Citation:
Fan Yang, Zheng Liu, Da Wang, KwunNam Hui, Yelong Zhang, Zhangquan Peng. Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery[J]. Acta Physico-Chimica Sinica,
;2024, 40(2): 230300.
doi:
10.3866/PKU.WHXB202303006
-
With increasing global energy demand and stricter environmental protection requirements, energy storage technology has become a research hotspot in the global energy field. New types of energy storage devices continue to emerge owing to the continuous development of cost-effective energy storage technology. Among them, potassium-ion batteries have received widespread attention as a new type of alkali metal ion battery because of their high capacity and low cost and are considered one of the future development directions. However, the research on potassium-ion batteries is still in its infancy, with many challenges to overcome regarding practical applications. A key factor affecting the performance of potassium-ion batteries is the anode material, as it not only affects the manufacturing costs but also directly affects the power density and energy density of the battery. Traditional anode materials for lithium-ion batteries cannot meet the requirements of potassium-ion batteries. Therefore, developing high-performance anode materials suitable for potassium-ion batteries is an important research direction at present. The charge and discharge rate and cycling life of potassium-ion batteries also need further improvements. Currently, the low-rate performance, short cycle life, and unsatisfactory practical capacities limit their practical application and commercialization. However, the future of potassium-ion batteries remains promising. Upon resolving the aforementioned issues, potassium-ion batteries will have diverse application prospects, such as electric vehicles, energy storage stations, and smart grids, providing important support for solving energy problems. Therefore, the research and development of potassium-ion batteries are an important direction in the global energy field. Current research efforts are primarily focused on exploring novel anode materials with exceptional ratability and cyclability. In this regard, we synthesized a new type of anode material based on bismuth telluride (Bi2Te3) and experimentally studied its applicability in potassium-ion batteries. The performance of Bi2Te3 anode for potassium-ion batteries has been limited by its structural instability and slow electrochemical reaction kinetics. In this study, rod-like Bi2Te3 was grown on accordion-like MXene, followed by P-doping to obtain a high-performance P-Bi2Te3/MXene superstructure. This novel anode had abundant Te vacancies and good self-auto adjustable function, providing excellent cycling stability (323.1 mAh·g-1 after 200 cycles at 0.2 A·g-1) and outstanding rate capability (67.1 mAh·g-1 at 20 A·g-1). Kinetic analysis and ex situ characterization indicate that the superstructure exhibits superior pseudocapacitive properties, high electrical conductivity, favorable diffusion capability, and reversible insertion and conversion reaction mechanism.
-
Keywords:
- Potassium ion battery,
- Anode,
- Bi2Te3,
- MXene,
- P doping
-
-
-
[1]
(1) Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Nano Res. 2021, 14 (12), 4442. doi: 10.1007/s12274-021-3439-3
-
[2]
-
[3]
(3) Din, M. A. U.; Li, C.; Zhang, L. H.; Han, C. P.; Li, B. H. Mater. Today Phys. 2021, 21, 100486. doi: 10.1016/j.mtphys.2021.100486
-
[4]
-
[5]
(5) Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. G.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Energy Environ. Sci. 2021, 14 (4), 2186. doi: 10.1039/D0EE02917C
-
[6]
(6) Zhang, S. P.; Wang, G.; Wang, B. B.; Wang, J. M.; Bai, J. T.; Wang, H. Adv. Funct. Mater. 2020, 30 (24), 2001592. doi: 10.1002/adfm.202001592
-
[7]
(7) Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. J. Am. Chem. Soc. 2017, 139 (9), 3316. doi: 10.1021/jacs.6b12185
-
[8]
(8) Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Adv. Mater. 2018, 30 (23), 1707334. doi: 10.1002/adma.201707334
-
[9]
(9) Zhou, J. W.; Zhang, Y. L.; Liu, Z.; Qiu, Z. P.; Wang, D.; Zeng, Q. G.; Yang, C.; Hui, K. N.; Yang, Y.; Peng, Z. Q.; et al. Sci. China Mater. 2022, 65, 3418. doi: 10.1007/s40843-022-2073-y
-
[10]
(10) Li, H. X.; Chen, J. T.; Zhang, L.; Wang, K.; Zhang, X.; Yang, B. J.; Liu, L. Y.; Liu, W. S.; Yan, X. B. J. Mater. Chem. A 2020, 8 (32), 16302. doi: 10.1039/D0TA04912C
-
[11]
(11) Tao, L.; Yang, Y. P.; Wang, H. L.; Zheng, Y. long; Hao, H. C.; Song, W. P.; Shi, J.; Huang, M. H.; Mitlin, D. Energy Storage Mater. 2020, 27, 212. doi: 10.1016/j.ensm.2020.02.004
-
[12]
(12) Zhang, J.; Lai, L.; Wang, H.; Chen, M.; Shen, Z. X. Mater. Today Energy 2021, 21, 100747. doi: 10.1016/j.mtener.2021.100747
-
[13]
(13) Cui, J.; Yao, S. S.; Ihsan-Ul-Haq, M.; Mubarak, N.; Wang, M. Y.; Wu, J. X.; Kim, J. K. ACS Mater. Lett. 2021, 3 (4), 406. doi: 10.1021/acsmaterialslett.0c00627
-
[14]
(14) Park, G. D.; Kang, Y. C. Small Methods 2020, 4 (10), 2000556. doi: 10.1002/smtd.202000556
-
[15]
(15) Yi, Z.; Qian, Y.; Tian, J.; Shen, K. Z.; Lin, N.; Qian, Y. T. J. Mater. Chem. A 2019, 7 (19), 12283. doi: 10.1039/C9TA02204J
-
[16]
(16) Soares, D. M.; Singh, G. Nanotechnology 2021, 32 (50), 505402. doi: 10.1088/1361-6528/ac23f3
-
[17]
(17) Romanenko, A. I.; Chebanova, G. E.; Drozhzhin, M. V.; Katamanin, I. N.; Komarov, V. Y.; Han, M.; Kim, S.; Chen, T. T.; Wang, H. C. J. Am. Ceram. Soc. 2021, 104 (12), 6242. doi: 10.1111/jace.17988
-
[18]
(18) Ko, J. K.; Jo, J. H.; Kim, H. J.; Park, J. S.; Yashiro, H.; Voronina, N.; Myung, S. Energy Storage Mater. 2021, 43, 411. doi: 10.1016/j.ensm.2021.09.028
-
[19]
(19) Zhang, G. Q.; Kirk, B.; Jauregui, L. A.; Yang, H.; Xu, X. F.; Chen, Y. P.; Wu, Y. Nano Lett. 2012, 12 (1), 56. doi: 10.1021/nl202935k
-
[20]
(20) Dong, Y. F.; Shi, H. D.; Wu, Z. S. Adv. Funct. Mater. 2020, 30 (47), 2000706. doi: 10.1002/adfm.202000706
-
[21]
(21) Cao, Y. P.; Chen, H.; Shen, Y. P.; Chen, M.; Zhang, Y. L.; Zhang, L. Y.; Wang, Q.; Guo, S. J.; Yang, H. ACS Appl. Mater. Interfaces 2021, 13 (15), 17668. doi: 10.1021/acsami.1c02590
-
[22]
(22) Xu, X. D.; Zhang, Y. L.; Sun, H. Y.; Zhou, J. W.; Liu, Z.; Qiu, Z. P.; Wang, D.; Yang, C.; Zeng, Q. G.; Peng, Z. Q.; et al. Adv. Mater. 2021, 33 (31), 2100272. doi: 10.1002/adma.202100272
-
[23]
(23) Zhang, Y. L.; Mu, Z. J.; Yang, C.; Xu, Z. K.; Zhang, S.; Zhang, X. Y.; Li, Y. J.; Lai, J. P.; Sun, Z. H.; Yang, Y.; et al. Adv. Funct. Mater. 2018, 28 (38), 1707578. doi: 10.1002/adfm.201707578
-
[24]
(24) Gabaudan, V.; Berthelot, R.; Stievano, L.; Monconduit, L. J. Phys. Chem. C 2018, 122 (32), 18266. doi: 10.1021/acs.jpcc.8b04575
-
[25]
(25) Kumari, P.; Pal, P.; Shinzato, K.; Awasthi, K.; Ichikawa, T.; Jain, A.; Kumar, M. Int. J. Hydrog. Energy 2020, 45 (34), 16992. doi: 10.1016/j.ijhydene.2019.06.175
-
[26]
(26) Aliev, Z. S.; Amiraslanov, I. R.; Nasonova, D. I.; Shevelkov, A. V.; Abdullayev, N. A.; Jahangirli, Z. A.; Orujlu, E. N.; Otrokov, M. M.; Mamedov, N. T.; Babanly, M. B.; et al. J. Alloy. Compd. 2019, 789, 443. doi: 10.1016/j.jallcom.2019.03.030
-
[27]
(27) Dong, S.; Yu, D. D.; Yang, J.; Jiang, L.; Wang, J.; Cheng, L. W.; Zhou, Y.; Yue, H.; Wang, H.; Guo, L. Adv. Mater. 2020, 32 (23), 1908027. doi: 10.1002/adma.201908027
-
[28]
(28) Qin, T. T.; Chu, X. F.; Deng, T.; Wang, B. R.; Zhang, X.; Dong, T. W.; Li, Z. M.; Fan, X. F.; Ge, X.; Wang, Z. Z.; et al. J. Energy Chem. 2020, 48, 21. doi: 10.1016/j.jechem.2019.12.012
-
[29]
(29) Zhan, J.; Long, Y. Y. Ceram. Int. 2018, 44 (12), 14891. doi: 10.1016/j.ceramint.2018.04.189
-
[30]
(30) Nan, J. L.; Liu, Y. Q.; Chao, D. Y.; Fang, Y.; Dong, S. J. Nano Res. 2023, 1. doi: 10.1007/s12274-022-5319-x
-
[31]
(31) Peng, J.; Pan, Y.; Yu, Z.; Wu, J.; Wu, J.; Zhou, Y.; Guo, Y.; Wu, X.; Wu, C.; Xie, Y. Angew. Chem. Int. Ed. 2018, 57 (41), 13533. doi: 10.1002/anie.201808050
-
[32]
(32) Zhang, H.; Wang, T. T.; Sumboja, A.; Zang, W. J.; Xie, J. P.; Gao, D.; Pennycook, S. J.; Liu, Z. L.; Guan, C.; Wang, J. Adv. Funct. Mater. 2018, 28 (40), 1804846. doi: 10.1002/adfm.201804846
-
[33]
(33) Deng, L. Q.; Chang, B.; Shi, D.; Yao, X. G.; Shao, Y.; Shen, J. X.; Zhang, B. G.; Wu, Y. Z.; Hao, X. P. Renew. Energy 2021, 170, 858. doi: 10.1016/j.renene.2021.02.040
-
[34]
(34) Yoon, Y.; Tiwari, A. P.; Choi, M.; Novak, T. G.; Song, W.; Chang, H.; Zyung, T.; Lee, S. S.; Jeon, S.; An, K. Adv. Funct. Mater. 2019, 29 (30), 1903443. doi: 10.1002/adfm.201903443
-
[35]
(35) Gillard, C. H. R.; Jana, P. P.; Rawal, A.; Sharma, N. J. Alloys Compd. 2021, 854, 155621. doi: 10.1016/j.jallcom.2020.155621
-
[36]
(36) Cui, J.; Zheng, H. K.; Zhang, Z. L.; Hwang, S.; Yang, X. Q.; He, K. Matter 2021, 4 (4), 1335. doi: 10.1016/j.matt.2021.01.005
-
[37]
(37) Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X.; Sen Wang; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Nano Energy 2017, 40, 1. doi: 10.1016/j.nanoen.2017.08.002
-
[38]
(38) Cui, R. C.; Zhou, H. Y.; Li, J. C.; Yang, C. C.; Jiang, Q. Adv. Funct. Mater. 2021, 31 (33), 2103067. doi: 10.1002/adfm.202103067
-
[39]
(39) Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M.; Alshareef, H. N. Adv. Funct. Mater. 2019, 29 (35), 1903641. doi: 10.1002/adfm.201903641
-
[40]
(40) Wang, J.; Wang, B.; Liu, Z.; Fan, L.; Zhang, Q. F.; Ding, H. B.; Wang, L. L.; Yang, H. G.; Yu, X. Z.; Lu, B. Adv. Sci. 2019, 6 (17), 1900904. doi: 10.1002/advs.201900904
-
[41]
(41) Li, Y. P.; Zhang, Q. B.; Yuan, Y. F.; Liu, H. D.; Yang, C. H.; Lin, Z.; Lu, J. Adv. Energy Mater. 2020, 10 (23), 2000717. doi: 10.1002/aenm.202000717
-
[42]
(42) Tian, H. J.; Yu, X. C.; Shao, H. Z.; Dong, L. B.; Chen, Y.; Fang, X. Q.; Wang, C. Y.; Han, W. Q.; Wang, G. X. Adv. Energy Mater. 2019, 9 (29), 1901560. doi: 10.1002/aenm.201901560
-
[43]
(43) Xu, Y.; Bahmani, F.; Zhou, M.; Li, Y. L.; Zhang, C. L.; Liang, F.; Kazemi, S. H.; Kaiser, U.; Meng, G.; Lei, Y. Nanoscale Horiz. 2019, 4 (1), 202. doi: 10.1039/C8NH00305J
-
[44]
(44) Liu, S. T.; Yang, B. B.; Zhou, J. S.; Song, H. H. J. Mater. Chem. A 2019, 7 (31), 18499. doi: 10.1039/C9TA04699B
-
[45]
(45) Chao, D. L.; Zhu, C.; Yang, P. H.; Xia, X.; Liu, J.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J.; et al. Nat. Commun. 2016, 7 (1), 12122. doi: 10.1038/ncomms12122
-
[46]
(46) Du, Y. Q.; Zhang, B. Y.; Zhang, W. Y.; Jin, H. X.; Qin, J.; Wan, J. Q.; Zhang, J. X.; Chen, G. W. Energy Storage Mater. 2021, 38, 231. doi: 10.1016/j.ensm.2021.03.012
-
[1]
-
-
-
[1]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[2]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[3]
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
-
[4]
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
-
[5]
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
-
[6]
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
-
[7]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[8]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[9]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[10]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[13]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[14]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[15]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[16]
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
-
[17]
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
-
[18]
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
-
[19]
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
-
[20]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(174)
- HTML views(17)