

      Prabhu, P.; Jose, V.; Lee, J. M. Matter 2020, 2, 526. doi: 10.1016/j.matt.2020.01.001  doi: 10.1016/j.matt.2020.01.001

    67. [67]

      Yan, H.; Xie, Y.; Jiao, Y.; Wu, A.; Tian, C.; Zhang, X.; Wang, L.; Fu, H. Adv. Mater. 2018, 30, 1704156. doi: 10.1002/adma.201704156  doi: 10.1002/adma.201704156

    68. [68]

      Jin, H.; Liu, X.; Jiao, Y.; Vasileff, A.; Zheng, Y.; Qiao, S. Z. Nano Energy 2018, 53, 690. doi: 10.1016/j.nanoen.2018.09.046  doi: 10.1016/j.nanoen.2018.09.046

    69. [69]

      Yan, M.; Mao, K.; Cui, P.; Chen, C.; Zhao, J.; Wang, X.; Yang, L.; Yang, H.; Wu, Q.; Hu, Z. Nano Res. 2020, 13, 328. doi: 10.1007/s12274-020-2649-4  doi: 10.1007/s12274-020-2649-4

    70. [70]

      Sun, X. Acta Phys. -Chim. Sin. 2021, 37 (7), 2011077.  doi: 10.3866/PKU.WHXB202011077

    71. [71]

      Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2014, 53, 6710. doi: 10.1002/anie.201404161  doi: 10.1002/anie.201404161

    72. [72]

      Li, Y.; Zhang, H.; Jiang, M.; Zhang, Q.; He, P.; Sun, X. Adv. Funct. Mater. 2017, 27, 1702513. doi: 10.1016/j.apsusc.2020.147909  doi: 10.1016/j.apsusc.2020.147909

    73. [73]

      Ji, Y.; Yang, L.; Ren, X.; Cui, G.; Xiong, X.; Sun, X. ACS Sustain. Chem. Eng. 2018, 6, 11186. doi: 10.1021/acssuschemeng.8b01714  doi: 10.1021/acssuschemeng.8b01714

    74. [74]

      Zhang, R.; Ren, X.; Hao, S.; Ge, R.; Liu, Z.; Asiri, A. M.; Chen, L.; Zhang, Q.; Sun, X. J. Mater. Chem. A 2018, 6, 1985. doi: 10.1039/C7TA10237B  doi: 10.1039/C7TA10237B

    75. [75]

      Zhou, X.; Zi, Y.; Xu, L.; Li, T.; Yang, J.; Tang, J. Inorg. Chem. 2021, 60, 11661. doi: 10.1021/acs.inorgchem.1c01694  doi: 10.1021/acs.inorgchem.1c01694

    76. [76]

      Yan, L.; Zhang, B.; Zhu, J.; Li, Y.; Tsiakaras, P.; Shen, P. K. Appl. Catal. B: Environ. 2020, 265, 118555. doi: 10.1016/j.apcatb.2019.118555  doi: 10.1016/j.apcatb.2019.118555

    77. [77]

      Roh, H.; Jung, H.; Choi, H.; Han, J. W.; Park, T.; Kim, S.; Yong, K. Appl. Catal. B: Environ. 2021, 297, 120434. doi: 10.1016/j.apcatb.2021.120434  doi: 10.1016/j.apcatb.2021.120434

    78. [78]

      Liu, H.; Gao, J.; Xu, X.; Jia, Q.; Yang, L.; Wang, S.; Cao, D. Chem. Eng. J. 2022, 448, 137706. doi: 10.1016/j.cej.2022.137706  doi: 10.1016/j.cej.2022.137706

    79. [79]

      Zhang, Y.; Liu, H.; Ge, R.; Yang, J.; Li, S.; Liu, Y.; Feng, L.; Li, Y.; Zhu, M.; Li, W. Sustain. Mater. Technol. 2022, 33, e00461. doi: 10.1016/j.susmat.2022.e00461  doi: 10.1016/j.susmat.2022.e00461

    80. [80]

      Bhutani, D.; Maity, S.; Chaturvedi, S.; Chalapathi, D.; Waghmare, U. V.; Narayana, C.; Prabhakaran, V. C.; Muthusamy, E. J. Mater. Chem. A 2022, 10, 22354. doi: 10.1039/d2ta04296g  doi: 10.1039/d2ta04296g

    81. [81]

      Wang, P.; Pu, Z.; Li, W.; Zhu, J.; Zhang, C.; Zhao, Y.; Mu, S. J. Catal. 2019, 377, 600. doi: 10.1016/j.jcat.2019.08.005  doi: 10.1016/j.jcat.2019.08.005

    82. [82]

      Dong, Y.; Chen, X.; Yu, B.; Zhang, W.; Zhu, X.; Liu, Z. J. Alloy. Compd. 2022, 905, 164023. doi: 10.1016/j.jallcom.2022.164023  doi: 10.1016/j.jallcom.2022.164023

    83. [83]

      Gao, M.; Wang, Z.; Sun, S.; Jiang, D.; Chen, M. Nanotechnology 2021, 32, 195704. doi: 10.1088/1361-6528/abe0e5  doi: 10.1088/1361-6528/abe0e5

    84. [84]

      Wu, L.; Yu, L.; Zhang, F.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. Adv. Funct. Mater. 2021, 31, 2006484. doi: 10.1002/adfm.202006484  doi: 10.1002/adfm.202006484

    85. [85]

      Wang, S.; Yang, P.; Sun, X.; Xing, H.; Hu, J.; Chen, P.; Cui, Z.; Zhu, W.; Ma, Z. Appl. Catal. B: Environ. 2021, 297, 120386. doi: 10.1016/j.apcatb.2021.120386  doi: 10.1016/j.apcatb.2021.120386

    86. [86]

      Liu, J.; Liu, X.; Shi, H.; Luo, J.; Wang, L.; Liang, J.; Li, S.; Yang, L. M.; Wang, T.; Huang, Y.; et al. Appl. Catal. B: Environ. 2022, 302, 120862. doi: 10.1016/j.apcatb.2021.120862  doi: 10.1016/j.apcatb.2021.120862

    87. [87]

      Yu, Y.; Li, J.; Luo, J.; Kang, Z.; Jia, C.; Liu, Z.; Huang, W.; Chen, Q.; Deng, P.; Shen, Y.; et al. Mater. Today Nano 2022, 18, 100216. doi: 10.1016/j.mtnano.2022.100216  doi: 10.1016/j.mtnano.2022.100216

    88. [88]

      Wu, L.; Yu, L.; McElhenny, B.; Xinxin Xing, Luo, D.; Zhang, F.; Jiming Bao, Chen, S.; Ren, Z. Appl. Catal. B: Environ. 2022, 294, 120256. doi: 10.1016/j.apcatb.2021.120256  doi: 10.1016/j.apcatb.2021.120256

    89. [89]

      Wu, Q.; Gao, Q.; Sun, L.; Guo, H.; Tai, X.; Li, D.; Liu, L.; Ling, C.; Sun, X. Chin. J. Catal. 2021, 42, 482. doi: 10.1016/s1872-2067(20)63663-4  doi: 10.1016/s1872-2067(20)63663-4

    90. [90]

      Wu, Q.; Liu, L.; Guo, H.; Li, L.; Tai, X. J. Alloy. Compd. 2020, 821, 153219. doi: 10.1016/j.jallcom.2019.153219  doi: 10.1016/j.jallcom.2019.153219

    91. [91]

      Cheng, Y.; Yuan, P.; Xu, X.; Guo, S.; Pang, K.; Guo, H.; Zhang, Z.; Wu, X.; Zheng, L.; Song, R. Nanoscale 2019, 11, 20284. doi: 10.1039/c9nr07277b  doi: 10.1039/c9nr07277b

    92. [92]

      Lin, J.; Wang, P.; Wang, H.; Li, C.; Si, X.; Qi, J.; Cao, J.; Zhong, Z.; Fei W.; Feng, J. Adv. Sci. 2019, 6, 1900246. doi: 10.1002/advs.201900246  doi: 10.1002/advs.201900246

    93. [93]

      Lin, J.; Wang, H.; Cao, J.; He, F.; Feng, J.; Qi, J. J. Colloid Interface Sci. 2020, 571, 260. doi: 10.1016/j.jcis.2020.03.053  doi: 10.1016/j.jcis.2020.03.053

    94. [94]

      Wang, C.; Zhu, M.; Cao, Z.; Zhu, P.; Cao, Y.; Xu, X.; Xu, C.; Yin, Z. Appl. Catal. B: Environ. 2021, 291, 120071. doi: 10.1016/j.apcatb.2021.120071  doi: 10.1016/j.apcatb.2021.120071

    95. [95]

      Chen, J.; Zhang, L.; Li, J.; He, X.; Zheng, Y.; Sun, S.; Fang, X.; Zheng, D.; Luo, Y.; Wang, Y.; et al. J. Mater. Chem. A 2023, 11, 1116. doi: 10.1039/d2ta08568b  doi: 10.1039/d2ta08568b

    96. [96]

      Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. Y. Chem. Rev. 2020, 120, 851. doi: 10.1021/acs.chemrev.9b00248  doi: 10.1021/acs.chemrev.9b00248

    97. [97]

      Huang, W. H.; Lin, C. Y. Faraday Discuss. 2019, 215, 205. doi: 10.1039/C8FD00172C  doi: 10.1039/C8FD00172C

    98. [98]

      Chang, J.; Wang, G.; Yang, Z.; Li, B.; Wang, Q.; Kuliiev, R.; Orlovskaya, N.; Gu, M.; Du, Y.; Wang, G.; et al. Adv. Mater. 2021, 33, 2101425. doi: 10.1002/adma.202101425  doi: 10.1002/adma.202101425

    99. [99]

      Song, S.; Wang, Y.; Tian, X.; Sun, F.; Liu, X.; Yuan, Y.; Li, W.; Zang, J. J. Colloid Interface Sci. 2023, 633, 668. doi: 10.1016/j.jcis.2022.11.113  doi: 10.1016/j.jcis.2022.11.113

    100. [100]

      Ma, T. Y.; Ran, J.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2015, 54, 4646. doi: 10.1002/anie.201411125  doi: 10.1002/anie.201411125

    101. [101]

      Zhou, Y. N.; Zhu, Y. R.; Chen, X. Y.; Dong, B.; Li, Q. Z.; Chai, Y. M. J. Alloy. Compd. 2021, 852, 156810. doi: 10.1016/j.jallcom.2020.156810  doi: 10.1016/j.jallcom.2020.156810

    102. [102]

      Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Adv. Mater. 2017, 29, 1605838. doi: 10.1002/adma.201605838  doi: 10.1002/adma.201605838

    103. [103]

      Jadhav, A. R.; Kumar, A.; Lee, J.; Yang, T.; Na, S.; Lee, J.; Luo, Y.; Liu, X.; Hwang, Y.; Liu, Y.; et al. J. Mater. Chem. A 2020, 8, 24501. doi: 10.1039/d0ta08543j  doi: 10.1039/d0ta08543j

    104. [104]

      Ding, H.; Liu, H.; Chu, W.; Wu, C.; Xie, Y. Chem. Rev. 2021, 121, 13174. doi: 10.1021/acs.chemrev.1c00234  doi: 10.1021/acs.chemrev.1c00234

    105. [105]

      Gao, L.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Chem. Soc. Rev. 2021, 50, 8428. doi: 10.1039/D0CS00962H  doi: 10.1039/D0CS00962H

    106. [106]

      Ning, M.; Zhang, F.; Wu, L.; Xing, X.; Wang, D.; Song, S.; Zhou, Q.; Yu, L.; Bao, J.; Chen, S.; et al. Energy Environ. Sci. 2022, 15, 3945. doi: 10.1039/D2EE01094A  doi: 10.1039/D2EE01094A

    107. [107]

      Luo, M. B.; Xiong, Y. Y.; Wu, H. Q.; Feng, X. F.; Li, J. Q.; Luo, F. Angew. Chem. Int. Ed. 2017, 56, 16376. doi: 10.1002/anie.201709197  doi: 10.1002/anie.201709197

    108. [108]

      Liu, J. X.; Wçll, C. Chem. Soc. Rev. 2017, 46, 5730. doi: 10.1039/C7CS00315C  doi: 10.1039/C7CS00315C

    109. [109]

      Cao, X. H.; Tan, C. L.; Sindoro, M.; Zhang, H. Chem. Soc. Rev. 2017, 46, 2660. doi: 10.1039/C6CS00426A  doi: 10.1039/C6CS00426A

    110. [110]

      Luo, Y.; Yang, X.; He, L.; Zheng, Y.; Pang, J.; Wang, L.; Jiang, R.; Hou, J.; Guo, X.; Chen, L. ACS Appl. Mater. Interfaces 2022, 14, 46374. doi: 10.1021/acsami.2c05181  doi: 10.1021/acsami.2c05181

    111. [111]

      Guo, J.; Zheng, Y.; Hu, Z.; Zheng, C.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Nat. Energy 2023, 8, 264. doi: 10.1038/s41560-023-01195-x  doi: 10.1038/s41560-023-01195-x

  • 加载中
    1. [1]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    2. [2]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    3. [3]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    4. [4]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    5. [5]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    6. [6]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    7. [7]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    10. [10]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    11. [11]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    12. [12]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    13. [13]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    14. [14]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    15. [15]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    16. [16]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    17. [17]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    18. [18]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    19. [19]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    20. [20]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

Metrics
  • PDF Downloads(6)
  • Abstract views(824)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return